1
|
Cruz Neto JPR, de Oliveira AM, de Oliveira KÁR, Sampaio KB, da Veiga Dutra ML, de Luna Freire MO, de Souza EL, de Brito Alves JL. Safety Evaluation of a Novel Potentially Probiotic Limosilactobacillus fermentum in Rats. Probiotics Antimicrob Proteins 2024; 16:752-762. [PMID: 37119497 DOI: 10.1007/s12602-023-10077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
Limosilactobacillus (L) fermentum (strains 139, 263, 296) is a novel probiotic mixture isolated from fruit processing by-products. The use of this formulation has been associated with improvements in cardiometabolic, inflammatory, and oxidative stress parameters. The present study evaluated the safety of a potential multi-strain probiotic by genotoxicity (micronucleus assay) and subchronic toxicity study (13-week repeated dose). In the genotoxicity evaluation, L. fermentum 139, 263, 296 did not increase the frequency of micronuclei in erythrocytes of rats of both sexes at doses up to 1010 CFU/mL. In the subchronic toxicity study, the administration of L. fermentum did not promote adverse health effects, such as behavioral changes, appearance of tumors, changes in hematological and biochemical parameters. In addition, higher doses of L. fermentum 139, 263, 296 have been shown to reduce the levels of pro-inflammatory cytokines. Administration of potentially probiotic L. fermentum did not promote adverse health effects in rats and could be evaluated as a potential probiotic for humans.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Alison Macário de Oliveira
- Department of Biochemistry, Biological Sciences Center, Federal University of Pernambuco, Recife, PE, Brazil
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Maria Letícia da Veiga Dutra
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - Jd. Cidade Universitária, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
2
|
Almanza-Oliveros A, Bautista-Hernández I, Castro-López C, Aguilar-Zárate P, Meza-Carranco Z, Rojas R, Michel MR, Martínez-Ávila GCG. Grape Pomace-Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024; 13:580. [PMID: 38397557 PMCID: PMC10888227 DOI: 10.3390/foods13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
From a circular economy perspective, the appropriate management and valorization of winery wastes and by-products are crucial for sustainable development. Nowadays, grape pomace (GP) has attracted increasing interest within the food field due to its valuable content, comprising nutritional and bioactive compounds (e.g., polyphenols, organic and fatty acids, vitamins, etc.). Particularly, GP polyphenols have been recognized as exhibiting technological and health-promoting effects in different food and biological systems. Hence, GP valorization is a step toward offering new functional foods and contributing to solving waste management problems in the wine industry. On this basis, the use of GP as a food additive/ingredient in the development of novel products with technological and functional advantages has recently been proposed. In this review, we summarize the current knowledge on the bioactivity and health-promoting effects of polyphenolic-rich extracts from GP samples. Advances in GP incorporation into food formulations (enhancement of physicochemical, sensory, and nutritional quality) and information supporting the intellectual property related to GP potential applications in the food industry are also discussed.
Collapse
Affiliation(s)
- Angélica Almanza-Oliveros
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| | - Israel Bautista-Hernández
- Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Cecilia Castro-López
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico;
| | - Pedro Aguilar-Zárate
- Departamento de Ingenierías, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico; (P.A.-Z.); (M.R.M.)
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico
| | - Zahidd Meza-Carranco
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| | - Romeo Rojas
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| | - Mariela R. Michel
- Departamento de Ingenierías, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico; (P.A.-Z.); (M.R.M.)
