1
|
Rath S, Das S. Stress response proteins within biofilm matrixome protect the cell membrane against heavy metals-induced oxidative damage in a marine bacterium Bacillus stercoris GST-03. Int J Biol Macromol 2024; 293:139397. [PMID: 39743066 DOI: 10.1016/j.ijbiomac.2024.139397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Biofilm formation is a key adaptive response of marine bacteria towards stress conditions. The protective mechanisms of biofilm matrixome proteins against heavy metals (Pb and Cd) induced oxidative damage in the marine bacterium Bacillus stercoris GST-03 was investigated. Exposure to heavy metals resulted in significant changes in cell morphology, biofilm formation, and matrixome composition. Biofilm-encased cells showed lower oxidative damage. Biofilm matrixome protein exhibited major conformational changes, with 100 % α-helix turned to 62.33 % and 69.64 % of random coil under Pb and Cd stress, respectively. Fluorescence quenching kinetics revealed slow interactions between biofilm matrixome proteins and heavy metals (Kq values < 2.0 × 1010). Thermodynamic analysis showed negative ∆G (-16.02 kJ/mol for Pb and -17.45 kJ/mol for Cd) and binding dissociation constant (KD) (1530 ± 157 μM for Pb and 875 ± 97.4 μM for Cd), indicating a stronger binding affinity of biofilm matrixome to heavy metals. Pb stress led to overproduction of detoxification proteins (YnaI, KhtS, Bacillopeptidase F), competence and sporulation proteins (RapF, CSSF, XkdP), while Cd exposure leads to overproduction of proteins involved in protein misfolding repair (YlxX, cysteine-tRNA ligase, YacP), DNA repair (YfkN), and redox balance (cysteine synthase, YdiK). The findings highlight the resilience of B. stercoris GST-03 to heavy metal stress in biofilm mode.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
2
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Wahia H, Fakayode OA, Mustapha AT, Zhou C, Dabbour M. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit Rev Food Sci Nutr 2022; 64:4561-4586. [PMID: 36412233 DOI: 10.1080/10408398.2022.2143475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, PR China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
4
|
Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores. Microorganisms 2022; 10:microorganisms10101918. [DOI: 10.3390/microorganisms10101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the exosporium, plays an essential role in interactions with host surfaces and the immune system. The main exosporium proteins identified to date include three orthologues of the BclA family of collagen-like proteins, and three cysteine-rich proteins. However, how the underlying spore coat influences exosporium assembly remains unclear. In this work, we explore the contribution of spore coat proteins cotA and cotB, and the spore surface protein, CDIF630_02480, to the exosporium ultrastructure, formation of the polar appendage and the surface accessibility of exosporium proteins. Transmission electron micrographs of spores of insertional inactivation mutants demonstrate that while cotB contributes to the formation of thick-exosporium spores, cotA and CDIF630_02480 contribute to maintain proper thickness of the spore coat and exosporium layers, respectively. The effect of the absence of cotA, cotB and CDIF630_02480 on the surface accessibility of the exosporium proteins CdeA, CdeC, CdeM, BclA2 and BclA3 to antibodies was affected by the presence of the spore appendage, suggesting that different mechanisms of assembly of the exosporium layer might be implicated in each spore phenotype. Collectively, this work contributes to our understanding of the associations between spore coat and exosporium proteins, and how these associations affect the assembly of the spore outer layers. These results have implications for the development of anti-infecting agents targeting C. difficile spores.
Collapse
|
5
|
Heat activation and inactivation of bacterial spores. Is there an overlap? Appl Environ Microbiol 2022; 88:e0232421. [PMID: 35020450 DOI: 10.1128/aem.02324-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat activation at a sublethal temperature is widely applied to promote Bacillus species spore germination. This treatment also has potential to be employed in food processing to eliminate undesired bacterial spores by enhancing their germination, and then inactivating the less heat resistant germinated spores at a milder temperature. However, incorrect heat treatment could also generate heat damage in spores, and lead to more heterogeneous spore germination. Here, the heat activation and heat damage profile of Bacillus subtilis spores was determined by testing spore germination and outgrowth at both population and single spore levels. The heat treatments used were 40-80°C, and for 0-300 min. The results were as follows. 1) Heat activation at 40-70°C promoted L-valine and L-asparagine-glucose-fructose-potassium (AGFK) induced germination in a time dependent manner. 2) The optimal heat activation temperatures for AGFK and L-valine germination via the GerB plus GerK or GerA germinant receptors were 65 and 50-65°C, respectively. 3) Heat inactivation of dormant spores appeared at 70°C, and the heat damage of molecules essential for germination and growth began at 70 and 65°C, respectively. 4) Heat treatment at 75°C resulted in both activation of germination and damage to the germination apparatus, and 80°C treatment caused more pronounced heat damage. 5) For the spores that should withstand adverse environmental temperatures in nature, heat activation seems functional for a subsequent optimal germination process, while heat damage affected both germination and outgrowth. Importance Bacterial spores are thermal resistant structures that can thus survive preservation strategies and revive through the process of spore germination. The more heat resistant spores are the more heterogeneous they germinate upon adding germinants. Upon germination spores can cause food spoilage and cause food intoxication. Here we provide new information on both heat activation and inactivation regimes and their effects on the (heterogeneity of) spore germination.
