1
|
Murphy CM, Jeong KH, Walter L, Mendoza M, Green T, Liao A, Killinger K, Hanrahan I, Zhu MJ. Survival of Generic Escherichia coli on In-Field Mature and Immature Gala and Golden Delicious Apples With or Without Overhead Evaporative Cooling Treatment. J Food Prot 2025; 88:100410. [PMID: 39557161 DOI: 10.1016/j.jfp.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
The application of overhead evaporative cooling (EC) with untreated surface water is common in Washington State to decrease sunburn on apples. While this practice reduces crop and economic losses, applying untreated surface water to produce introduces potential risks of foodborne pathogen contamination. This study examined EC and the survival of inoculated generic Escherichia coli for two apple varieties over three growing seasons. Factors examined included EC treatment (conventional, untreated), canopy location (high, low), and apple variety (Gala, Golden Delicious). Fruit maturity (mature, immature) was also examined for one year. A rifampicin-resistant generic E. coli cocktail was applied to apples at 7.3 ± 0.4 log CFU/apple, and apples were enumerated for E. coli levels at 0, 2, 10, 18, 34, 42, 58, 82, 106, and 154 h postinoculation. Log-linear, Weibull, and Biphasic models were utilized to characterize the die-off pattern of E. coli. For most treatments, inoculated E. coli decreased by almost or over 6 log CFU/apple over the study duration; however, E. coli remained detectable at low levels on apples at 154 h postinoculation. EC treatment and canopy location did not significantly impact daily linear E. coli die-off rates. Apple variety and maturity demonstrated small but statistically significant impacts on daily linear die-off rates. Nonlinear models (i.e., biphasic and Weibull) best captured E. coli die-off on apples, showing a rapid initial decrease followed by a slower decline over time. Overall, results demonstrate that EC, a useful fruit quality practice, did not impact the survival of inoculated generic E. coli on apple surfaces. The study provides valuable insights for the apple industry regarding E. coli die-off rates on in-field apples, guiding practical decisions to mitigate risk.
Collapse
Affiliation(s)
- Claire M Murphy
- School of Food Science, Washington State University - Irrigated Agriculture Research and Extension Center, Prosser, WA, USA
| | - Kyu Ho Jeong
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Lauren Walter
- School of Food Science, Washington State University, Pullman, WA, USA
| | | | - Tonia Green
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Andy Liao
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Karen Killinger
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Ines Hanrahan
- Washington Tree Fruit Research Commission, Wenatchee, WA, USA.
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA.
| |
Collapse
|
2
|
Bolten S, Belias A, Weigand KA, Pajor M, Qian C, Ivanek R, Wiedmann M. Population dynamics of Listeria spp., Salmonella spp., and Escherichia coli on fresh produce: A scoping review. Compr Rev Food Sci Food Saf 2023; 22:4537-4572. [PMID: 37942966 DOI: 10.1111/1541-4337.13233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 11/10/2023]
Abstract
Collation of the current scope of literature related to population dynamics (i.e., growth, die-off, survival) of foodborne pathogens on fresh produce can aid in informing future research directions and help stakeholders identify relevant research literature. A scoping review was conducted to gather and synthesize literature that investigates population dynamics of pathogenic and non-pathogenic Listeria spp., Salmonella spp., and Escherichia coli on whole unprocessed fresh produce (defined as produce not having undergone chopping, cutting, homogenization, irradiation, or pasteurization). Literature sources were identified using an exhaustive search of research and industry reports published prior to September 23, 2021, followed by screening for relevance based on strict, a priori eligibility criteria. A total of 277 studies that met all eligibility criteria were subjected to an in-depth qualitative review of various factors (e.g., produce commodities, study settings, inoculation methodologies) that affect population dynamics. Included studies represent investigations of population dynamics on produce before (i.e., pre-harvest; n = 143) and after (i.e., post-harvest; n = 144) harvest. Several knowledge gaps were identified, including the limited representation of (i) pre-harvest studies that investigated population dynamics of Listeria spp. on produce (n = 13, 9% of pre-harvest studies), (ii) pre-harvest studies that were carried out on non-sprouts produce types grown using hydroponic cultivation practices (n = 7, 5% of pre-harvest studies), and (iii) post-harvest studies that reported the relative humidity conditions under which experiments were carried out (n = 56, 39% of post-harvest studies). These and other knowledge gaps summarized in this scoping review represent areas of research that can be investigated in future studies.
