1
|
Fan Y, Badar IH, Liu Q, Xia X, Chen Q, Kong B, Sun F. Insights into the flavor contribution, mechanisms of action, and future trends of coagulase-negative staphylococci in fermented meat products: A review. Meat Sci 2024; 221:109732. [PMID: 39708546 DOI: 10.1016/j.meatsci.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
During fermentation, meat is pre-treated and cured to cultivate a diverse microflora, resulting in fermented meat products with distinctive flavors. Coagulase-negative staphylococcus holds a crucial role in all fermented meat products, contributing to the breakdown of proteins, carbohydrates, and fats, and the creation of flavor compounds. Fermentation technology has important research value and significance in fermented meat products. The optimization and improvement of flavor by CNS can be achieved by regulating the fermentation environment, initial microflora and processing conditions. The review explores the ways in which coagulase-negative staphylococci contribute to the flavors in fermented meat products. The mechanism of flavor substance formation and means of regulation in coagulase-negative staphylococci were also investigated. The review concludes by summarizing future development trends and drawing conclusions.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Iftikhar Hussain Badar
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Premi L, Rocchetti G, Lucini L, Morelli L, Rebecchi A. Replacement of nitrates and nitrites in meat-derived foods through the utilization of coagulase-negative staphylococci : A review. Curr Res Food Sci 2024; 8:100731. [PMID: 38623273 PMCID: PMC11016579 DOI: 10.1016/j.crfs.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Nitrates and nitrites, which are synthetic additives, are traditionally used as curing agents in meat-based products. These synthetic additives are employed in the preparation of fermented meat foods to improve quality characteristics and microbiological safety, develop distinct flavours and red-colour stability, and counteract lipid oxidation. Nitrites also display significant bacteriostatic and bactericidal action against spoilage microorganisms and foodborne pathogens (such as Clostridium botulinum and Listeria monocytogenes). However, meat curing is currently under scrutiny because of its links to cardiovascular diseases and colorectal cancer. Based on the current literature, this review provides recent scientific evidence on the potential utilisation of coagulase-negative staphylococci (CNS) as nitrate and nitrite substitutes in meat-based foods. Indeed, CNS are reported to reproduce the characteristic red pigmentation and maintain the typical high-quality traits of cured-meats, thanks to their arginine degradation pathway, thus providing the nitrite-related desirable attributes in cured meat. The alternative strategy, still based on the NOS pathway, consisting of supplementing meat with arginine to release nitric oxide (NO) and obtain a meat characterised by the desired pinkish-red colour, is also reviewed. Exploiting NOS-positive CNS strains seems particularly challenging because of CNS technological adaptation and the oxygen dependency of the NOS reaction; however, this exploitation could represent a turning point in replacing nitrates and nitrites in meat foods.
Collapse
Affiliation(s)
- Lara Premi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
3
|
Fernández-Fernández R, Lozano C, Reuben RC, Ruiz-Ripa L, Zarazaga M, Torres C. Comprehensive Approaches for the Search and Characterization of Staphylococcins. Microorganisms 2023; 11:1329. [PMID: 37317303 PMCID: PMC10221470 DOI: 10.3390/microorganisms11051329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Novel and sustainable approaches are required to curb the increasing threat of antimicrobial resistance (AMR). Within the last decades, antimicrobial peptides, especially bacteriocins, have received increased attention and are being explored as suitable alternatives to antibiotics. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a self-preservation method against competitors. Bacteriocins produced by Staphylococcus, also referred to as staphylococcins, have steadily shown great antimicrobial potential and are currently being considered promising candidates to mitigate the AMR menace. Moreover, several bacteriocin-producing Staphylococcus isolates of different species, especially coagulase-negative staphylococci (CoNS), have been described and are being targeted as a good alternative. This revision aims to help researchers in the search and characterization of staphylococcins, so we provide an up-to-date list of bacteriocin produced by Staphylococcus. Moreover, a universal nucleotide and amino acid-based phylogeny system of the well-characterized staphylococcins is proposed that could be of interest in the classification and search for these promising antimicrobials. Finally, we discuss the state of art of the staphylococcin applications and an overview of the emerging concerns.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
4
|
Huang P, Luo H, Chen C, Li P, Xu B. Bacterial nitric oxide synthase in colorizing meat products: Current development and future directions. Crit Rev Food Sci Nutr 2022; 64:4362-4372. [PMID: 36322689 DOI: 10.1080/10408398.2022.2141679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitrite has been widely used in meat products for its abilities including color formation, antimicrobial properties, flavor formation and preventing lipid oxidation. However, the possible generation of N-nitrosamines through reaction of nitrite with secondary amines arises many concerns in the usage of nitrite. For a long time, nitrite substitution is unsettled issue in the meat industry. Many attempts have been tried, however, the alternative solutions are often ephemeral and palliative. In recent years, bacterial nitric oxide synthase (bNOS) has received attention for its critical roles, especially in reddening meat products. This comprehensive background study summarizes the application of bNOS in colorizing meat products, its functions in bacteria, and methods of regulating the bNOS pathway. Based on this information, some strategies for promoting the nitric oxide yield for effectively substituting nitrite are presented, such as changing the environmental conditions for bacterial survival and adding substrate. Thus, bNOS is a promising nitrite substitute for color formation, and further research on its other roles in meat needs to be carried out to obtain the complete picture.