Collapse
|
6
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
7
|
Abstract
Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores—the so called “germinate to eradicate” strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.
Collapse
|
8
|
Ursem R, Swarge B, Abhyankar WR, Buncherd H, de Koning LJ, Setlow P, Brul S, Kramer G. Identification of Native Cross-Links in Bacillus subtilis Spore Coat Proteins. J Proteome Res 2021; 20:1809-1816. [PMID: 33596081 PMCID: PMC7944565 DOI: 10.1021/acs.jproteome.1c00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The resistance properties of the bacterial spores are partially due to spore surface proteins, ∼30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched cross-linked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and ε-(γ)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.
Collapse
Affiliation(s)
| | | | | | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030-3305, United States
| | | | | |
Collapse
|
9
|
New insights into thermo-acidophilic properties of Alicyclobacillus acidoterrestris after acid adaptation. Food Microbiol 2020; 94:103657. [PMID: 33279082 DOI: 10.1016/j.fm.2020.103657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
Alicyclobacillus acidoterrestris has unique thermo-acidophilic properties and is the main cause of fruit juice deterioration. Given the acidic environment and thermal treatment during juice processing, the effects of acid adaptation (pH 3.5, 3.2, and 3.0) on the resistance of A. acidoterrestris to heat (65 °C, 5 min) and acid (pH = 2.2, 1 h) stresses were investigated for the first time. The results showed that acid adaptation induced cross-protection against heat stress of A. acidoterrestris and acid tolerance response, and the extent of induced tolerance was increased with the decrease of adaptive pH values. Acid adaptation treatments did not disrupt the membrane potential stability and intracellular pH homeostasis, but reduced intracellular ATP concentration, increased cyclic fatty acids content, and changed the acquired Fourier transform infrared spectra. Transcription levels of stress-inducible (dnaK, grpE, clpP, ctsR) genes and genes related to spore formation (spo0A, ctoX) were up-regulated after acid adaptation, and spore formation was observed by scanning electron microscopy. This study revealed that the intracellular microenvironment homeostasis, expression of chaperones and proteases, and spore formation played a coordinated role in acid stress adaptive responses, with implications for applications in fruit juice processing.
Collapse
|
10
|
Investigating Synthesis of the MalS Malic Enzyme during Bacillus subtilis Spore Germination and Outgrowth and the Influence of Spore Maturation and Sporulation Conditions. mSphere 2020; 5:5/4/e00464-20. [PMID: 32759333 PMCID: PMC7407067 DOI: 10.1128/msphere.00464-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores. Spore-forming bacteria of the orders Bacillales and Clostridiales play a major role in food spoilage and foodborne diseases. When environmental conditions become favorable, these spores can germinate as the germinant receptors located on the spore’s inner membrane are activated via germinant binding. This leads to the formation of vegetative cells via germination and subsequent outgrowth and potential deleterious effects on foods. The present report focuses on analysis of the synthesis of the MalS (malic enzyme) protein during Bacillus subtilis spore germination by investigating the dynamics of the presence and fluorescence level of a MalS-GFP (MalS-green fluorescent protein) fusion protein using time-lapse fluorescence microscopy. Our results show an initial increase in MalS-GFP fluorescence intensity within the first 15 min of germination, followed by a discernible drop and stabilization of the fluorescence throughout spore outgrowth as reported previously (L. Sinai, A. Rosenberg, Y. Smith, E. Segev, and S. Ben-Yehuda, Mol Cell 57:695–707, 2015, https://doi.org/10.1016/j.molcel.2014.12.019). However, in contrast to the earlier report, both Western blotting and SILAC (stable isotopic labeling of amino acids in cell culture) analysis showed there was no increase in MalS-GFP levels during the 15 min after the addition of germinants and that MalS synthesis did not begin until more than 90 min after germinant addition. Thus, the increase in MalS-GFP fluorescence early in germination is not due to new protein synthesis but is perhaps due to a change in the physical environment of the spore cores. Our findings also show that different sporulation conditions and spore maturation times affect expression of MalS-GFP and the germination behavior of the spores, albeit to a minor extent, but still result in no changes in MalS-GFP levels early in spore germination. IMPORTANCE The spores formed by Bacillus subtilis remain in a quiescent state for extended periods due to their dormancy and resistance features. Dormancy is linked to a very low level of core water content and a phase-bright state of spores. The present report, focusing on proteins MalS and PdhD (pyruvate dehydrogenase subunit D) and complementary to our companion report published in this issue, aims to shed light on a major dilemma in the field, i.e., whether protein synthesis, in particular that of MalS, takes place in phase-bright spores. Clustered MalS-GFP in dormant spores diffuses throughout the spore as germination proceeds. However, fluorescence intensity measurements, supported by Western blot analysis and SILAC proteomics, confirm that there is no new MalS protein synthesis in bright-phase dormant spores.