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de Mexico/I.T. de Ciudad Valles, San Luis Potosí 79010, Mexico
| | - Guillermo Cristian G. Martínez-Ávila
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, General Escobedo 66050, Mexico; (A.A.-O.); (Z.M.-C.); (R.R.)
| |
Collapse
|
3
|
Sinrod AJG, Shah IM, Surek E, Barile D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023; 9:e20499. [PMID: 37867799 PMCID: PMC10589784 DOI: 10.1016/j.heliyon.2023.e20499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Grape pomace is the primary wine coproduct consisting primarily of grape seeds and skins. Grape pomace holds immense potential as a functional ingredient to improve human health while its valorization can be beneficial for industrial sustainability. Pomace contains bioactive compounds, including phenols and oligosaccharides, most of which reach the colon intact, enabling interaction with the gut microbiome. Microbial analysis found that grape pomace selectively promotes the growth of many commensal bacteria strains, while other types of bacteria, including various pathogens, are highly sensitive to the pomace and its components and are inactivated. In vitro studies showed that grape pomace and its extracts inhibit the growth of pathogenic bacteria in Enterobacteriaceae family while increasing the growth and survival of some beneficial bacteria, including Bifidobacterium spp. and Lactobacillus spp. Grape pomace supplementation in mice and rats improves their gut microbiome complexity and decreases diet-induced obesity as well as related illnesses, including insulin resistance, indicating grape pomace could improve human health. A human clinical trial found that pomace, regardless of its phenolic content, had cardioprotective effects, suggesting that dietary fiber induced those health benefits. To shed light on the active components, this review explores the potential prebiotic capacity of select bioactive compounds in grape pomace.
Collapse
Affiliation(s)
- Amanda J G Sinrod
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ishita M Shah
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| | - Ece Surek
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Istinye University, 34396, Istanbul, Turkey
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, 95616, CA, USA
| |
Collapse
|
4
|
de Oliveira SD, de Souza EL, Araújo CM, Martins ACS, Borges GDSC, Lima MDS, Viera VB, Garcia EF, da Conceição ML, de Souza AL, de Oliveira MEG. Spontaneous fermentation improves the physicochemical characteristics, bioactive compounds, and antioxidant activity of acerola ( Malpighia emarginata D.C.) and guava ( Psidium guajava L.) fruit processing by-products. 3 Biotech 2023; 13:315. [PMID: 37637001 PMCID: PMC10449742 DOI: 10.1007/s13205-023-03738-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to investigate the effects of spontaneous fermentation on physicochemical characteristics, bioactive compounds, and antioxidant activity of acerola and guava fruit industrial by-products. Viable cell counts of lactic acid bacterial (LAB) in acerola and guava by-products were ≥ 5.0 log CFU/mL from 24 h up to 120 h of fermentation. Fermented acerola and guava by-products had increased luminosity and decreased contrast. Contents of total soluble solids and pH decreased, and titrable acidity increased in acerola and guava by-products during fermentation. Ascorbic acid contents decreased in acerola by-product and increased in guava by-product during fermentation. Different phenolic compounds were found in acerola and guava by-products during fermentation. Fermented acerola and guava by-products had increased contents of total flavonoids, total phenolics, and antioxidant activity. The contents of total flavonoids and total phenolics positively correlated with antioxidant activity in fermented acerola and guava by-products. These results indicate that spontaneous fermentation could be a strategy to improve the contents of bioactive compounds and the antioxidant activity of acerola and guava by-products, adding value and functionalities to these agro-industrial residues.