Collapse
Affiliation(s)
- Samantha Bolten
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Kelly A Weigand
- Cary Veterinary Medical Library, Auburn University, Auburn, Alabama, USA
- Flower-Sprecher Veterinary Library, Cornell University, Ithaca, New York, USA
| | - Magdalena Pajor
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Chenhao Qian
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Detert K, Schmidt H. Sporadic Detection of Escherichia coli O104:H4 Strain C227/11Φcu in the Edible Parts of Lamb's Lettuce Cultured in Contaminated Agricultural Soil Samples. Microorganisms 2023; 11:2072. [PMID: 37630632 PMCID: PMC10457958 DOI: 10.3390/microorganisms11082072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In the current study, we demonstrate that E. coli O104:H4 strain C227/11Φcu, a derivative of the 2011 enterohemorrhagic/enteroaggregative (EHEC/EAEC) E. coli outbreak strain, migrated into the edible portion of lamb's lettuce plants upon contamination of the surrounding soil. Seeds were surface-sterilized and cultivated on Murashige-Skoog agar or in autoclaved agricultural soil. Migration into the edible portions was investigated by inoculating the agar or soil close to the plants with 108 colony-forming units (CFU). The edible parts, which did not come into contact with the contaminated medium or soil, were quantitatively analyzed for the presence of bacteria after 2, 4 and 8 weeks. Strain C227/11Φcu could colonize lamb's lettuce when contamination of medium or soil occurs. The highest recovery rate (27%) was found for lettuce cultivated in agar, and up to 1.6 × 103 CFU/g lettuce was detected. The recovery rate was lower for the soil samples (9% and 13.5%). Although the used contamination levels were high, migration of C227/11Φcu from the soil into the edible parts was demonstrated. This study further highlights the risk of crop plant contamination with pathogenic E. coli upon soil contamination.
Collapse
Affiliation(s)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany;
| |
Collapse
|
4
|
Brandl MT, Ivanek R, Allende A, Munther DS. Predictive Population Dynamics of Escherichia coli O157:H7 and Salmonella enterica on Plants: a Mechanistic Mathematical Model Based on Weather Parameters and Bacterial State. Appl Environ Microbiol 2023; 89:e0070023. [PMID: 37347166 PMCID: PMC10370311 DOI: 10.1128/aem.00700-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Weather affects key aspects of bacterial behavior on plants but has not been extensively investigated as a tool to assess risk of crop contamination with human foodborne pathogens. A novel mechanistic model informed by weather factors and bacterial state was developed to predict population dynamics on leafy vegetables and tested against published data tracking Escherichia coli O157:H7 (EcO157) and Salmonella enterica populations on lettuce and cilantro plants. The model utilizes temperature, radiation, and dew point depression to characterize pathogen growth and decay rates. Additionally, the model incorporates the population level effect of bacterial physiological state dynamics in the phyllosphere in terms of the duration and frequency of specific weather parameters. The model accurately predicted EcO157 and S. enterica population sizes on lettuce and cilantro leaves in the laboratory under various conditions of temperature, relative humidity, light intensity, and cycles of leaf wetness and dryness. Importantly, the model successfully predicted EcO157 population dynamics on 4-week-old romaine lettuce plants under variable weather conditions in nearly all field trials. Prediction of initial EcO157 population decay rates after inoculation of 6-week-old romaine plants in the same field study was better than that of long-term survival. This suggests that future augmentation of the model should consider plant age and species morphology by including additional physical parameters. Our results highlight the potential of a comprehensive weather-based model in predicting contamination risk in the field. Such a modeling approach would additionally be valuable for timing field sampling in quality control to ensure the microbial safety of produce. IMPORTANCE Fruits and vegetables are important sources of foodborne disease. Novel approaches to improve the microbial safety of produce are greatly lacking. Given that bacterial behavior on plant surfaces is highly dependent on weather factors, risk assessment informed by meteorological data may be an effective tool to integrate into strategies to prevent crop contamination. A mathematical model was developed to predict the population trends of pathogenic E. coli and S. enterica, two major causal agents of foodborne disease associated with produce, on leaves. Our model is based on weather parameters and rates of switching between the active (growing) and inactive (nongrowing) bacterial state resulting from prevailing environmental conditions on leaf surfaces. We demonstrate that the model has the ability to accurately predict dynamics of enteric pathogens on leaves and, notably, sizes of populations of pathogenic E. coli over time after inoculation onto the leaves of young lettuce plants in the field.