Collapse
|
11
|
Abstract
This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study. Bacillus subtilis spores can reactivate their metabolism through germination upon contact with germinants and can develop into vegetative cells upon outgrowth. However, the mechanisms at the basis of the molecular machinery that triggers the spore germination and outgrowth processes are still largely unclear. To gain further insights into these processes, the transcriptome and proteome changes occurring during the conversion of spores to vegetative cells were analyzed in the present study. For each time point sampled, the changes in the spore proteome were quantitatively monitored relative to the proteome of metabolically 15N-labeled vegetative cells. Of the quantified proteins, 60% are shared by vegetative cells and spores, indicating that the spores have a minimal protein set, sufficient to resume metabolism upon completion of germination. These shared proteins thus represent the most basic “survival kit” for spore-based life. We observed no significant change in the proteome or the transcriptome until the spore’s completion of germination. Our analysis identified 34 abundant mRNA transcripts in the dormant spores, 31 of which are rapidly degraded after germination. In outgrowing spores, we identified 3,152 differentially expressed genes and have demonstrated the differential expression of 322 proteins with our mass spectrometry analyses. Our data also showed that 173 proteins from dormant spores, including both proteins unique to spores and proteins shared with vegetative cells, were lost after completion of germination. The observed diverse timings of synthesis of different protein sets in spore outgrowth revealed a putative core strategy underlying the revival of ‘life’ from the B. subtilis spore. IMPORTANCE This study demonstrated the progress of macromolecular synthesis during Bacillus subtilis spore germination and outgrowth. The transcriptome analysis has additionally allowed us to trace gene expression during this transformation process. For the first time, the basic survival kit for spore-based life has been identified. In addition, in this analysis based on monitoring of protein levels in germinating and outgrowing spores, the transition from (ribo)nucleotide and amino acid biosynthesis to the restoration of all metabolic pathways can be clearly seen. The integrative multi-omics approach applied in this study thus has helped us to achieve a comprehensive overview of the molecular mechanisms at the basis of spore germination and outgrowth as well as to identify important knowledge gaps in need of further study.
Collapse
|
12
|
Christie G, Setlow P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell Signal 2020; 74:109729. [PMID: 32721540 DOI: 10.1016/j.cellsig.2020.109729] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
How might a microbial cell that is entirely metabolically dormant - and which has the ability to remain so for extended periods of time - irreversibly commit itself to resuming vegetative growth within seconds of being exposed to certain amino acids or sugars? That this process takes place in the absence of any detectable ATP or de novo protein synthesis, and relies upon a pre-formed apparatus that is immobilised, respectively, in a semi-crystalline membrane or multi-layered proteinaceous coat, only exacerbates the challenge facing spores of Bacillales species when stimulated to germinate. Whereas the process by which spores are formed in response to nutrient starvation - sporulation - involves the orchestrated interplay between hundreds of distinct proteins, the process by which spores return to life - germination - is a much simpler affair, requiring a handful of receptor and channel proteins complemented with specialized peptidoglycan lysins. Despite this relative simplicity, and research effort spanning many decades, comprehensive understanding of key molecular and biochemical details and, in particular signal transduction mechanisms associated with spore germination, has remained elusive. In this review we provide an up to date overview of the field while identifying what we consider to be the key gaps in knowledge associated with germination of Bacillales spores, suggesting also technical approaches that may provide fresh insight to this unique biological process.
Collapse
Affiliation(s)
- Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 OAS, United Kingdom.
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA.