Collapse
Affiliation(s)
- Sabrina Duarte de Oliveira
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Caroliny Mesquita Araújo
- Post-Graduate Program in Nutrition Sciences, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Graciele da Silva Campelo Borges
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, 56302-100 Brazil
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Center of Education and Health, Federal University of Campina Grande, Cuité, 58175-000 Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa, 58058-600 Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Antônia Lúcia de Souza
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, 58051-900 Brazil
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Center of Health Sciences, Federal University of Paraíba, Campus I, Cidade Universitária, João Pessoa, Paraíba 58051-900 Brazil
| |
Collapse
|
5
|
Torreggiani A, Demarinis C, Pinto D, Papale A, Difonzo G, Caponio F, Pontonio E, Verni M, Rizzello CG. Up-Cycling Grape Pomace through Sourdough Fermentation: Characterization of Phenolic Compounds, Antioxidant Activity, and Anti-Inflammatory Potential. Antioxidants (Basel) 2023; 12:1521. [PMID: 37627516 PMCID: PMC10451973 DOI: 10.3390/antiox12081521] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite its appealing composition, because it is rich in fibers and polyphenols, grape pomace, the major by-product of the wine industry, is still discarded or used for feed. This study aimed at exploiting grape pomace functional potential through fermentation with lactic acid bacteria (LAB). A systematic approach, including the progressively optimization of the grape pomace substrate, was used, evaluating pomace percentage, pH, and supplementation of nitrogen and carbon sources. When grape pomace was used at 10%, especially without pH correction, LAB cell viability decreased up to 2 log cycles. Hence, the percentage was lowered to 5 or 2.5% and supplementations with carbon and nitrogen sources, which are crucial for LAB metabolism, were considered aiming at obtaining a proper fermentation of the substrate. The optimization of the substrate enabled the comparison of strains performances and allowed the selection of the best performing strain (Lactiplantibacillus plantarum T0A10). A sourdough, containing 5% of grape pomace and fermented with the selected strain, showed high antioxidant activity on DPPH and ABTS radicals and anti-inflammatory potential on Caco2 cells. The anthocyanins profile of the grape pomace sourdough was also characterized, showing qualitative and quantitative differences before and after fermentation. Overall, the grape pomace sourdough showed promising applications as a functional ingredient in bread making.
Collapse
Affiliation(s)
- Andrea Torreggiani
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| | - Chiara Demarinis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Daniela Pinto
- Human Microbiome Advanced Project, 20129 Milan, Italy; (D.P.); (A.P.)
| | - Angela Papale
- Human Microbiome Advanced Project, 20129 Milan, Italy; (D.P.); (A.P.)
| | - Graziana Difonzo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Francesco Caponio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (C.D.); (G.D.); (F.C.); (E.P.)
| | - Michela Verni
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy; (A.T.); (C.G.R.)
| |
Collapse
|
6
|
Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. FERMENTATION 2022. [DOI: 10.3390/fermentation8090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Taiwan djulis (Chenopodium formosanum Koidz.) is a plant native to Taiwan and is a grain rich in nutrients, vitamins, and minerals with antioxidant properties. This paper aimed to use appropriate processing technology and incorporate probiotics, thus combining Taiwan’s high-quality milk sources to develop Taiwan djulis fermented dairy products. Later, FL83B cells have used to evaluate the glucose utilization ability after the administration of djulis. We first screened Lactiplantibacillus plantarum and combined it with the traditional yogurt strains Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for cultivation. Further, the fermentation process was optimized where 7.5% djulis and an inoculum of 107 colony forming unit/mL were fermented at 40 °C for 18 h. Compared to fermented milk without djulis, the analysis of various nutrients and active ingredients showed that free radical scavenging abilities of DPPH and ABTS reached 2.3 and 2.0 times (752.35 ± 29.29 µg and 771.52 ± 3.79 µg TE/g, respectively). The free phenol content increased 2.5 times (169.90 ± 14.59 mg gallic acid/g); the total flavonoid content enhanced 4.8 times (3.05 ± 0.03 mg quercetin/g), and the gamma-aminobutyric acid content was 3.07 ± 0.94 mg/g. In a co-culture of mouse liver cells with fermented products, 100 ppm ethanol extract of fermented products effectively improved glucose utilization with increased glucose transporter expression. This functional fermented dairy product can be developed into the high value added local agricultural products and enhance multiple applications including medical and therapeutic fields.
