1
|
Ekonomou SΙ, Kageler S, Ch Stratakos A. The effect of 3D printing speed and temperature on transferability of Staphylococcus aureus and Escherichia coli during 3D food printing. Food Microbiol 2024; 122:104561. [PMID: 38839224 DOI: 10.1016/j.fm.2024.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
The current study aimed to determine if the 3D-printing speed and temperature would impact the transferability of foodborne pathogens from the stainless-steel (SS) food cartridge to the 3D-printed food ink. Staphylococcus aureus and Escherichia coli were inoculated onto the interior surface of the SS food cartridges. Subsequently, a model food ink was extruded with a recommended macronutrient contribution of 55.8, 23.7, and 20.5% of carbohydrates, proteins, and fat, respectively. The impact of 3D-printing temperatures and speeds on transfer rates was analysed using a Two-Way ANOVA. S. aureus was transferred more from the cartridge to the food ink with a population of 3.39, 2.98, and 3.09 log CFU/g compared to 2.03, 2.06, and 2.00 log CFU/g for E. coli at 2000, 3000, and 4000 mm/s printing speed, respectively, at 25 °C. A Kruskal-Wallis Test was employed to investigate the effect of different speeds and temperatures on the transferability of S. aureus and E. coli. Speed was the main factor affecting S. aureus transferability, while temperature (25 and 50 °C) had the greatest impact on E. coli transferability. This research seeks to advance the understanding of 3D-printing parameters in pathogen transferability and help the food industry move towards this technology's quick and safe adoption.
Collapse
Affiliation(s)
- Sotiriοs Ι Ekonomou
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sue Kageler
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Alexandros Ch Stratakos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Bristol, UK.
| |
Collapse
|
2
|
Iulietto MF, Evers EG. Cross-contamination in the kitchen: A model for quantitative microbiological risk assessment. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:1156-1175. [PMID: 37806768 DOI: 10.1111/risa.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023]
Abstract
A quantitative microbiological risk assessment model for the cross-contamination transmission route in the kitchen (KCC) is presented. Bacteria are transmitted from contaminated (chicken) meat to hands, kitchen utensils, and other surfaces, subsequently contaminating a salad. The model aims to estimate the fraction of bacteria on the meat that is ingested due to cross-contamination, determine the importance of the different transmission routes, and assess the effect of scenarios (interventions) on the fraction ingested. The cross-contamination routes defined, bacterial source-to-recipient transfer fractions as available and derived from literature, and important characteristics (e.g., washing in cold water vs. hot water with soap) shaped the KCC model. With this model, 32 scenarios of an eight-step preparation of a "meat and salad" meal in a domestic kitchen were stochastically simulated. The "cutting board-salad" route proved dominant and the salad plays a major role in the final exposure. A realistic scenario (washing hands, cutting board, and knife with cold water after cutting the meat) estimates that a mean fraction of 3.2E - 3 of the bacteria on the meat is ingested. In the case of "hand washing with hot water and soap" and "cutting board and knife replacement," the mean fraction ingested is 3.6E - 6. For a subsequent meal, where the contaminated sources were kitchen fomites, the estimated mean fraction is 4.3E - 4. In case of hamburger, part of the bacteria is unavailable for cross-contamination, resulting in a mean fraction ingested of about 5.4E - 5. The role of the dishcloth in cross-contamination transmission proved to be minor.
Collapse
Affiliation(s)
| | - Eric G Evers
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
3
|
Chen L, Snyder AB. Surface inoculation method impacts microbial reduction and transfer of Salmonella Enteritidis PT 30 and potential surrogates during dry sanitation. Int J Food Microbiol 2023; 406:110405. [PMID: 37734279 DOI: 10.1016/j.ijfoodmicro.2023.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/31/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Dry sanitation methods are often limited to physical removal strategies such as brushing or wiping with sanitary cleaning tools. However, the relative efficacy of these approaches to remove microbiota on surfaces, and the risk of transferring cells to other surfaces via the cleaning tool, is unclear. The effect of dry wiping with a single-use towel on the removal of four different bacteria (Salmonella Enteritidis, Enterococcus faecium, Listeria innocua, Escherichia coli) was investigated. We also quantified the number of cells transferred to the towel itself during dry cleaning. Three different surface inoculation methods (spot, glass bead, contaminated milk powder) were assessed and significantly impacted initial surface microbial load. Higher initial counts corresponded to lower transfer coefficients (e.g., proportion of transferred cells). The effect of bacterial identity was significant on reduction after dry wiping for all three inoculation methods. Moreover, both bacterial identity and inoculation method had significant effects on the number of cells transferred to the towel. In most scenarios, dry wiping resulted in a reduction <1.0 log CFU/coupon. Although, on surfaces inoculated via contaminated milk powder, reductions of up to 1.6 ± 0.3 log CFU/coupon were obtained. Overall, E. faecium transferred more readily to the towel. These results may help guide experimental design for future research on dry sanitation.