| |
Collapse
|
13
|
Boonstra M, Schaffer M, Sousa J, Morawska L, Holsappel S, Hildebrandt P, Sappa PK, Rath H, de Jong A, Lalk M, Mäder U, Völker U, Kuipers OP. Analyses of competent and non-competent subpopulations of Bacillus subtilis reveal yhfW, yhxC and ncRNAs as novel players in competence. Environ Microbiol 2020; 22:2312-2328. [PMID: 32249531 PMCID: PMC7317962 DOI: 10.1111/1462-2920.15005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/29/2020] [Indexed: 11/28/2022]
Abstract
Upon competence-inducing nutrient-limited conditions, only part of the Bacillus subtilis population becomes competent. Here, we separated the two subpopulations by fluorescence-assisted cell sorting (FACS). Using RNA-seq, we confirmed the previously described ComK regulon. We also found for the first time significantly downregulated genes in the competent subpopulation. The downregulated genes are not under direct control by ComK but have higher levels of corresponding antisense RNAs in the competent subpopulation. During competence, cell division and replication are halted. By investigating the proteome during competence, we found higher levels of the regulators of cell division, MinD and Noc. The exonucleases SbcC and SbcD were also primarily regulated at the post-transcriptional level. In the competent subpopulation, yhfW was newly identified as being highly upregulated. Its absence reduces the expression of comG, and has a modest, but statistically significant effect on the expression of comK. Although expression of yhfW is higher in the competent subpopulation, no ComK-binding site is present in its promoter region. Mutants of yhfW have a small but significant defect in transformation. Metabolomic analyses revealed significant reductions in tricarboxylic acid (TCA) cycle metabolites and several amino acids in a ΔyhfW mutant. RNA-seq analysis of ΔyhfW revealed higher expression of the NAD synthesis genes nadA, nadB and nadC.
Collapse
Affiliation(s)
- Mirjam Boonstra
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Marc Schaffer
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Joana Sousa
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Luiza Morawska
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Siger Holsappel
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Petra Hildebrandt
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Praveen Kumar Sappa
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Hermann Rath
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Anne de Jong
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Michael Lalk
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Oscar P Kuipers
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| |
Collapse
|
14
|
Clair G, Esbelin J, Malléa S, Bornard I, Carlin F. The spore coat is essential for Bacillus subtilis spore resistance to pulsed light, and pulsed light treatment eliminates some spore coat proteins. Int J Food Microbiol 2020; 323:108592. [PMID: 32315871 DOI: 10.1016/j.ijfoodmicro.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/11/2019] [Accepted: 03/15/2020] [Indexed: 01/26/2023]
Abstract
Microbial surface contamination of equipment or of food contact material is a recurring problem in the food industry. Spore-forming bacteria are far more resistant to a wide variety of treatments than their vegetative forms. Understanding the mechanisms underlying decontamination processes is needed to improve surface decontamination strategies against endospores potentially at the source of foodborne diseases or food-spoilage. Pulsed light (PL) with xenon lamps delivers high-energy short-time pulses of light with wavelengths in the range 200 nm-1100 nm and a high UV-C fraction. Bacillus subtilis spores were exposed to either PL or to continuous UV-C. Gel electrophoresis and western blotting revealed elimination of various proteins of the spore coat, an essential outer structure that protects spores from a wide variety of environmental conditions and inactivation treatments. Proteomic analysis confirmed the elimination of some spore coat proteins after PL treatment. Transmission electron microscopy of PL treated spores revealed a gap between the lamellar inner spore coat and the outer spore coat. Overall, spores of mutant strains with defects in genes coding for spore coat proteins were more sensitive to PL than to continuous UV-C. This study demonstrates that radiations delivered by PL contribute to specific damage to the spore coat, and overall to spore inactivation.
Collapse
Affiliation(s)
- Gérémy Clair
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France; Integrative Omics, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Julia Esbelin
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France
| | - Sabine Malléa
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France
| | | | - Frédéric Carlin
- INRAE, Avignon Université, UMR SQPOV, F-84000, Avignon, France.
| |
Collapse
|
15
|
Bartels J, Blüher A, López Castellanos S, Richter M, Günther M, Mascher T. The
Bacillus subtilis
endospore crust: protein interaction network, architecture and glycosylation state of a potential glycoprotein layer. Mol Microbiol 2019; 112:1576-1592. [DOI: 10.1111/mmi.14381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Julia Bartels
- Institute of Microbiology Technische Universität (TU) Dresden Dresden 01062Germany
| | - Anja Blüher
- School of Engineering Science Institute of Materials Science Technische Universität (TU) Dresden Dresden 01062Germany
| | | | - Marcus Richter
- Institute of Microbiology Technische Universität (TU) Dresden Dresden 01062Germany
| | - Markus Günther
- Institute of Botany Technische Universität (TU) Dresden Dresden 01062Germany
| | - Thorsten Mascher
- Institute of Microbiology Technische Universität (TU) Dresden Dresden 01062Germany
| |
Collapse
|
16
|
Properties of Aged Spores of Bacillus subtilis. J Bacteriol 2019; 201:JB.00231-19. [PMID: 31061168 DOI: 10.1128/jb.00231-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Bacillus spores incubated on plates for 2 to 98 days at 37°C had identical Ca-dipicolinic acid contents, exhibited identical viability on rich- or poor-medium plates, germinated identically in liquid with all germinants tested, identically returned to vegetative growth in rich or minimal medium, and exhibited essentially identical resistance to dry heat and similar resistance to UV radiation. However, the oldest spores had a lower core water content and significantly higher wet heat and NaOCl resistance. In addition, 47- and 98-day spores had lost >98% of intact 16S and 23S rRNA and 97 to 99% of almost all mRNAs, although minimal amounts of mononucleotides were generated in 91 days. Levels of 3-phosphoglyceric acid (3PGA) also fell 30 to 60% in the oldest spores, but how the 3PGA was lost is not clear. These results indicate that (i) translation of dormant spore mRNA is not essential for completion of spore germination, nor is protein synthesis from any mRNA; (ii) in sporulation for up to 91 days at 37°C, the RNA broken down generates minimal levels of mononucleotides; and (iii) the lengths of time that spores are incubated in sporulation medium should be considered when determining conditions for spore inactivation by wet heat, in particular, in using spores to test for the efficacy of sterilization regimens.IMPORTANCE We show that spores incubated at 37°C on sporulation plates for up to 98 days have lost almost all mRNAs and rRNAs, yet the aged spores germinated and outgrew as well as 2-day spores, and all these spores had identical viability. Thus, it is unlikely that spore mRNA, rRNA, or protein synthesis is important in spore germination. Spores incubated for 47 to 98 days also had much higher wet heat resistance than 2-day spores, suggesting that spore "age" should be considered in generating spores for tests of sterilization assurance. These data are the first to show complete survival of hydrated spores for ∼100 days, complementing published data showing dry-spore survival for years.