Collapse
Affiliation(s)
- Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ana Allende
- Research Group of Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIC, Murcia, Spain
| | - Daniel S. Munther
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Brandl MT, Ivanek R, Zekaj N, Belias A, Wiedmann M, Suslow TV, Allende A, Munther DS. Weather stressors correlate with Escherichia coli and Salmonella enterica persister formation rates in the phyllosphere: a mathematical modeling study. ISME COMMUNICATIONS 2022; 2:91. [PMID: 37938340 PMCID: PMC9723732 DOI: 10.1038/s43705-022-00170-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/10/2023]
Abstract
Enteric pathogens can enter a persister state in which they survive exposure to antibiotics and physicochemical stresses. Subpopulations of such phenotypic dormant variants have been detected in vivo and in planta in the laboratory, but their formation in the natural environment remains largely unexplored. We applied a mathematical model predicting the switch rate to persister cell in the phyllosphere to identify weather-related stressors associated with E. coli and S. enterica persister formation on plants based on their population dynamics in published field studies from the USA and Spain. Model outputs accurately depicted the bi-phasic decay of bacterial population sizes measured in the lettuce and spinach phyllosphere in these studies. Predicted E. coli persister switch rate on leaves was positively and negatively correlated with solar radiation intensity and wind velocity, respectively. Likewise, predicted S. enterica persister switch rate correlated positively with solar radiation intensity; however, a negative correlation was observed with air temperature, relative humidity, and dew point, factors involved in water deposition onto the phylloplane. These findings suggest that specific environmental factors may enrich for dormant bacterial cells on plants. Our model quantifiably links persister cell subpopulations in the plant habitat with broader physical conditions, spanning processes at different granular scales.
Collapse
Affiliation(s)
- Maria T Brandl
- Produce Safety and Microbiology Research Unit, US Department of Agriculture, Agricultural Research Service, Albany, CA, 94710, USA.
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Nerion Zekaj
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, 44115, USA
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Trevor V Suslow
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ana Allende
- Research Group of Microbiology and Quality of Fruit and Vegetables, Food Science and Technology Department, CEBAS-CSIS, Campus Universitario de Espinardo, Murcia, E-30100, Spain
| | - Daniel S Munther
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, 44115, USA.
| |
Collapse
|
6
|
Molecular Serotyping and Antibiotic Resistance Patterns of Escherichia coli Isolated in Hospital Catering Service in Morocco. Int J Microbiol 2020; 2020:5961521. [PMID: 32922448 PMCID: PMC7453251 DOI: 10.1155/2020/5961521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli is related to foodborne disease and outbreaks worldwide. It mainly affects persons at high risk as newborns, infants, and individuals with impaired immune system in hospitals. Multidrug-resistant E. coli is currently spreading both in community and hospital settings. Our study aims to evaluate the presence of E. coli and the incidence of its antibiotic resistance in samples obtained from various cooked and raw foods (N = 300), food contact surfaces (N = 238), and food handlers (N = 40) in Moroccan hospital catering service. E. coli was identified using API 20E, and the antibiotic resistance patterns were obtained using the agar disk diffusion methods. However, PCR method was used for O157 and H7 typing. The samples analysis showed that 14.33%, 24.16%, and 45% of food, surfaces, and food handlers harbored E. coli, respectively, with the highest rates obtained in raw meats (34.88%) and salads (34.88%). Molecular amplification shows that 14 E. coli isolates carried the flagellar antigen H7, while there are no isolates showing amplification for O157. The high rate of resistance was noted against ampicillin (100%), amoxicillin-clavulanate acid (100%), nalidixic acid (61.62%), and cefotaxime (59.49%), and isolates obtained from food handler's hands showed the highest rates of resistance. None of the isolates are extended-spectrum beta-lactamases producing, while 27.7% of the isolates were metallo-beta-lactams producing. This first study conducted on Moroccan hospital catering services may draw the authorities' attention to the necessity of setting up a surveillance system to monitor the food preparation process and the safety of prepared food in healthcare settings.