Collapse
|
7
|
Darwish MS, Abou-Zeid NA, Khojah E, AL Jumayi HA, Alshehry GA, Algarni EH, Elawady AA. Supplementation of Labneh with Passion Fruit Peel Enhanced Survival of E. coli Nissle 1917 during Simulated Gastrointestinal Digestion and Adhesion to Caco-2 Cells. Foods 2022; 11:1663. [PMID: 35681414 PMCID: PMC9180240 DOI: 10.3390/foods11111663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Passion fruit peel powder (PFPP) was used to supplement the probiotic labneh to increase the activity of Escherichia coli Nissle 1917 (EcN) during production and storage. Labneh was manufactured with PFPP (0.5% and 1%) and analyzed at 0, 7, and 15 days of cold storage for postacidification and sensory properties and viability of EcN, survival of EcN to simulated gastrointestinal tract stress, and adhesion potential of EcN to Caco-2 cells. Acidification kinetics during fermentation showed that supplementation with PFPP reduced the time needed to decrease pH and reach the maximum acidification rate. PFPP addition contributed to postacidification of labneh during storage. PFPP had a beneficial effect (p < 0.05) on counts of EcN in labneh during different storage periods. Consumer preference expectations for labneh enriched with PFPP (0.5% and 1%) were higher than those for the control. PFPP provided a significant protective action for EcN during simulated gastrointestinal transit and had a positive effect on EcN adhesion to Caco-2 cells in vitro, although this decreased during storage with labneh. Labneh supplementation with PFPP can be recommended because of the positive effect on EcN viability and the high nutritional value, which may increase the appeal of the product to consumers.
Collapse
Affiliation(s)
- Mohamed Samir Darwish
- Dairy Microbiology Laboratory, Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | | | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Huda A. AL Jumayi
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Garsa A. Alshehry
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Eman H. Algarni
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.K.); (H.A.A.J.); (G.A.A.); (E.H.A.)
| | - Asmaa A. Elawady
- Dairy Microbiology Laboratory, Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
8
|
Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers (Basel) 2022; 14:polym14091640. [PMID: 35566809 PMCID: PMC9101343 DOI: 10.3390/polym14091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
Europe is considered the largest producer of wine worldwide, showing a high market potential. Several wastes are generated at the different stages of the wine production process, namely, vine pruning, stalks, and grape marc. Typically, these residues are not used and are commonly discarded. Portugal generates annually approximately 178 thousand metric tons of wine production waste. In this context, the interest in redirecting the use of these residues has increased due to overproduction, great availability, and low costs. The utilization of these lignocellulosic biomasses derived from the wine industry would economically benefit the producers, while mitigating impacts on the environment. These by-products can be submitted to pre-treatments (physical, chemical, and biological) for the separation of different compounds with high industrial interest, reducing the waste of agro-industrial activities and increasing industrial profitability. Particularly, vine-pruning residue, besides being a source of sugar, has high nutritional value and may serve as a source of phenolic compounds. These compounds can be obtained by bioconversion, following a concept of biorefinery. In this framework, the current routes of the valorisation of the pruning residues will be addressed and put into a circular economy context.
Collapse
|
9
|
Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G. Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. J Nutr 2021; 151:1703-1716. [PMID: 33982127 DOI: 10.1093/jn/nxab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The rate of obesity is rapidly increasing and has become a health and economic burden worldwide. As recent studies have revealed that the gut microbiota is closely linked to obesity, researchers have used various approaches to modulate the gut microbiota to treat the condition. Dietary composition and energy intake strongly affect the composition and function of the gut microbiota. Intestinal microbial changes alter the composition of bile acids and fatty acids and regulate bacterial lipopolysaccharide production, all of which influence energy metabolism and immunity. Evidence also suggests that remodeling the gut microbiota through intake of probiotics, prebiotics, fermented foods, and dietary plants, as well as by fecal microbiota transplantation, are feasible methods to remediate obesity.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haojue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Hongyan Dai
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Xianyi Lu