Collapse
|
17
|
Xu X, Ran J, Jiao L, Liang X, Zhao R. Label free quantitative analysis of Alicyclobacillus acidoterrestris spore germination subjected to low ambient pH. Food Res Int 2019; 115:580-588. [DOI: 10.1016/j.foodres.2018.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
|
18
|
Survival variability of 12 strains of Bacillus cereus yielded to spray drying of whole milk. Int J Food Microbiol 2018; 286:80-89. [DOI: 10.1016/j.ijfoodmicro.2018.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 11/20/2022]
|
19
|
Autoregulation of SafA Assembly through Recruitment of a Protein Cross-Linking Enzyme. J Bacteriol 2018; 200:JB.00066-18. [PMID: 29712873 DOI: 10.1128/jb.00066-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
The coat of Bacillus subtilis spores is a multiprotein protective structure that also arbitrates many of the environmental interactions of the spore. The coat assembles around the cortex peptidoglycan layer and is differentiated into an inner and an outer layer and a crust. SafA governs assembly of the inner coat, whereas CotE drives outer coat assembly. SafA localizes to the cortex-coat interface. Both SafA and its short form C30 are substrates for Tgl, a coat-associated transglutaminase that cross-links proteins through ε-(γ-glutamyl)lysyl isopeptide bonds. We show that SafA and C30 are distributed between the coat and cortex layers. The deletion of tgl increases the extractability of SafA, mainly from the cortex. Tgl itself is mostly located in the inner coat and cortex. The localization of Tgl-cyan fluorescent protein (Tgl-CFP) is strongly, but not exclusively, dependent on safA However, the association of Tgl with the cortex requires safA Together, our results suggest an assembly pathway in which Tgl is first recruited to the forming spore in a manner that is only partially dependent on SafA and then is drafted to the cortex by SafA. Tgl, in turn, promotes the conversion of coat- and cortex-associated SafA into forms that resist extraction, possibly by catalyzing the cross-linking of SafA to other coat proteins, to the cortex, and/or to cortex-associated proteins. Therefore, the final assembly state of SafA relies on an autoregulatory pathway that requires the subcellular localization of a protein cross-linking enzyme. Tgl most likely exerts a "spotwelding" activity, cross-linking preformed complexes in the cortex and inner coat layers of spores.IMPORTANCE In this work, we show how two proteins work together to determine their subcellular location within the coat of bacterial endospores. Bacillus subtilis endospores are surrounded by a multilayer protein coat composed of over 80 proteins, which surrounds an underlying peptidoglycan layer (the spore cortex) protecting it from lytic enzymes. How specific coat proteins are targeted to specific layers of the coat is not well understood. We found that the protein SafA recruits a protein-cross-linking enzyme (a transglutaminase) to the cortex and inner layers of the coat, where both are cemented, by cross-linking, into macromolecular complexes.
