1
|
Martin AJ, Revol-Junelles AM, Petit J, Gaiani C, Leyva Salas M, Nourdin N, Khatbane M, Mafra de Almeida Costa P, Ferrigno S, Ebel B, Schivi M, Elfassy A, Mangavel C, Borges F. Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota. Foods 2024; 13:2233. [PMID: 39063317 PMCID: PMC11276107 DOI: 10.3390/foods13142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Color is one of the first criteria to assess the quality of cheese. However, very limited data are available on the color heterogeneity of the rind and its relationship with microbial community structure. In this study, the color of a wide range of smear-ripened Munster cheeses from various origins was monitored during storage by photographic imaging and data analysis in the CIELAB color space using luminance, chroma, and hue angle as descriptors. Different levels of inter- and intra-cheese heterogeneity were observed. The most heterogeneous Munster cheeses were the darkest with orange-red colors. The most homogeneous were the brightest with yellow-orange. K-means clustering revealed three clusters distinguished by their color heterogeneity. Color analysis coupled with metabarcoding showed that rinds with heterogeneous color exhibited higher microbial diversity associated with important changes in their microbial community structure during storage. In addition, intra-cheese community structure fluctuations were associated with heterogeneity in rind color. The species Glutamicibacter arilaitensis and Psychrobacter nivimaris/piscatorii were found to be positively associated with the presence of undesirable brown patches. This study highlights the close relationship between the heterogeneity of the cheese rind and its microbiota.
Collapse
Affiliation(s)
- Amandine J. Martin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Jérémy Petit
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Claire Gaiani
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Marcia Leyva Salas
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Nathan Nourdin
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Mohammed Khatbane
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | | | - Sandie Ferrigno
- INRIA Nancy—Grand Est, Institut Elie Cartan de Lorraine (IECL), Equipe BIology, Genetics and Statistics (BIGS), Université de Lorraine, F-54000 Nancy, France;
| | - Bruno Ebel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS UMR 7274, F-54518 Vandoeuvre les Nancy, France;
| | - Myriam Schivi
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Annelore Elfassy
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, F-54000 Nancy, France; (A.J.M.); (A.-M.R.-J.); (J.P.); (C.G.); (M.L.S.); (N.N.); (M.K.); (M.S.); (A.E.); (C.M.)
| |
Collapse
|
2
|
Zhou Z, Wang Y, Zhang J, Liu Z, Hao X, Wang X, He S, Wang R. Characterization of PANoptosis-related genes and the immune landscape in moyamoya disease. Sci Rep 2024; 14:10278. [PMID: 38704490 PMCID: PMC11069501 DOI: 10.1038/s41598-024-61241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Moyamoya disease (MMD) is a cerebrovascular narrowing and occlusive condition characterized by progressive stenosis of the terminal portion of the internal carotid artery and the formation of an abnormal network of dilated, fragile perforators at the base of the brain. However, the role of PANoptosis, an apoptotic mechanism associated with vascular disease, has not been elucidated in MMD. In our study, a total of 40 patients' genetic data were included, and a total of 815 MMD-related differential genes were screened, including 215 upregulated genes and 600 downregulated genes. Among them, DNAJA3, ESR1, H19, KRT18 and STK3 were five key genes. These five key genes were associated with a variety of immune cells and immune factors. Moreover, GSEA (gene set enrichment analysis) and GSVA (gene set variation analysis) showed that the different expression levels of the five key genes affected multiple signaling pathways associated with MMD. In addition, they were associated with the expression of MMD-related genes. Then, based on the five key genes, a transcription factor regulatory network was constructed. In addition, targeted therapeutic drugs against MMD-related genes were obtained by the Cmap drug prediction method: MST-312, bisacodyl, indirubin, and tropanyl-3,5-dimethylbenzoate. These results suggest that the PANoptosis-related genes may contribute to the pathogenesis of MMD through multiple mechanisms.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yanru Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ziqi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaokuan Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xilong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shihao He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Xu Z, Yuan Y, Liu J, Li C, Chen K, Wang F, Li G. STK214947, a novel indole alkaloids, inhibits HeLa and SK-HEP-1 cells survival and EMT process by blocking the Notch3 and Akt signals. Anticancer Drugs 2024; 35:325-332. [PMID: 38277337 DOI: 10.1097/cad.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Apoptosis and epithelial-to-mesenchymal transition (EMT) are closely associated with tumor survival and metastasis. These are the basic events in tumor occurrence and progression. STK214947 is an indole alkaloid with a skeleton that is similar to that of indirubin. Indole alkaloids have attracted considerable attention because of their antitumor activity. However, the relationship between STK214947 and these basic events remains unknown. In this study, the effects of STK214947 on inducing apoptosis and reversing the EMT process in tumor cells were confirmed. Mild concentrations of STK214947 inhibited tumor cell migration by reversing EMT and significantly regulated the expression of EMT-related proteins, including Notch3, E-cadherin, N-cadherin and vimentin. In addition, STK214947 in high concentration could induce apoptosis by down-regulating Notch3, p-Akt/Akt, and NF-κB, and upregulating Caspase 3. These findings support the further development of STK214947 as a potential antitumor small molecule that targets Notch3 and Akt signal transduction in cancer.