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| |
Collapse
|
10
|
Zhang Q, Song X, Sun W, Wang C, Li C, He L, Wang X, Tao H, Zeng X. Evaluation and Application of Different Cholesterol-Lowering Lactic Acid Bacteria as Potential Meat Starters. J Food Prot 2021; 84:63-72. [PMID: 32818231 DOI: 10.4315/jfp-20-225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022]
Abstract
ABSTRACT A total of 115 isolates of lactic acid bacteria were screened from traditional fermented foods in Guizhou Province, People's Republic of China. The cholesterol removal rates of 86 isolates ranged from 7.29 to 25.66%, and 18 isolates showed a cholesterol removal rate of more than 15%. According to the results of physiological and biological tests, 13 isolates were selected to determine the fermentation performance; 9 isolates-MT-4, MT-2, PJ-15, SR2-2, SQ-4, SQ-7, ST2-2, ST2-6, and NR1-7-had high tolerance of bile salt and acid and had a survival rate of more than 96% under pH 3.0 and 0.3% bile salt. ST2-2, SR2-2, NR1-7, SQ-4, and MT-4 had high survival rate in different concentrations of NaCl and NaNO2 under different temperatures. According to BLAST comparison results of the 16S rRNA sequence in the GenBank database and the genetic distance of the 16S rRNA sequence with an ortho-connected algorithm, SR2-2, NR1-7, and ST2-2 were identified as Lactobacillus plantarum, MT-4 was identified as Lactobacillus pentosus, and SQ-4 was identified as Lactobacillus paraplantarum. Moreover, strains SQ-4 and MT-4 were added to fermented beef. Results showed that the fermented beef had delicious taste and was popular to consumers because of its proper pH, pleasant colors, high viable cell count, and suitable content of bound and immobilized water. These results provide a basis for the development of new starter formulation for the production of high-quality fermented meat products. HIGHLIGHTS
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]), Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xiaojuan Song
- School of Food Science, Guizhou Medical University, Guiyang 550025, People's Republic of China
| | - Wenlin Sun
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]), Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Chan Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]), Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Cuiqin Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]), Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]), Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Han Tao
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]), Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]), Guizhou University, Guiyang 550025, People's Republic of China.,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
11
|
de Oliveira SD, Araújo CM, Borges GDSC, Lima MDS, Viera VB, Garcia EF, de Souza EL, de Oliveira MEG. Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Lacerda Massa NM, Dantas Duarte Menezes FN, de Albuquerque TMR, de Oliveira SPA, Lima MDS, Magnani M, de Souza EL. Effects of digested jabuticaba (Myrciaria jaboticaba (Vell.) Berg) by-product on growth and metabolism of Lactobacillus and Bifidobacterium indicate prebiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Fermented curly kale as a new source of gentisic and salicylic acids with antitumor potential. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Prebiotic activity of monofloral honeys produced by stingless bees in the semi-arid region of Brazilian Northeastern toward Lactobacillus acidophilus LA-05 and Bifidobacterium lactis BB-12. Food Res Int 2020; 128:108809. [DOI: 10.1016/j.foodres.2019.108809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023]
|
15
|
de Oliveira Ribeiro AP, Gomes FDS, Maria Olbrich dos Santos K, da Matta VM, Freitas de Sá DDGC, Santiago MCPDA, Conte C, de Oliveira Costa SD, Oliveira Ribeiro LD, de Oliveira Godoy RL, Walter EHM. Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Morais SGG, da Silva Campelo Borges G, dos Santos Lima M, Martín-Belloso O, Magnani M. Effects of probiotics on the content and bioaccessibility of phenolic compounds in red pitaya pulp. Food Res Int 2019; 126:108681. [DOI: 10.1016/j.foodres.2019.108681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
|
17
|
Abstract
This review aims to familiarize the reader with research efforts on the cultivation media of lactic acid bacteria (LAB). We have also included a brief discussion on standard ingredients used in LAB media and chemically defined media as related to bacterial growth requirements. Recent research has focused on modifying standard media for the enumeration, differentiation, isolation, and identification of starter cultures and probiotics. Even though large numbers of these media have been developed to serve dairy microbial control, they have failed to provide consistent results. The research consequently points to the need to develop a reliable lactobacilli growth medium for the dairy industry.