Collapse
Affiliation(s)
- Long Chen
- College of Mechanical and Electronic Engineering, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Waldhans C, Hebel M, Herbert U, Spoelstra P, Barbut S, Kreyenschmidt J. Microbial investigation of cleanability of different plastic and metal surfaces used by the food industry. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2581-2590. [PMID: 37599844 PMCID: PMC10439085 DOI: 10.1007/s13197-023-05778-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 08/22/2023]
Abstract
Different conveyor belt materials used by the meat and other food industries were compared, regarding their cleanability as bacterial reduction rates in relation to their surface topography. Eleven thermoplastic polymers, four stainless steels, and five aluminized nanostructured surfaces were investigated under laboratory conditions. Cleanings were conducted with water only, and with an alkaline foam detergent. Overall, scanning electron microscopy revealed remarkable differences in the surface topography of the tested surfaces. Water cleaning results showed that nanostructured aluminized surfaces achieved significantly higher cleanability rates compared to the eight thermoplastic surfaces, as well as the glass-bead blasted rough stainless steel. Thermoplastic surfaces showed overall low cleanability rates when cleaned with alkaline detergent, while stainless steel and nanoporous aluminum showed high variations. Overall, nanoporous aluminum showed promising results as it can be used to coat conveyor belts. However, compatibility with cleaning detergent and sensitivity to scratches must be further investigated. Overall, it can be concluded that cleanability is not only influenced by surface roughness, but also by the overall surface finish, scratches, and defects. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05778-0.
Collapse
Affiliation(s)
- Claudia Waldhans
- Institute of Animal Science, University of Bonn, Katzenburgweg 7-9, 53115 Bonn, Germany
| | - Martin Hebel
- Institute of Animal Science, University of Bonn, Katzenburgweg 7-9, 53115 Bonn, Germany
- Dr. Berns Laboratorium GmbH & Co. KG, Bendschenweg 36, 47506 Neukirchen-Vluyn, Germany
| | - Ulrike Herbert
- Institute of Animal Science, University of Bonn, Katzenburgweg 7-9, 53115 Bonn, Germany
- Dr. Berns Laboratorium GmbH & Co. KG, Bendschenweg 36, 47506 Neukirchen-Vluyn, Germany
| | - Paul Spoelstra
- Marel Poultry B.V, Handelstraat 3, 5831 AV Boxmeer, The Netherlands
| | - Shai Barbut
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Judith Kreyenschmidt
- Institute of Animal Science, University of Bonn, Katzenburgweg 7-9, 53115 Bonn, Germany
- Department of Fresh Produce Logistics, Hoschschule Geisenheim, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| |
Collapse
|
5
|
Zhang Y, Schmidt JW, Arthur TM, Wheeler TL, Zhang Q, Wang B. A Farm-to-Fork Quantitative Microbial Exposure Assessment of β-Lactam-Resistant Escherichia coli among U.S. Beef Consumers. Microorganisms 2022; 10:661. [PMID: 35336235 PMCID: PMC8952336 DOI: 10.3390/microorganisms10030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Integrated quantitative descriptions of the transmission of β-lactam-resistant Escherichia coli (BR-EC) from commercial beef products to consumers are not available. Here, a quantitative microbial exposure assessment model was established to simulate the fate of BR-EC in a farm-to-fork continuum and provide an estimate of BR-EC exposure among beef consumers in the U.S. The model compared the per-serving exposures from the consumption of intact beef cuts, non-intact beef cuts, and ground beef. Additionally, scenario analysis was performed to evaluate the relative contribution of antibiotic use during beef cattle production to the level of human exposure to BR-EC. The model predicted mean numbers of BR-EC of 1.7 × 10-4, 8.7 × 10-4, and 6.9 × 10-1 CFU/serving for intact beef cuts, non-intact beef cuts, and ground beef, respectively, at the time of consumption. Sensitivity analyses using the baseline model suggested that factors related to sectors along the supply chain, i.e., feedlots, processing plants, retailers, and consumers, were all important for controlling human exposure to BR-EC. Interventions at the processing and post-processing stages are expected to be most effective. Simulation results showed that a decrease in antibiotic use among beef cattle might be associated with a reduction in exposure to BR-EC from beef consumption. However, the absolute reduction was moderate, indicating that the effectiveness of restricting antibiotic use as a standalone strategy for mitigating human exposure to BR-EC through beef consumption is still uncertain. Good cooking and hygiene practices at home and advanced safety management practices in the beef processing and post-processing continuum are more powerful approaches for reducing human exposure to antibiotic-resistant bacteria in beef products.