Collapse
|
7
|
Belias AM, Sbodio A, Truchado P, Weller D, Pinzon J, Skots M, Allende A, Munther D, Suslow T, Wiedmann M, Ivanek R. Effect of Weather on the Die-Off of Escherichia coli and Attenuated Salmonella enterica Serovar Typhimurium on Preharvest Leafy Greens following Irrigation with Contaminated Water. Appl Environ Microbiol 2020; 86:e00899-20. [PMID: 32591379 PMCID: PMC7440809 DOI: 10.1128/aem.00899-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
The Food Safety Modernization Act (FSMA) includes a time-to-harvest interval following the application of noncompliant water to preharvest produce to allow for microbial die-off. However, additional scientific evidence is needed to support this rule. This study aimed to determine the impact of weather on the die-off rate of Escherichia coli and Salmonella on spinach and lettuce under field conditions. Standardized, replicated field trials were conducted in California, New York, and Spain over 2 years. Baby spinach and lettuce were grown and inoculated with an ∼104-CFU/ml cocktail of E. coli and attenuated Salmonella Leaf samples were collected at 7 time points (0 to 96 h) following inoculation; E. coli and Salmonella were enumerated. The associations of die-off with study design factors (location, produce type, and bacteria) and weather were assessed using log-linear and biphasic segmented log-linear regression. A segmented log-linear model best fit die-off on inoculated leaves in most cases, with a greater variation in the segment 1 die-off rate across trials (-0.46 [95% confidence interval {95% CI}, -0.52, -0.41] to -6.99 [95% CI, -7.38, -6.59] log10 die-off/day) than in the segment 2 die-off rate (0.28 [95% CI, -0.20, 0.77] to -1.00 [95% CI, -1.16, -0.85] log10 die-off/day). A lower relative humidity was associated with a faster segment 1 die-off and an earlier breakpoint (the time when segment 1 die-off rate switches to the segment 2 rate). Relative humidity was also found to be associated with whether die-off would comply with FSMA's specified die-off rate of -0.5 log10 die-off/day.IMPORTANCE The log-linear die-off rate proposed by FSMA is not always appropriate, as the die-off rates of foodborne bacterial pathogens and specified agricultural water quality indicator organisms appear to commonly follow a biphasic pattern with an initial rapid decline followed by a period of tailing. While we observed substantial variation in the net culturable population levels of Salmonella and E. coli at each time point, die-off rate and FSMA compliance (i.e., at least a 2 log10 die-off over 4 days) appear to be impacted by produce type, bacteria, and weather; die-off on lettuce tended to be faster than that on spinach, die-off of E. coli tended to be faster than that of attenuated Salmonella, and die-off tended to become faster as relative humidity decreased. Thus, the use of a single die-off rate for estimating time-to-harvest intervals across different weather conditions, produce types, and bacteria should be revised.
Collapse
Affiliation(s)
| | - Adrian Sbodio
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Pilar Truchado
- Department of Food Science and Technology, CEBAS-CSIC (Spanish National Research Council), Murcia, Spain
| | - Daniel Weller
- Department of Food Science, Cornell University, Ithaca, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Janneth Pinzon
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Mariya Skots
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Ana Allende
- Department of Food Science and Technology, CEBAS-CSIC (Spanish National Research Council), Murcia, Spain
| | - Daniel Munther
- Department of Mathematics, Cleveland State University, Cleveland, Ohio, USA
| | - Trevor Suslow
- Department of Plant Sciences, University of California, Davis, California, USA
- Produce Marketing Association, Newark, Delaware, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, New York, USA
| |
Collapse
|
8
|
Astill GM, Kuchler F, Todd JE, Page ET. Shiga Toxin-Producing Escherichia coli (STEC) O157:H7 and Romaine Lettuce: Source Labeling, Prevention, and Business. Am J Public Health 2020; 110:322-328. [PMID: 31944843 PMCID: PMC7002929 DOI: 10.2105/ajph.2019.305476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 11/04/2022]
Abstract
From May to November most romaine lettuce shipments in the United States come from California's Central Coast region, whereas from December to April most come from the Yuma, Arizona, region. During 2017-2018, the 3 outbreaks of Shiga toxin-producing Escherichia coli (STEC) O157:H7 in US romaine lettuce all occurred at the tail end of a region's production season. During the fall 2018 outbreak, the US Food and Drug Administration (FDA) recommended that suppliers begin labeling romaine packaging so that consumers can identify the product's harvest region.We used publicly available data to show that labels may not avert many illnesses in future outbreaks but may reduce suppliers' financial losses and reduce food loss.Market data available during both 2018 outbreak investigations showed that there was no romaine production from one of the 2 regions when the first illness onset occurred. That is, at the beginning of an outbreak investigation, market data may allow the FDA to quickly rule out an entire production region as a source of contamination.