Collapse
|
18
|
dos Santos AS, de Albuquerque TMR, de Brito Alves JL, de Souza EL. Effects of Quercetin and Resveratrol on in vitro Properties Related to the Functionality of Potentially Probiotic Lactobacillus Strains. Front Microbiol 2019; 10:2229. [PMID: 31608042 PMCID: PMC6769296 DOI: 10.3389/fmicb.2019.02229] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
The ability of probiotics to exert benefits on host has been associated with different physiological functionalities in these microorganisms, namely cell surface hydrophobicity, autoaggregation, coaggregation with pathogens, antagonistic activity against pathogens and ability to survive the exposure to gastrointestinal conditions. This study assessed the effects of different concentrations of quercetin (QUE) and resveratrol (RES) on the ability of six potentially probiotic Lactobacillus strains to tolerate different pH values and bile salt concentrations, to autoaggregate, coaggregate with and antagonize pathogens and survive the exposure to simulated gastrointestinal conditions. QUE and RES presented low inhibitory effects on all tested Lactobacillus strains, with minimum inhibitory concentration (MIC) ranging from 512 to >1024 μg/mL. In most cases, QUE and RES at all tested concentrations (i.e., MIC, 1/2 MIC, and 1/4 MIC) did not affect the tolerance of the Lactobacillus strains to acidic pH and bile salts. QUE increased cell surface hydrophobicity of most of the tested Lactobacillus strains and increases or decreases in cell surface hydrophobicity varied in the presence of different RES concentrations among some strains. QUE and RES increased the ability of tested Lactobacillus strains to autoaggregate and coaggregate with pathogens. QUE and RES did not negatively affect the antagonistic activity of the tested Lactobacillus strains against pathogens and did not decrease their survival rates when exposed to in vitro gastrointestinal conditions. In a few cases, the ability of some tested Lactobacillus strains to antagonize pathogens, as well as to survive specific steps of the in vitro digestion was increased by QUE and RES. QUE exerted overall better protective effects on the measured in vitro properties of tested Lactobacillus strains than RES, and L. fermentum and L. plantarum strains presented better responses when treated with QUE or RES. These results showed that probiotic Lactobacillus strains could present low susceptibility to QUE and RES. Combined use of QUE and RES with probiotic Lactobacillus could improve their functionalities on the host; however, the concentration of these polyphenols should be carefully selected to achieve the desirable effects and vary according to the selected probiotic strain.
Collapse
Affiliation(s)
| | | | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
19
|
Pino A, Russo N, Van Hoorde K, De Angelis M, Sferrazzo G, Randazzo CL, Caggia C. Piacentinu Ennese PDO Cheese as Reservoir of Promising Probiotic Bacteria. Microorganisms 2019; 7:E254. [PMID: 31408976 PMCID: PMC6723934 DOI: 10.3390/microorganisms7080254] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023] Open
Abstract
Piacentinu Ennese is a protected designation of origin (PDO) cheese produced in the surrounding area of Enna (Sicily, Italy), using raw ewe's milk without the addition of any starter cultures. In the present study, the Lactobacillus population of Piacentinu Ennese PDO cheese was in vitro screened in order to select promising probiotic strains to be further used in humans. One hundred and sixty-nine lactic acid bacteria (LAB) were isolated from 90 days ripened cheeses and identified by Rep-PCR genomic fingerprinting, using the (GTG)5-primer, and by MALDI-TOF MS. One hundred and thirteen (113) isolates belonging to QPS-list species were characterized for both safety and functional properties. All tested isolates were considered safe because none showed either gelatinase, DNase, mucinase, or hemolytic activity. Tolerance to lysozyme, bile salts, and acidic conditions, along with ability to survive under simulated gastrointestinal digestion, were observed. In addition, based on antimicrobial activity against pathogens, cell surface characteristics, Caco-2 adhesion abilities, and anti-inflammatory potential, it was possible to confirm the strain-dependent functional aptitude, suggesting that Piacentinu Ennese PDO cheese may be considered a precious source of probiotic candidates.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Koenraad Van Hoorde
- Department of Biotechnology, Laboratory of Brewing Science and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Giuseppe Sferrazzo
- Department of Drug Sciences, Section of Biochemistry, University of Catania, 95125 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy.