Collapse
Affiliation(s)
- Zihan Xu
- School of Ethnic Medicine, Yunnan Minzu University, Yunnan, Kunming, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
4
|
Ritschard JS, Schuppler M. The Microbial Diversity on the Surface of Smear-Ripened Cheeses and Its Impact on Cheese Quality and Safety. Foods 2024; 13:214. [PMID: 38254515 PMCID: PMC10814198 DOI: 10.3390/foods13020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Smear-ripened cheeses are characterized by a viscous, red-orange surface smear on their rind. It is the complex surface microbiota on the cheese rind that is responsible for the characteristic appearance of this cheese type, but also for the wide range of flavors and textures of the many varieties of smear-ripened cheeses. The surface smear microbiota also represents an important line of defense against the colonization with undesirable microorganisms through various types of interaction, such as competitive exclusion or production of antimicrobial substances. Predominant members of the surface smear microbiota are salt-tolerant yeast and bacteria of the phyla Actinobacteria, Firmicutes, and Proteobacteria. In the past, classical culture-based approaches already shed light on the composition and succession of microorganisms and their individual contribution to the typicity of this cheese type. However, during the last decade, the introduction and application of novel molecular approaches with high-resolution power provided further in-depth analysis and, thus, a much more detailed view of the composition, structure, and diversity of the cheese smear microbiota. This led to abundant novel knowledge, such as the identification of so far unknown community members. Hence, this review is summarizing the current knowledge of the diversity of the surface smear microbiota and its contribution to the quality and safety of smear-ripened cheese. If the succession or composition of the surface-smear microbiota is disturbed, cheese smear defects might occur, which may promote food safety issues. Hence, the discussion of cheese smear defects in the context of an increased understanding of the intricate surface smear ecosystem in this review may not only help in troubleshooting and quality control but also paves the way for innovations that can lead to safer, more consistent, and higher-quality smear-ripened cheeses.
Collapse
Affiliation(s)
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland;
| |
Collapse
|
5
|
Rodríguez J, Vázquez L, Flórez AB, Mayo B. Epicoccum sp. as the causative agent of a reddish-brown spot defect on the surface of a hard cheese made of raw ewe milk. Int J Food Microbiol 2023; 406:110401. [PMID: 37722266 DOI: 10.1016/j.ijfoodmicro.2023.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Colour defects can affect the appearance of cheese, its flavour, the safety of its consumption, and the price it can demand. This work reports the identification of five fungal isolates from a dairy plant where the surface of most cheeses was affected by patent, reddish-to-brown stains. One of these isolates was obtained from cheese, two from brine, and two from a bulk tank containing ewe milk. Molecular identification by partial amplification, sequencing, and database comparison of the concatenated sequence of the genes coding for the largest subunit of RNA polymerase II (RPB2), β-tubulin (β-TUB), and the large subunit of the rRNA molecule (LSU), plus the internal transcribed sequence (ITS) regions, assigned the isolates to Epicoccum layuense, Epicoccum italicum, and Epicoccum mezzettii. Features of the growth of these different species on different agar-based media, and of the morphology of their conidia following sporulation, are also reported. The strain isolated from cheese, E. layuense IPLA 35011, was able to recreate the reddish-brown stains on slices of Gouda-like cheese, which linked the fungus with the colour defect. In addition, two other strains, E. italicum IPLA 35013 from brine and E. italicum IPLA 35014 from milk, also produced stains on cheese slices. Epicoccum species are widely recognized as plant pathogens but have seldom been reported in the dairy setting, and never as human or animal pathogens.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
6
|
Abstract
For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.