Collapse
Affiliation(s)
- Gregory M Astill
- Gregory M. Astill is with the Markets and Trade Economics Division, Economic Research Service, US Department of Agriculture, Kansas City, MO. Fred Kuchler, Jessica E. Todd, and Elina T. Page are with the Food Economics Division, Economic Research Service, US Department of Agriculture, Washington, DC
| | - Fred Kuchler
- Gregory M. Astill is with the Markets and Trade Economics Division, Economic Research Service, US Department of Agriculture, Kansas City, MO. Fred Kuchler, Jessica E. Todd, and Elina T. Page are with the Food Economics Division, Economic Research Service, US Department of Agriculture, Washington, DC
| | - Jessica E Todd
- Gregory M. Astill is with the Markets and Trade Economics Division, Economic Research Service, US Department of Agriculture, Kansas City, MO. Fred Kuchler, Jessica E. Todd, and Elina T. Page are with the Food Economics Division, Economic Research Service, US Department of Agriculture, Washington, DC
| | - Elina T Page
- Gregory M. Astill is with the Markets and Trade Economics Division, Economic Research Service, US Department of Agriculture, Kansas City, MO. Fred Kuchler, Jessica E. Todd, and Elina T. Page are with the Food Economics Division, Economic Research Service, US Department of Agriculture, Washington, DC
| |
Collapse
|
9
|
Carriage and Subtypes of Foodborne Pathogens Identified in Wild Birds Residing near Agricultural Lands in California: a Repeated Cross-Sectional Study. Appl Environ Microbiol 2020; 86:AEM.01678-19. [PMID: 31757824 PMCID: PMC6974635 DOI: 10.1128/aem.01678-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023] Open
Abstract
The shedding dynamics of foodborne pathogens by wild birds on farmland are not well characterized. This yearlong study sampled wild birds for foodborne pathogens within agricultural lands in northern California. There was a low prevalence of Salmonella spp., Escherichia coli O157:H7, and non-O157 Shiga-toxin producing E. coli (prevalence, 0.34% to 0.50%) identified in bird populations in this study. However, pathogens of public health importance (such as Salmonella Newport, E. coli O157:H7, and STEC O103 and O26) were identified in fecal samples, and two birds carried STEC on their feet or feathers. Identical pathogen strains were shared episodically among birds and between wild geese and free-range cattle. This result suggests a common source of contamination in the environment and potential transmission between species. These findings can be used to assess the risk posed by bird intrusions in produce fields and enhance policy decisions toward the comanagement of food safety and farmland habitat conservation. Current California agricultural practices strive to comanage food safety and habitat conservation on farmland. However, the ecology of foodborne pathogens in wild bird populations, especially those avian species residing in proximity to fresh produce production fields, is not fully understood. In this repeated cross-sectional study, avifauna within agricultural lands in California were sampled over 1 year. Feces, oral swabs, and foot/feather swabs were cultured for zoonotic Salmonella spp., Escherichia coli O157:H7, and non-O157 Shiga toxin-producing E. coli (STEC) and characterized by serotyping and pulsed-field gel electrophoresis. Of 60 avian species sampled, 8 species (13.3%, bird groups of sparrows, icterids, geese, wrens, and kinglets) were positive for at least one of these foodborne pathogens. At the individual bird level, the detection of foodborne pathogens was infrequent in feces (n = 583; 0.5% Salmonella, 0.34% E. coli O157:H7, and 0.5% non-O157 STEC) and in feet/feathers (n = 401; 0.5% non-O157 STEC), and it was absent from oral swabs (n = 353). Several subtypes of public health importance were identified, including Salmonella enterica serotype Newport, E. coli O157:H7, and STEC serogroups O103 and O26. In late summer and autumn, the same STEC subtype was episodically found in several individuals of the same and different avian species, suggesting a common source of contamination in the environment. Sympatric free-range cattle shared subtypes of STEC O26 and O163 with wild geese. A limited rate of positive detection in wild birds provides insights into broad risk profile for contamination considerations but cannot preclude or predict risk on an individual farm. IMPORTANCE The shedding dynamics of foodborne pathogens by wild birds on farmland are not well characterized. This yearlong study sampled wild birds for foodborne pathogens within agricultural lands in northern California. There was a low prevalence of Salmonella spp., Escherichia coli O157:H7, and non-O157 Shiga-toxin producing E. coli (prevalence, 0.34% to 0.50%) identified in bird populations in this study. However, pathogens of public health importance (such as Salmonella Newport, E. coli O157:H7, and STEC O103 and O26) were identified in fecal samples, and two birds carried STEC on their feet or feathers. Identical pathogen strains were shared episodically among birds and between wild geese and free-range cattle. This result suggests a common source of contamination in the environment and potential transmission between species. These findings can be used to assess the risk posed by bird intrusions in produce fields and enhance policy decisions toward the comanagement of food safety and farmland habitat conservation.