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy
| |
Collapse
|
20
|
Ryu JY, Kang HR, Cho SK. Changes Over the Fermentation Period in Phenolic Compounds and Antioxidant and Anticancer Activities of Blueberries Fermented by Lactobacillus plantarum. J Food Sci 2019; 84:2347-2356. [PMID: 31313311 DOI: 10.1111/1750-3841.14731] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022]
Abstract
This study determined the effects of blueberry fermentation by Lactobacillus plantarum on antioxidant and anticancer activities. The fermented blueberries extracted with 80% ethanol (FBE) showed increased superoxide dismutase-like activity, increased scavenging of DPPH and alkyl radicals, and increased antiproliferative activity against human cervical carcinoma HeLa cells by inducing apoptosis. Seven representative phenolic compounds (malvidin 3-O-glucopyranoside, gallic acid, protocatechuic acid, catechol, chlorogenic acid, syringic acid, and epigallocatechin) in FBE were measured by high-performance liquid chromatography at different fermentation times. The content of each phenolic compound in the FBE was dependent on the fermentation period. Protocatechuic acid and catechol levels increased significantly with fermentation time. Of these three major compounds (protocatechuic acid, catechol, and chlorogenic acid), catechol showed the most significant anticancer activity when HeLa cells were treated with each of these three compounds alone or mixed in various ratios. Pearson's product-moment correlation analysis revealed that the increases in antioxidant and anticancer activities following blueberry fermentation were positively correlated with the phenolic acids present in FBE. PRACTICAL APPLICATION: Blueberries fermented with a tannase-producing lactic acid bacteria (LAB), Lactobacillus plantarum showed higher antioxidant activities and antiproliferative activities against human cervical carcinoma HeLa cells than did raw blueberries. L. plantarum fermentation biotransformed blueberry polyphenols into active phenol metabolites with strong antioxidant and antiproliferative activities. Our results suggest that fermented blueberries are rich in phenolic acids, which are a promising source of natural antioxidants and anticancer drugs and can be used as additives in food, pharmaceuticals, and cosmetic preparations.
Collapse
Affiliation(s)
- Ji-Yeon Ryu
- School of Biomaterials Sciences and Technology College of Applied Life Sciences, Jeju National Univ., SARI, Jeju, 63243, Republic of Korea
| | - Hye Rim Kang
- School of Biomaterials Sciences and Technology College of Applied Life Sciences, Jeju National Univ., SARI, Jeju, 63243, Republic of Korea
| | - Somi Kim Cho
- School of Biomaterials Sciences and Technology College of Applied Life Sciences, Jeju National Univ., SARI, Jeju, 63243, Republic of Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National Univ., SARI, Jeju, 63243, Republic of Korea.,Subtropical/Tropical Organism Gene Bank, Jeju National Univ., Jeju, 63243, Republic of Korea
| |
Collapse
|
21
|
Chen W, Zhu J, Niu H, Song Y, Zhang W, Chen H, Chen W. Composition and Characteristics of Yam Juice Fermented by Lactobacillus plantarum and Streptococcus thermophilus. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2018-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, Lactobacillus plantarum (LP), alone or in combination with Streptococcus thermophilus, was used to ferment yam juice. Changes in the composition (phenols, organic acids, reducing sugars and volatile substances) and functional characteristics (antioxidative activity and ability to regulate the intestinal flora) of yam juice during fermentation were investigated. The results showed that the total phenolic (TP) content increased from 201.27 to 281.27 and 285.77 μg/mL for LP- and L. plantarum and S. thermophilus (LPST)-fermented yam juice, respectively. The antioxidative activity of yam juice improved significantly after fermentation, highly correlating with its TP content. In addition, LP- or LPST-fermented yam juice had positive effects on members of the human intestinal flora, improving the activity of Bifidobacterium and inhibiting the growth of Escherichia coli. Sensory analysis showed that LPST-fermented yam juice had a highest score. The results of this study showed that fermented yam juice can serve as a healthy beverage for consumers with low immunity or an imbalance of the intestinal flora.