Collapse
|
20
|
Alvarenga VO, Campagnollo FB, Pia AKR, Conceição DA, Abud Y, Sant'Anna C, Hubinger MD, Sant'Ana AS. Quantifying the Responses of Three Bacillus cereus Strains in Isothermal Conditions and During Spray Drying of Different Carrier Agents. Front Microbiol 2018; 9:1113. [PMID: 29904375 PMCID: PMC5991168 DOI: 10.3389/fmicb.2018.01113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
Spray drying is a widely used method for producing milk powder. This process is not aimed to cause microbial inactivation, thus sporeforming bacteria may be abundant in the microbiota of milk powder. The first aim of this study was to determine the inactivation kinetics parameters in capillary tubes of three Bacillus cereus strains (436, B63, 540) in three menstrua (whole milk, phosphate buffer, and talc suspension) at 90, 100, and 110°C. D-values for B. cereus in the three menstrua were not significantly different at the highest tested temperature (p > 0.05). Thus, talc was chosen as a carrier agent to allow the recovery of B. cereus from spray dried materials given its low interference on inactivation kinetics. B. cereus spores were also inoculated in whole milk and skim milk following spray drying at 95, 105, and 110°C (outlet temperature). After the spray drying runs, B. cereus spores were counted and the number of decimal reductions (γ) calculated. A correlation between the small diameter of the particles with the survival of spores of three B. cereus strains was found, and B. cereus 436 presented consistently the lowest γ no matter temperature and a carrier agent. The highest γ was found when talc powder was used, which suggest that this carrier agent does not protect B. cereus spores during spray drying. Spray drying of milk can lead to up to 4 γ (strain 540) of B. cereus spores but depending on the strain less than one γ (strain 436) could be observed. This study contributes to the knowledge on the microbiology of low water activity foods by providing novel findings regarding the fate of three B. cereus strains to different spray drying conditions. Acknowledging the variability of inactivation of B. cereus during spray drying is key in the current context of food safety in which the quantification of effects of unit operations must be known for the validation of processes and development of more robust formulations.
Collapse
Affiliation(s)
- Verônica O Alvarenga
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Fernanda B Campagnollo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Arthur K R Pia
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Deborah A Conceição
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Yuri Abud
- Laboratory of Biotechnology (Labio), Metrology Applied to Life Science Division - National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Celso Sant'Anna
- Laboratory of Biotechnology (Labio), Metrology Applied to Life Science Division - National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Miriam D Hubinger
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
21
|
Bressuire-Isoard C, Broussolle V, Carlin F. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol Rev 2018; 42:614-626. [DOI: 10.1093/femsre/fuy021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christelle Bressuire-Isoard
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Véronique Broussolle
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Frédéric Carlin
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| |
Collapse
|
22
|
den Besten HM, Wells-Bennik MH, Zwietering MH. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality. Annu Rev Food Sci Technol 2018; 9:383-410. [DOI: 10.1146/annurev-food-030117-012808] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heidy M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marjon H.J. Wells-Bennik
- NIZO Food Research B.V., 6718 ZB, Ede, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| | - Marcel H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Top Institute Food and Nutrition, 6709 PA, Wageningen, The Netherlands
| |
Collapse
|
23
|
Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG. Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach. J Proteome Res 2018; 17:903-917. [PMID: 29260567 PMCID: PMC5799878 DOI: 10.1021/acs.jproteome.7b00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Spores of Bacillus cereus pose a threat to food
safety due to their high resistance to the heat or acid treatments
commonly used to make food microbiologically safe. Spores may survive
these treatments and later resume growth either on foodstuffs or,
after ingestion, upon entering the gut they are capable of producing
toxins, which cause either vomiting or diarrhea. The outer layers
of the spore, the spore coat and exosporium, consist primarily of
proteins that may serve as potential biomarkers for detection. The
major morphogenetic protein CotE is important for correct assembly
and attachment of the outermost layer, the exosporium, and by extension
retention of many proteins. However, characterization of the proteins
affected by deletion of CotE has been limited to electrophoretic patterns.
Here we report the effect of CotE deletion on the insoluble fraction
of the spore proteome through liquid chromatography–Fourier
transform tandem mass spectrometry (LC–FTMS/MS) analysis. A total of 560 proteins have been identified in both mutant
and wild-type spore coat isolates. A further 163 proteins were identified
exclusively in wild-type spore isolates indicating that they are dependent
on CotE for their association with the spore. Several of these are
newly confirmed as associated with the exosporium, namely BC_2569
(BclF), BC_3345, BC_2427, BC_2878, BC_0666, BC_2984, BC_3481, and
BC_2570. A total of 153 proteins were only identified in ΔCotE
spore isolates. This was observed for proteins that are known or likely
to be interacting with or are encased by CotE. Crucial spore proteins
were quantified using a QconCAT reference standard, the first time
this was used in a biochemically heterogeneous system. This allowed
us to determine the absolute abundance of 21 proteins, which spanned
across three orders of magnitude and together covered 5.66% ±
0.51 of the total spore weight. Applying the QconCAT methodology to
the ΔCotE mutant allowed us to quantify 4.13% ± 0.14 of
the spore total weight and revealed a reduction in abundance for most
known exosporium associated proteins upon CotE deletion. In contrast,
several proteins, either known or likely to be interacting with or
encased by CotE (i.e., GerQ), were more abundant. The results obtained
provide deeper insight into the layered spore structure such as which
proteins are exposed on the outside of the spore. This information
is important for developing detection methods for targeting spores
in a food safety setting. Furthermore, protein stoichiometry and determination
of the abundance of germination mediating enzymes provides useful
information for germination and outgrowth model development.