Collapse
Affiliation(s)
- Nicolas L Louw
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Kasturi Lele
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Ruby Ye
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Collin B Edwards
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| |
Collapse
|
7
|
Luu GT, Little JC, Pierce EC, Morin M, Ertekin CA, Wolfe BE, Baars O, Dutton RJ, Sanchez LM. Metabolomics of bacterial-fungal pairwise interactions reveal conserved molecular mechanisms. Analyst 2023; 148:3002-3018. [PMID: 37259951 PMCID: PMC10330857 DOI: 10.1039/d3an00408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecules in BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis sp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and that elucidating their role in complex communities should continue to be a priority.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| | - Jessica C Little
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Emily C Pierce
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
| | - Manon Morin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
| | - Celine A Ertekin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, USA
- Tufts University Sensory and Science Center, Medford, Massachusetts, 02155, USA
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, 92093, USA
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| |
Collapse
|
8
|
Rodríguez J, Lobato C, Vázquez L, Mayo B, Flórez AB. Prodigiosin-Producing Serratia marcescens as the Causal Agent of a Red Colour Defect in a Blue Cheese. Foods 2023; 12:2388. [PMID: 37372599 DOI: 10.3390/foods12122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Technological defects in the organoleptic characteristics of cheese (odour, colour, texture, and flavour) reduce quality and consumer acceptance. A red colour defect in Cabrales cheese (a traditional, blue-veined, Spanish cheese made from raw milk) occurs infrequently but can have a notable economic impact on family-owned, artisanal cheesemaking businesses. This work reports the culture-based determination of Serratia marcescens as the microbe involved in the appearance of red spots on the surface and nearby inner areas of such cheese. Sequencing and analysis of the genome of one S. marcescens isolate, RO1, revealed a cluster of 16 genes involved in the production of prodigiosin, a tripyrrole red pigment. HPLC analysis confirmed the presence of prodigiosin in methanol extracts of S. marcescens RO1 cultures. The same was also observed in extracts from red areas of affected cheeses. The strain showed low survival rates under acidic conditions but was not affected by concentrations of up to 5% NaCl (the usual value for blue cheese). The optimal conditions for prodigiosin production by S. marscescens RO1 on agar plates were 32 °C and aerobic conditions. Prodigiosin has been reported to possess antimicrobial activity, which agrees with the here-observed inhibitory effect of RO1 supernatants on different bacteria, the inhibition of Enterobacteriaceae, and the delayed development of Penicillium roqueforti during cheesemaking. The association between S. marcescens and the red colour defect was strengthened by recreating the fault in experimental cheeses inoculated with RO1. The data gathered in this study point towards the starting milk as the origin of this bacterium in cheese. These findings should help in the development of strategies that minimize the incidence of pigmenting S. marcescens in milk, the red defect the bacterium causes in cheese, and its associated economic losses.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Cristina Lobato
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
9
|
Martin JGP, Cotter PD. Filamentous fungi in artisanal cheeses: A problem to be avoided or a market opportunity? Heliyon 2023; 9:e15110. [PMID: 37151695 PMCID: PMC10161367 DOI: 10.1016/j.heliyon.2023.e15110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The microbial diversity of artisanal cheeses has been ever more extensively explored over recent years. Many new studies have been particularly focused on the detection and identification of fungi associated with cheese rinds. This is not surprising given that the composition and abundance of fungi on the cheese surface can significantly contribute to desirable sensory qualities, while also contributing to defects, particularly during ripening, and risks associated with the production of mycotoxins. Here we critically review the impact of fungi on the quality of artisanal cheeses, as well as the risks associated with the presence of particular species or strains with specific phenotypes. Ultimately, we address the question; should fungi be predominantly considered villains when it comes to artisanal cheese safety or could their presence be better exploited by producers in order to generate innovative products with greater added value? Such discussions will be increasingly important from the perspective of the future commercialization and regulation of artisanal cheeses that frequently contain a high abundance of moulds.