Collapse
|
22
|
Dias JF, Simbras BD, Beres C, dos Santos KO, Cabral LMC, Miguel MAL. Acid Lactic Bacteria as a Bio-Preservant for Grape Pomace Beverage. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Lele V, Ruzauskas M, Zavistanaviciute P, Laurusiene R, Rimene G, Kiudulaite D, Tomkeviciute J, Nemeikstyte J, Stankevicius R, Bartkiene E. Development and characterization of the gummy–supplements, enriched with probiotics and prebiotics. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1433721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vita Lele
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Modestas Ruzauskas
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Renata Laurusiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giedre Rimene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Kiudulaite
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Justina Tomkeviciute
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jovita Nemeikstyte
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rolandas Stankevicius
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
24
|
Filannino P, Di Cagno R, Gobbetti M. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr Opin Biotechnol 2018; 49:64-72. [DOI: 10.1016/j.copbio.2017.07.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/29/2022]
|
25
|
Muhlack RA, Potumarthi R, Jeffery DW. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:99-118. [PMID: 29132780 DOI: 10.1016/j.wasman.2017.11.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Grapes are one of the most cultivated fruits worldwide, with one third of total production used in winemaking. Both red and white winemaking processes result in substantial quantities of solid organic waste, such as grape marc (pomace) and stalks, which requires suitable disposal. Grape marc accounts for approximately 10-30% of the mass of grapes crushed and contains unfermented sugars, alcohol, polyphenols, tannins, pigments, and other valuable products. Being a natural plant product rich in lignocellulosic compounds, grape marc is also a promising feedstock for renewable energy production. However, despite grape marc having such potential, advanced technologies to exploit this have not been widely adopted in wineries and allied industries. This review covers opportunities beyond traditional composting and animal feed, and examines value-added uses via the extraction of useful components from grape marc, as well as thermochemical and biological treatments for energy recovery, fuel or beverage alcohol production, and specialty novel products and applications such as biosurfactants and environmental remediation. New advances in relevant technology for each of these processes are discussed, and future directions proposed at both individual producer and regional facility scales, including advanced processing techniques for integrated ethanol production followed by bioenergy generation from the spent marc.
Collapse
Affiliation(s)
- Richard A Muhlack
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Ravichandra Potumarthi
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - David W Jeffery
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
26
|
de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Crit Rev Food Sci Nutr 2018; 59:1645-1659. [PMID: 29377718 DOI: 10.1080/10408398.2018.1425285] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several foods are rich sources of phenolic compounds (PC) and their beneficial effects on human health may be increased through the action of probiotics. Additionally, probiotics may use PC as substrates, increasing their survival and functionality. This review presents available studies on the effects of PC on probiotics, including their physiological functionalities, interactions and capability of surviving during exposure to gastrointestinal conditions and when incorporated into food matrices. Studies have shown that PC can improve the adhesion capacity and survival of probiotics during exposure to conditions that mimic the gastrointestinal tract. There is strong evidence that PC can modulate the composition of the gut microbiota in hosts, improving a variety of biochemical markers and risk factors for chronic diseases. Available literature also indicates that metabolites of PC formed by intestinal microorganisms, including probiotics, exert a variety of benefits on host health. These metabolites are typically more active than parental dietary PC. The presence of PC commonly enhances probiotic survival in different foods. Finally, further clinical studies need to be developed to confirm in vitro and experimental findings concerning the beneficial interactions among different PC and probiotics.
Collapse
Affiliation(s)
- Evandro Leite de Souza
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | | | - Aldeir Sabino Dos Santos
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - Nayara Moreira Lacerda Massa
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - José Luiz de Brito Alves
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| |
Collapse
|
27
|
Recovery of Nutraceuticals from Agri-Food Industry Waste by Lactic Acid Fermentation. BIOSYNTHETIC TECHNOLOGY AND ENVIRONMENTAL CHALLENGES 2018. [DOI: 10.1007/978-981-10-7434-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|