Collapse
Affiliation(s)
- Yangjunna Zhang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou 310013, China;
| | - John W. Schmidt
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Terrance M. Arthur
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Tommy L. Wheeler
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Qi Zhang
- Department of Mathematics and Statistics, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Bing Wang
- Department of Food Science and Technology, College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
6
|
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Advances in emerging technologies for the decontamination of the food contact surfaces. Food Res Int 2022; 151:110865. [PMID: 34980401 DOI: 10.1016/j.foodres.2021.110865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Foodborne pathogens could be transferred to food from food contact surfaces contaminated by poor hygiene or biofilm formation. The food processing industry has various conditions favouring microbes' adherence, such as moisture, nutrients, and the microbial inoculums obtained from the raw material. The function of the ideal antimicrobial surface is preventing initial attachment of the microbes, killing the microbes or/and removing the dead bacteria. This review article provides detail about the challenges food industries are facing with respect to food contact materials. It also summarises the merits and demerits of several sanitizing methods developed for industrial use. Furthermore, it reviews the new and emerging techniques that enhance the efficiency of reducing microbial contamination. Techniques such as surface functionalisation, high-intensity ultrasound, cold plasma technologies etc. which have high potential to be used for the decontamination of food contact surfaces are discussed. The emerging designs of antibacterial surfaces provide the opportunity to reduce or eradicate the adhesion of microorganisms. The most important purpose of these surfaces is to prevent the attachment of bacteria and to kill the bacteria that come in contact. These emerging technologies have a high potential for developing safe and inert food contact materials for the food industry.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland; Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| |
Collapse
|
7
|
Marzlan AA, Hussin ASM, Bourke P, Chaple S, Barroug S, Muhialdin BJ. Combination of Green Extraction Techniques and Essential Oils to Develop Active Packaging for Improving the Quality and Shelf Life for Chicken Meat. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anis Asyila Marzlan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Science, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland
| | - Sonal Chaple
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Soukaina Barroug
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Belal J Muhialdin
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
8
|
López-Gálvez F, Rasines L, Conesa E, Gómez PA, Artés-Hernández F, Aguayo E. Reusable Plastic Crates (RPCs) for Fresh Produce (Case Study on Cauliflowers): Sustainable Packaging but Potential Salmonella Survival and Risk of Cross-Contamination. Foods 2021; 10:foods10061254. [PMID: 34205868 PMCID: PMC8228333 DOI: 10.3390/foods10061254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
The handling of fresh fruits and vegetables in reusable plastic crates (RPCs) has the potential to increase the sustainability of packaging in the fresh produce supply chain. However, the utilization of multiple-use containers can have consequences related to the microbial safety of this type of food. The present study assessed the potential cross-contamination of fresh cauliflowers with Salmonella enterica via different contact materials (polypropylene from RPCs, corrugated cardboard, and medium-density fiberboard (MDF) from wooden boxes). Additionally, the survival of the pathogenic microorganism was studied in cauliflowers and the contact materials during storage. The life cycle assessment (LCA) approach was used to evaluate the environmental impact of produce handling containers made from the different food-contact materials tested. The results show a higher risk of cross-contamination via polypropylene compared with cardboard and MDF. Another outcome of the study is the potential of Salmonella for surviving both in cross-contaminated produce and in contact materials under supply chain conditions. Regarding environmental sustainability, RPCs have a lower environmental impact than single-use containers (cardboard and wooden boxes). To exploit the potential environmental benefits of RPCs while ensuring food safety, it is necessary to guarantee the hygiene of this type of container.
Collapse
Affiliation(s)
- Francisco López-Gálvez
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (L.R.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Laura Rasines
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (L.R.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Encarnación Conesa
- Plant Production Department, ETSIA, Institute of Plant Biotechnology (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
| | - Perla A. Gómez
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (L.R.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Escuela Técnica Superior de Ingeniería Agronómica (ETSIA), Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (F.L.-G.); (L.R.); (F.A.-H.)