Collapse
Affiliation(s)
- José Guilherme Prado Martin
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Corresponding author.
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Ireland
| |
Collapse
|
10
|
Luu GT, Little JC, Pierce EC, Morin M, Ertekin CA, Wolfe BE, Baars O, Dutton RJ, Sanchez LM. Metabolomics of bacterial-fungal pairwise interactions reveal conserved molecular mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532449. [PMID: 36993360 PMCID: PMC10054941 DOI: 10.1101/2023.03.13.532449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecule mediated BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis spp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and their role in complex communities should continue to be a priority.
Collapse
Affiliation(s)
- Gordon T. Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| | - Jessica C. Little
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Emily C. Pierce
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
| | - Manon Morin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
| | - Celine A. Ertekin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| | - Benjamin E. Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, 02155
- Tufts University Sensory and Science Center, Medford Massachusetts, 02155
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27607
| | - Rachel J. Dutton
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, 92093
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| |
Collapse
|
11
|
Chen L, Wang G, Teng M, Wang L, Yang F, Jin G, Du H, Xu Y. Non-gene-editing microbiome engineering of spontaneous food fermentation microbiota-Limitation control, design control, and integration. Compr Rev Food Sci Food Saf 2023; 22:1902-1932. [PMID: 36880579 DOI: 10.1111/1541-4337.13135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
Non-gene-editing microbiome engineering (NgeME) is the rational design and control of natural microbial consortia to perform desired functions. Traditional NgeME approaches use selected environmental variables to force natural microbial consortia to perform the desired functions. Spontaneous food fermentation, the oldest kind of traditional NgeME, transforms foods into various fermented products using natural microbial networks. In traditional NgeME, spontaneous food fermentation microbiotas (SFFMs) are typically formed and controlled manually by the establishment of limiting factors in small batches with little mechanization. However, limitation control generally leads to trade-offs between efficiency and the quality of fermentation. Modern NgeME approaches based on synthetic microbial ecology have been developed using designed microbial communities to explore assembly mechanisms and target functional enhancement of SFFMs. This has greatly improved our understanding of microbiota control, but such approaches still have shortcomings compared to traditional NgeME. Here, we comprehensively describe research on mechanisms and control strategies for SFFMs based on traditional and modern NgeME. We discuss the ecological and engineering principles of the two approaches to enhance the understanding of how best to control SFFM. We also review recent applied and theoretical research on modern NgeME and propose an integrated in vitro synthetic microbiota model to bridge gaps between limitation control and design control for SFFM.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | | | | | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Guangyuan Jin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Wolfe BE. Are fermented foods an overlooked reservoir and vector of antimicrobial resistance? Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
13
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
14
|
Pharmacological properties of indirubin and its derivatives. Biomed Pharmacother 2022; 151:113112. [PMID: 35598366 DOI: 10.1016/j.biopha.2022.113112] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Indirubin is the main bioactive component of the traditional Chinese medicine Indigo naturalis and is a bisindole alkaloid. Multiple studies have shown that indirubin exhibits good anticancer, anti-inflammatory and neuroprotective properties. METHODS The purpose of this review is to provide a summary of the pharmacological mechanisms of indirubin and its derivatives. RESULTS Indirubin and its derivatives exert anticancer effects by regulating the expression of cyclin-dependent kinases (CDKs), GSK-3β, Bax, Bcl-2, C-MYC, matrix metalloproteinases (MMPs), and focal adhesion kinase (FAK) through the PI3K/AKT/mTOR, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), JAK/signal transducer and activator of transcription 3 (STAT3) pathways and other signaling pathways. We also reviewed the anti-inflammatory and neuroprotective properties of indirubin and its derivatives. CONCLUSION The findings of recent studies assessing indirubin and its derivatives suggest that these compounds can be used as potential drugs to treat tumors, inflammation, neuropathy and bacterial infection.