Collapse
Affiliation(s)
- Sacha K Stelder
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Celia Benito de Moya
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J de Koning
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
24
|
Exploring the interaction network of the Bacillus subtilis outer coat and crust proteins. Microbiol Res 2017; 204:72-80. [PMID: 28870294 DOI: 10.1016/j.micres.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis spores, representatives of an exceptionally resistant dormant cell type, are encircled by a thick proteinaceous layer called the spore coat. More than 80 proteins assemble into four distinct coat layers: a basement layer, an inner coat, an outer coat and a crust. As the spore develops inside the mother cell, spore coat proteins synthesized in the cytoplasm are gradually deposited onto the prespore surface. A small set of morphogenetic proteins necessary for spore coat morphogenesis are thought to form a scaffold to which the rest of the coat proteins are attached. Extensive localization and proteomic studies using wild type and mutant spores have revealed the arrangement of individual proteins within the spore coat layers. In this study we examined the interactions between the proteins localized to the outer coat and crust using a bacterial two hybrid system. These two layers are composed of at least 25 components. Self-interactions were observed for most proteins and numerous novel interactions were identified. The most interesting contacts are those made with the morphogenetic proteins CotE, CotY and CotZ; these could serve as a basis for understanding the specific roles of particular proteins in spore coat morphogenesis.
Collapse
|
25
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
26
|
Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis. Appl Environ Microbiol 2017; 83:AEM.03122-16. [PMID: 28130296 DOI: 10.1128/aem.03122-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/21/2017] [Indexed: 01/19/2023] Open
Abstract
Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA2mob operon carried on the Tn1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA2mob required higher HA temperatures for efficient germination than spores lacking spoVA2mob The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K+ (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers.IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases spore responsiveness to nutrient germination triggers, among 17 strains of B. subtilis, including 9 isolates from spoiled food products. Spores of industrial foodborne isolates exhibited, on average, less efficient and slower germination responses and required more severe heat activation than spores from other sources. High heat activation requirements and inefficient, slow germination correlated with elevated resistance of spores to heat and with specific genetic features, indicating a common genetic basis of these three phenotypic traits. Clearly, interstrain variation and numerous factors that shape spore germination behavior challenge standardization of methods to recover highly heat-resistant spores from the environment and have an impact on the efficacy of preservation techniques used by the food industry to control spores.
Collapse
|
27
|
Kiseleva EP, Mikhailopulo KI, Ladutska AI, Novik GI. Methodological approach to the study of dynamics of specific concentration of cell wall antigens per cell of Bacillus species and examples of its application. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/01.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background: Nonpathogenic Bacillus strains are used in biotechnology, and pathogenic Bacillus strains are cause of food borne disease. It explains the relevance of the methods of detection and quantification of whole cell and cell components of these bacteria. Aims: Development of methodological approach for investigation of dynamics of specific concentration of cell wall antigens per cell of bacilli without solubilization of cell wall during sample preparation; using of the approach with 6 strains of bacilli as an example. Method: ELISA. Results: Methodological approach for investigation of dynamics of specific concentration of bacilli cell wall antigens has been developed. The distinctive features of the approach are rabbit polyclonal antibodies to genera-specific antigens of bacilli as key reagent and lack of need for solubilization of cell wall during sample preparation. It was shown using 6 strains of Bacilli as an example that specific concentration of cell wall antigens per cell vary according to bacillus strain, stage of culture growth and media composition. The data will find an application in biotechnology of clinical diagnostics and test-systems for food control including detection of whole bacillus cells.
Collapse
Affiliation(s)
- Elena Pavlovna Kiseleva
- Department of immunological and molecular biological diagnostics, The Institute of Bioorganic chemistry, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| | - Konstantin Igorevich Mikhailopulo
- Department of immunological and molecular biological diagnostics, The Institute of Bioorganic chemistry, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| | - Alena Ivanovna Ladutska
- Laboratory “Collection of microorganisms”, The Institute of Microbiology, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| | - Galina Ivanovna Novik
- Laboratory “Collection of microorganisms”, The Institute of Microbiology, National Academy of Sciences of Belarus, Minsk , Republic of Belarus
| |
Collapse
|
28
|
‘Omics’ for microbial food stability: Proteomics for the development of predictive models for bacterial spore stress survival and outgrowth. Int J Food Microbiol 2017; 240:11-18. [DOI: 10.1016/j.ijfoodmicro.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
|
29
|
Abhyankar WR, Kamphorst K, Swarge BN, van Veen H, van der Wel NN, Brul S, de Koster CG, de Koning LJ. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores. Front Microbiol 2016; 7:1636. [PMID: 27790212 PMCID: PMC5061772 DOI: 10.3389/fmicb.2016.01636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 11/20/2022] Open
Abstract
Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the differences in the coat protein composition and assembly. Corroborating the proteomic analyses, electron microscopy analyses show a significantly thinner outer coat layer of the spores cultured on the solid agar medium.