- Food Quality and Health Group, Institute of Plant Biotechnology (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain;
- Correspondence:
| |
Collapse
|
9
|
Underestimated Risks of Infantile Infectious Disease from the Caregiver's Typical Handling Practices of Infant Formula. Sci Rep 2019; 9:9799. [PMID: 31278304 PMCID: PMC6611816 DOI: 10.1038/s41598-019-46181-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/25/2019] [Indexed: 11/11/2022] Open
Abstract
The impact on infant caregiver as a reservoir of pathogens has not been exploited with perspective to powdered infant formula (PIF). Here we reveal novel route of pathogen transfer through hand-spoon-PIF unexpectedly occurred by even typical practices of caregivers, handling of PIF and storage of feeding-spoon in PIF container. Hand-spoon-PIF contamination route was simulated to analyze the transfer and subsequent survival of pathogens. Major pathogens associated with infantile fatal diseases (Cronobacter sakazakii, Salmonella enterica, Staphylococcus aureus) were readily transmitted to PIF from skin (3−6 log CFU/hand) via spoons following long-term survival of transferred pathogens (3 weeks; use-by date of PIF) as the excessive level of infectious dose, highlighting direct onset of diseases. Low bacterial load on skin (ca. 1 log CFU/hand) could prevent cross-contamination of PIF, however, at least 72 h survival of transferred pathogen on spoons demonstrated the probability on re-contamination of PIF. To our knowledge, this is the first study to investigate the cross-contamination of utensils in contact with powdered-foods. Bacterial load on hands is the key determinant of pathogen transfer and the extent of risk are species-dependent. These evidential results redefine risk of caregivers’ practices and facilitate incorporation of cross-contamination into risk-assessment as underestimated route of infection.
Collapse
|
10
|
Xiao X, Pang H, Wang W, Fang W, Fu Y, Li Y. Modeling Transfer of Vibrio Parahaemolyticus During Peeling of Raw Shrimp. J Food Sci 2018; 83:756-762. [PMID: 29411873 DOI: 10.1111/1750-3841.14064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/07/2018] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
This study aimed to qualify the transfer of Vibrio parahaemolyticus during the shrimp peeling process via gloves under 3 different scenarios. The 1st 2 scenarios provided quantitative information for the probability distribution of bacterial transfer rates from (i) contaminated shrimp (6 log CFU/g) to non-contaminated gloves (Scenario 1) and (ii) contaminated gloves (6 log CFU/per pair) to non-contaminated shrimp (Scenario 2). In Scenario 3, bacterial transfer from contaminated shrimp to non-contaminated shrimp in the shrimp peeling process via gloves was investigated to develop a predictive model for describing the successive bacterial transfer. The range of bacterial transfer rate (%) in Scenarios 1 and 2 was 7% to 91.95% and 0.04% to 12.87%, respectively, indicating that the bacteria can be transferred from shrimp to gloves much easier than that from gloves to shrimp. A Logistic (1.59, 0.14) and Triangle distribution (-1.61, 0.12, 1.32) could be used to describe the bacterial transfer rate in Scenarios 1 and 2, respectively. In Scenario 3, a continuously decay patterning with fluctuations as the peeling progressed has been observed at all inoculation levels of the 1st shrimp (5, 6, and 7 log CFU/g). The bacteria could be transferred easier at 1st few peels, and the decreasing bacterial transfer was found in later phase. Two models (exponential and Weibull) could describe the successive bacterial transfer satisfactorily (pseudo-R2 > 0.84, RMSE < 1.23, SEP < 10.37). The result of this study can provide information regarding cross-contamination events in the seafood factory. PRACTICAL APPLICATION This study presented that Vibrio parahaemolyticus cross-contamination could be caused by gloves during the shrimp peeling process. The bacterial transfer rate distribution and predictive model derived from this work could be used in risk assessment of V. parahaemolyticus to ensure peeled shrimp safety.
Collapse
Affiliation(s)
- Xingning Xiao
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China
| | - Haiying Pang
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China
| | - Wen Wang
- Inst. of Quality and Standard of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weihuan Fang
- College of Animal Sciences, Zhejiang Univ., Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China
| | - Yanbin Li
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou 310058, China.,Dept. of Biological & Agricultural Engineering, Univ. of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|