Collapse
|
15
|
Ritschard JS, Van Loon H, Amato L, Meile L, Schuppler M. High Prevalence of Enterobacterales in the Smear of Surface-Ripened Cheese with Contribution to Organoleptic Properties. Foods 2022; 11:foods11030361. [PMID: 35159512 PMCID: PMC8834058 DOI: 10.3390/foods11030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The smear of surface-ripened cheese harbors complex microbiota mainly composed of typical Gram-positive aerobic bacteria and yeast. Gram-negative bacteria are usually classified as un-wanted contaminants. In order to investigate the abundance and impact of Gram-negative bacte-ria naturally occurring in the smear of surface-ripened cheese, we performed a culture-based analysis of smear samples from 15 semi-hard surface-ripened cheese varieties. The quantity, di-versity and species distribution of Proteobacteria in the surface smear of the analyzed cheese vari-eties were unexpectedly high, and comprised a total of 22 different species. Proteus and Morganella predominated most of the analyzed cheese varieties, while Enterobacter, Citrobacter, Hafnia and Serratia were also found frequently. Further physiological characterization of Proteus isolates re-vealed strong proteolytic activity, and the analysis of volatiles in the smear cheese surface head-space suggested that Enterobacterales produce volatile organic flavor compounds that contribute to the organoleptic properties of surface-ripened cheese. Autochthonous members of Enterobac-terales were found in 12 of the 15 smear samples from surface-ripened cheeses, suggesting that they are part of the typical house microbiota that shape the organoleptic properties of the cheese rather than represent unwanted contaminants. However, further investigation on safety issues of the individual species should be performed in order to manage the health risk for consumers.
Collapse
Affiliation(s)
- Jasmine S. Ritschard
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
| | - Hanne Van Loon
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
| | - Lea Amato
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (L.A.); (L.M.)
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (L.A.); (L.M.)
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
- Correspondence:
| |
Collapse
|
16
|
Cosetta CM, Wolfe BE. Deconstructing and Reconstructing Cheese Rind Microbiomes for Experiments in Microbial Ecology and Evolution. ACTA ACUST UNITED AC 2021; 56:e95. [PMID: 31891451 DOI: 10.1002/cpmc.95] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cheese rind microbiomes are useful model systems for identifying the mechanisms that control microbiome diversity. Here, we describe the methods we have optimized to first deconstruct in situ cheese rind microbiome diversity and then reconstruct that diversity in laboratory environments to conduct controlled microbiome manipulations. Most cheese rind microbial species, including bacteria, yeasts, and filamentous fungi, can be easily cultured using standard lab media. Colony morphologies of taxa are diverse and can often be used to distinguish taxa at the phylum and sometimes even genus level. Through the use of cheese curd agar medium, thousands of unique community combinations or microbial interactions can be assessed. Transcriptomic experiments and transposon mutagenesis screens can pinpoint mechanisms of interactions between microbial species. Our general approach of creating a tractable synthetic microbial community from cheese can be easily applied to other fermented foods to develop other model microbiomes. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Isolation of cheese rind microbial communities Support Protocol 1: Preparation of plate count agar with milk and salt Basic Protocol 2: Identification of cheese rind bacterial and fungal isolates using 16S and ITS sequences Basic Protocol 3: Preparation of experimental glycerol stocks of yeasts and bacteria Basic Protocol 4: Preparation of experimental glycerol stocks of filamentous fungi Basic Protocol 5: Reconstruction of cheese rind microbial communities in vitro Support Protocol 2: Preparation of lyophilized and powdered cheese curd Support Protocol 3: Preparation of 10% cheese curd agar plates and tubes Basic Protocol 6: Interaction screens using responding lawns Support Protocol 4: Preparation of liquid 2% cheese curd Basic Protocol 7: Experimental evolution Basic Protocol 8: Measuring community function: pH/acidification Basic Protocol 9: Measuring community function: Pigment production Basic Protocol 10: RNA sequencing of cheese rind biofilms.