Collapse
Affiliation(s)
- Pan Huang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huiting Luo
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Conggui Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peijun Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
5
|
Huang L, Wang Y, Li R, Wang Q, Dong J, Wang J, Lu S. Thyme essential oil and sausage diameter effects on biogenic amine formation and microbiological load in smoked horse meat sausage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Amplicon-Based High-Throughput Sequencing Method Capable of Species-Level Identification of Coagulase-Negative Staphylococci in Diverse Communities. Microorganisms 2020; 8:microorganisms8060897. [PMID: 32545893 PMCID: PMC7356217 DOI: 10.3390/microorganisms8060897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Coagulase-negative staphylococci (CNS) make up a diverse bacterial group, appearing in a myriad of ecosystems. To unravel the composition of staphylococcal communities in these microbial ecosystems, a reliable species-level identification is crucial. The present study aimed to design a primer set for high-throughput amplicon sequencing, amplifying a region of the tuf gene with enough discriminatory power to distinguish different CNS species. Based on 2566 tuf gene sequences present in the public European Nucleotide Archive database and saved as a custom tuf gene database in-house, three different primer sets were designed, which were able to amplify a specific region of the tuf gene for 36 strains of 18 different CNS species. In silico analysis revealed that species-level identification of closely related species was only reliable if a 100% identity cut-off was applied for matches between the amplicon sequence variants and the custom tuf gene database. From the three primer sets designed, one set (Tuf387/765) outperformed the two other primer sets for studying Staphylococcus-rich microbial communities using amplicon sequencing, as it resulted in no false positives and precise species-level identification. The method developed offers interesting potential for a rapid and robust analysis of complex staphylococcal communities in a variety of microbial ecosystems.
Collapse
|
7
|
Stavropoulou DA, De Vuyst L, Leroy F. Nonconventional starter cultures of coagulase-negative staphylococci to produce animal-derived fermented foods, a SWOT analysis. J Appl Microbiol 2018; 125:1570-1586. [PMID: 30053335 DOI: 10.1111/jam.14054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023]
Abstract
Coagulase-negative staphylococci (CNS) are ubiquitous micro-organisms that are commonly present on animal skin and animal-derived foods. They are members of the beneficial microbial consortia of several fermented food products where they contribute to quality. Currently, only a few CNS species are included in commercial starter cultures, although many other ones with promising properties have been isolated from diverse food ecosystems. In the present study, a Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis of the potential use of unconventional CNS starter cultures for the fermentation of animal-derived foods is carried out. An overview of both their desirable and worrisome metabolic traits is given. In general, the application of innovative CNS-based starter cultures offers opportunities to modulate flavour, improve the safety and health aspects and develop novel colour development strategies for clean label products. Yet, their implementation is often not straightforward as nontrivial obstacles or threats are encountered, which relate to technological, food safety and legal concerns. As most of the desirable and undesirable characteristics of CNS species are strain dependent, a case-by-case evaluation is needed when evaluating specific strains for their potential use as novel starter cultures.
Collapse
Affiliation(s)
- D A Stavropoulou
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - L De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - F Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
8
|
Montanari C, Gatto V, Torriani S, Barbieri F, Bargossi E, Lanciotti R, Grazia L, Magnani R, Tabanelli G, Gardini F. Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with two different starter cultures. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2017.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Wang H, Wang H, Bai Y, Xu X, Zhou G. Pathogenicity and antibiotic resistance of coagulase-negative staphylococci isolated from retailing chicken meat. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Fang F, Zhang J, Zhou J, Zhou Z, Li T, Lu L, Zeng W, Du G, Chen J. Accumulation of Citrulline by Microbial Arginine Metabolism during Alcoholic Fermentation of Soy Sauce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2108-2113. [PMID: 29457725 DOI: 10.1021/acs.jafc.7b06053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Citrulline, the major precursor of ethyl carbamate in soy sauce, is an intermediate catabolite of arginine produced by bacteria present in soy sauce moromi mash. Pediococcus acidilactici is responsible for the formation of citrulline during the lactic acid fermentation process of soy sauce. However, citrulline accumulation during the alcoholic fermentation process and the corresponding bacteria involved have not been identified. Salt-tolerant, arginine-utilizing bacteria were isolated from moromi mash during the alcoholic fermentation process. Under normal cultivation conditions, arginine utilization by these strains did not contribute to citrulline accumulation. However, the conversion of arginine to citrulline by these bacteria increased when cultivated during the alcoholic fermentation process. Additionally, the ethanol-enhanced solubility of free fatty acids in moromi mash stimulated the accumulation of citrulline. Staphylococcus exhibited the highest capability in the conversion of arginine to citrulline.
Collapse
Affiliation(s)
| | | | | | - Zhaohui Zhou
- Guangdong Pearl River Bridge Biotechnology Co. Ltd., Zhongshan 528415 , China
| | - Tieqiao Li
- Guangdong Pearl River Bridge Biotechnology Co. Ltd., Zhongshan 528415 , China
| | - Liling Lu
- Guangdong Pearl River Bridge Biotechnology Co. Ltd., Zhongshan 528415 , China
| | | | | | | |
Collapse
|
11
|
Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products. Microorganisms 2017; 5:microorganisms5030052. [PMID: 28850086 PMCID: PMC5620643 DOI: 10.3390/microorganisms5030052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus xylosus belongs to the vast group of coagulase-negative staphylococci. It is frequently isolated from meat products, either fermented or salted and dried, and is commonly used as starter cultures in sausage manufacturing. Analysis of the S. xylosus genome together with expression in situ in a meat model revealed that this bacterium is well adapted to meat substrates, being able to use diverse substrates as sources of carbon and energy and different sources of nitrogen. It is well-equipped with genes involved in osmotic, oxidative/nitrosative, and acidic stress responses. It is responsible for the development of the typical colour of cured meat products via its nitrate reductase activity. It contributes to sensorial properties, mainly by the the catabolism of pyruvate and amino acids resulting in odorous compounds and by the limiting of the oxidation of fatty acids, thereby avoiding rancidity.
Collapse
|