Collapse
Affiliation(s)
- Wishwas R Abhyankar
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands; Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Kiki Kamphorst
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Bhagyashree N Swarge
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands; Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Henk van Veen
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center Amsterdam, Netherlands
| | - Nicole N van der Wel
- Department of Cell Biology and Histology, Electron Microscopy Centre Amsterdam, Academic Medical Center Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Chris G de Koster
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Leo J de Koning
- Department of Mass Spectrometry of Bio-macromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
30
|
Krawczyk AO, Berendsen EM, de Jong A, Boekhorst J, Wells-Bennik MHJ, Kuipers OP, Eijlander RT. A transposon present in specific strains ofBacillus subtilisnegatively affects nutrient- and dodecylamine-induced spore germination. Environ Microbiol 2016; 18:4830-4846. [DOI: 10.1111/1462-2920.13386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Antonina O. Krawczyk
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Erwin M. Berendsen
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Anne de Jong
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Jos Boekhorst
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Marjon H. J. Wells-Bennik
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Oscar P. Kuipers
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Robyn T. Eijlander
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| |
Collapse
|
31
|
Wells-Bennik MH, Eijlander RT, den Besten HM, Berendsen EM, Warda AK, Krawczyk AO, Nierop Groot MN, Xiao Y, Zwietering MH, Kuipers OP, Abee T. Bacterial Spores in Food: Survival, Emergence, and Outgrowth. Annu Rev Food Sci Technol 2016; 7:457-82. [DOI: 10.1146/annurev-food-041715-033144] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marjon H.J. Wells-Bennik
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Robyn T. Eijlander
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
| | - Heidy M.W. den Besten
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Erwin M. Berendsen
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- NIZO Food Research, 6718 ZB Ede, The Netherlands;
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Alicja K. Warda
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Antonina O. Krawczyk
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, 6700 AA Wageningen, The Netherlands
| | - Yinghua Xiao
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel H. Zwietering
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Molecular Genetics Department, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, 6700 AN Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
32
|
Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG. Bacillus subtilis Spore Inner Membrane Proteome. J Proteome Res 2016; 15:585-94. [PMID: 26731423 DOI: 10.1021/acs.jproteome.5b00976] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets.
Collapse
Affiliation(s)
| | | | | | | | - Henk van Veen
- Electron Microscopy Centre Amsterdam, Department of Cell Biology and Histology, Academic Medical Center , 1105 AZ Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Department of Cell Biology and Histology, Academic Medical Center , 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Gómez-Molero E, de Boer AD, Dekker HL, Moreno-Martínez A, Kraneveld EA, Ichsan, Chauhan N, Weig M, de Soet JJ, de Koster CG, Bader O, de Groot PWJ. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins. FEMS Yeast Res 2015; 15:fov098. [PMID: 26546455 DOI: 10.1093/femsyr/fov098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/14/2022] Open
Abstract
Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections.
Collapse
Affiliation(s)
- Emilia Gómez-Molero
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Albert D de Boer
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain
| | - Henk L Dekker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
| | - Ana Moreno-Martínez
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain
| | - Eef A Kraneveld
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, NL-1081 LA Amsterdam, the Netherlands
| | - Ichsan
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Neeraj Chauhan
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| | - Michael Weig
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Johannes J de Soet
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, NL-1081 LA Amsterdam, the Netherlands
| | - Chris G de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Piet W J de Groot
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain
| |
Collapse
|
34
|
Abhyankar W, de Koning LJ, Brul S, de Koster CG. Spore proteomics: the past, present and the future. FEMS Microbiol Lett 2014; 358:137-44. [PMID: 25110127 DOI: 10.1111/1574-6968.12568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022] Open
Abstract
Endospores are metabolically dormant, multi-layered cellular structures formed by Gram-positive bacteria belonging to the genera Bacillus, Clostridium and related organisms. Their external layers are composed of proteins which in part play a role in the resistance behaviour of spores to varied chemical and environmental assaults. Thus, protein analysis is of major interest in spore biology. Spore proteomic studies have been carried out previously but these studies have focused on the soluble coat protein fraction. Using gel-based techniques, protein identification and analysis were performed. Mass spectrometry-driven proteomics has opened new avenues to resolve in particular the insoluble part of the spore layer proteomes. Mass spectrometry-based qualitative and quantitative proteomics methods expand the knowledge about both the actual composition and the amount of proteins in their various layers. The techniques can also be used to study the integrity of the layers as well as spore biology in general. This notion is explored concisely in this mini-review.
Collapse
Affiliation(s)
- Wishwas Abhyankar
- Department of Mass Spectrometry of BioMacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|