Collapse
Affiliation(s)
- Casey M Cosetta
- Department of Biology, Tufts University, Medford, Massachusetts
| | | |
Collapse
|
17
|
Biango-Daniels MN, Wolfe BE. American artisan cheese quality and spoilage: A survey of cheesemakers' concerns and needs. J Dairy Sci 2021; 104:6283-6294. [PMID: 33888221 DOI: 10.3168/jds.2020-19345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022]
Abstract
Production of artisan cheeses, including surface-ripened cheeses, has increased in the United States over the past 2 decades. Although many of these cheesemakers report unique quality and spoilage problems during production, a systematic assessment of the quality concerns facing this sector of specialty cheese production has not been conducted. Here we report the effects of microbial spoilage and quality issues on US artisan cheese production. In a survey of 61 cheesemakers, the most common issues reported were undesirable surface molds (71%) and incorrect or unexpected colors or pigments on rinds (54%). When asked, 18% of participants indicated that they were extremely concerned about quality and spoilage problems, and they indicated that their quality standards are frequently not met, either annually (39%) or monthly (33%). Although most of the respondents (62%) said that just 0 to 5% of their cheese was lost or rendered less valuable due to quality issues annually, a small number (7% combined) reported large losses of 20 to 30% or >30% of their product lost or rendered less valuable. Almost all respondents (95%) agreed that improved quality would reduce waste, increase profits, and improve production. The survey respondents indicated in open response questions that they want access to more online resources related to quality issues and digital forums to discuss issues with experts and peers when problems arise. These findings represent the first attempt to document and estimate the effect of quality and spoilage on the American artisan cheese industry. Future work should investigate what technologies, interventions, or information could reduce losses from these problems.
Collapse
|
18
|
Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021; 10:602. [PMID: 33809159 PMCID: PMC8000492 DOI: 10.3390/foods10030602] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
The cheese microbiota comprises a consortium of prokaryotic, eukaryotic and viral populations, among which lactic acid bacteria (LAB) are majority components with a prominent role during manufacturing and ripening. The assortment, numbers and proportions of LAB and other microbial biotypes making up the microbiota of cheese are affected by a range of biotic and abiotic factors. Cooperative and competitive interactions between distinct members of the microbiota may occur, with rheological, organoleptic and safety implications for ripened cheese. However, the mechanistic details of these interactions, and their functional consequences, are largely unknown. Acquiring such knowledge is important if we are to predict when fermentations will be successful and understand the causes of technological failures. The experimental use of "synthetic" microbial communities might help throw light on the dynamics of different cheese microbiota components and the interplay between them. Although synthetic communities cannot reproduce entirely the natural microbial diversity in cheese, they could help reveal basic principles governing the interactions between microbial types and perhaps allow multi-species microbial communities to be developed as functional starters. By occupying the whole ecosystem taxonomically and functionally, microbiota-based cultures might be expected to be more resilient and efficient than conventional starters in the development of unique sensorial properties.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.R.); (L.V.); (A.B.F.)
| | | | | | | |
Collapse
|
19
|
Meta-analysis of cheese microbiomes highlights contributions to multiple aspects of quality. ACTA ACUST UNITED AC 2020; 1:500-510. [PMID: 37128079 DOI: 10.1038/s43016-020-0129-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/14/2020] [Indexed: 01/29/2023]
Abstract
A detailed understanding of the cheese microbiome is key to the optimization of flavour, appearance, quality and safety. Accordingly, we conducted a high-resolution meta-analysis of cheese microbiomes and corresponding volatilomes. Using 77 new samples from 55 artisanal cheeses from 27 Irish producers combined with 107 publicly available cheese metagenomes, we recovered 328 metagenome-assembled genomes, including 47 putative new species that could influence taste or colour through the secretion of volatiles or biosynthesis of pigments. Additionally, from a subset of samples, we found that differences in the abundances of strains corresponded with levels of volatiles. Genes encoding bacteriocins and other antimicrobials, such as pseudoalterin, were common, potentially contributing to the control of undesirable microorganisms. Although antibiotic-resistance genes were detected, evidence suggested they are not of major concern with respect to dissemination to other microbiomes. Phages, a potential cause of fermentation failure, were abundant and evidence for phage-mediated gene transfer was detected. The anti-phage defence mechanism CRISPR was widespread and analysis thereof, and of anti-CRISPR proteins, revealed a complex interaction between phages and bacteria. Overall, our results provide new and substantial technological and ecological insights into the cheese microbiome that can be applied to further improve cheese production.
Collapse
|
20
|
Niccum BA, Kastman EK, Kfoury N, Robbat A, Wolfe BE. Strain-Level Diversity Impacts Cheese Rind Microbiome Assembly and Function. mSystems 2020; 5:e00149-20. [PMID: 32546667 PMCID: PMC7300356 DOI: 10.1128/msystems.00149-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Diversification can generate genomic and phenotypic strain-level diversity within microbial species. This microdiversity is widely recognized in populations, but the community-level consequences of microbial strain-level diversity are poorly characterized. Using the cheese rind model system, we tested whether strain diversity across microbiomes from distinct geographic regions impacts assembly dynamics and functional outputs. We first isolated the same three bacterial species (Staphylococcus equorum, Brevibacterium auranticum, and Brachybacterium alimentarium) from nine cheeses produced in different regions of the United States and Europe to construct nine synthetic microbial communities consisting of distinct strains of the same three bacterial species. Comparative genomics identified distinct phylogenetic clusters and significant variation in genome content across the nine synthetic communities. When we assembled each synthetic community with initially identical compositions, community structure diverged over time, resulting in communities with different dominant taxa. The taxonomically identical communities showed differing responses to abiotic (high salt) and biotic (the fungus Penicillium) perturbations, with some communities showing no response and others substantially shifting in composition. Functional differences were also observed across the nine communities, with significant variation in pigment production (light yellow to orange) and in composition of volatile organic compound profiles emitted from the rinds (nutty to sulfury).IMPORTANCE Our work demonstrated that the specific microbial strains used to construct a microbiome could impact the species composition, perturbation responses, and functional outputs of that system. These findings suggest that 16S rRNA gene taxonomic profiles alone may have limited potential to predict the dynamics of microbial communities because they usually do not capture strain-level diversity. Observations from our synthetic communities also suggest that strain-level diversity has the potential to drive variability in the aesthetics and quality of surface-ripened cheeses.
Collapse
Affiliation(s)
- Brittany A Niccum
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Erik K Kastman
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| | - Nicole Kfoury
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Albert Robbat
- Tufts University, Department of Chemistry, Medford, Massachusetts, USA
| | - Benjamin E Wolfe
- Tufts University, Department of Biology, Medford, Massachusetts, USA
| |
Collapse
|
21
|
Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020; 9:cells9030589. [PMID: 32131438 PMCID: PMC7140537 DOI: 10.3390/cells9030589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.
Collapse
Affiliation(s)
- Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Correspondence: (A.B.); (V.L.K.)
| | - Antonina Klimenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Vladimir L. Katanaev
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (A.B.); (V.L.K.)
| |
Collapse
|
22
|
Giuffrida D, Monnet C, Laurent F, Cacciola F, Oteri M, Le Piver M, Caro Y, Donato P, Mondello L, Roueyre D, Dufossé L. Carotenoids from the ripening bacterium Brevibacterium linens impart color to the rind of the French cheese, Fourme de Montbrison (PDO). Nat Prod Res 2019; 34:10-15. [PMID: 31140308 DOI: 10.1080/14786419.2019.1622107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rind color of some high-value PDO cheeses is related to the presence of carotenoids, but little is known about the structure of the pigmented compounds and their origin. Our objective was to describe the carotenoids extracted from the rind of a French cheese, Fourme de Montbrison, and to compare them with the pigments produced by a bacterial strain used as an adjunct culture in the cheese ripening process. Eleven carotenoids were detected in the cheese rinds or in the biomass of Brevibacterium linens. Most of the carotenoids from the rinds belonged to the aryl (aromatic) carotenoid family, including hydroxylated and non-hydroxylated isorenieratene. Chlorobactene, a carotenoid rarely found in food products, was also detected. Agelaxanthin A was identified in the cheese rinds as well as in the B. linens biomass. Occurrence of this compound was previously described in only one scientific publication, where it was isolated from the sponge Agela schmidtii.
Collapse
Affiliation(s)
- Daniele Giuffrida
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Christophe Monnet
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon, France
| | | | - Francesco Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Marianna Oteri
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy
| | | | - Yanis Caro
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, Département Hygiène Sécurité Environnement (HSE), IUT La Réunion, Saint-Pierre, France
| | - Paola Donato
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, Messina, Italy.,Chromaleont s.r.l., c/o University of Messina, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | | | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, ESIROI Département Agroalimentaire, Reunion Island, France
| |
Collapse
|