Collapse
|
10
|
Glaize A, Gutierrez-Rodriguez E, Hanning I, Díaz-Sánchez S, Gunter C, van Vliet AHM, Watson W, Thakur S. Transmission of antimicrobial resistant non-O157 Escherichia coli at the interface of animal-fresh produce in sustainable farming environments. Int J Food Microbiol 2019; 319:108472. [PMID: 31901751 DOI: 10.1016/j.ijfoodmicro.2019.108472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/24/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
The interaction of typical host adapted enteric bacterial pathogens with fresh produce grown in fields is complex. These interactions can be more pronounced in co-managed or sustainable farms where animal operations are, by design, close to fresh produce, and growers frequently move between the two production environments. The primary objectives of this study were to 1) determine the transmission of STEC or enteric pathogens from small and large animal herds or operations to fresh produce on sustainable farms in TN and NC, 2) identify the possible sources that impact transmission of AMR E. coli, specifically STEC on these systems, and 3) WGS to characterize recovered E. coli from these sources. Samples were collected from raw and composted manure, environment, and produce sources. The serotype, virulence, and genotypic resistance profile were determined using the assembled genome sequences sequenced by Illumina technology. Broth microdilution was used to determine the antimicrobial susceptibility of each isolate against a panel of fourteen antimicrobials. The prevalence of E. coli increased during the summer season for all sources tested. ParSNP trees generated demonstrated that the transmission of AMR E. coli is occurring between animal feeding operations and fresh produce. Ten isolates were identified as serotype O45, a serotype that is associated with the "Big Six" group that is frequently linked with foodborne outbreaks caused by non-O157 E. coli. However, these isolates did not possess the stx gene. The highest frequency of resistance was detected against streptomycin (n = 225), ampicillin (n = 190) and sulfisoxazole FIS (n = 140). A total of 35 (13.7%) isolates from two TN farms were positive for the blaCMY (n = 5) and blaTEM (n = 32) genes. The results of this study show the potential of AMR E. coli transmission between animal feeding operations and fresh produce, and more studies are recommended to study this interaction and prevent dissemination in sustainable farming systems.
Collapse
Affiliation(s)
- Ayanna Glaize
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Eduardo Gutierrez-Rodriguez
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Irene Hanning
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sandra Díaz-Sánchez
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chris Gunter
- Extension Vegetable Production Specialist, Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK
| | - Wes Watson
- Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Siddhartha Thakur
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
11
|
Prevalence of Antibiotic Resistance and Distribution of Virulence Factors in the Shiga Toxigenic Escherichia coli Recovered from Hospital Food. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.82659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
12
|
Baker CA, De J, Bertoldi B, Dunn L, Chapin T, Jay-Russell M, Danyluk MD, Schneider KR. Prevalence and concentration of stx+ E. coli and E. coli O157 in bovine manure from Florida farms. PLoS One 2019; 14:e0217445. [PMID: 31125367 PMCID: PMC6534375 DOI: 10.1371/journal.pone.0217445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/25/2022] Open
Abstract
Fresh produce outbreaks due to Shiga toxin-producing Escherichia coli (STEC) continue to occur in the United States (US). Manure-amended soils can pose a public health risk when used for growing raw agricultural commodities. Knowing the prevalence and concentration of STEC in untreated biological soil amendments of animal origin (BSAAO) is important to help guide the most appropriate pre-harvest interval(s) following application to limit risks from these soil amendments. Bovine manure samples were collected from 12 farms in Florida, including samples from piles, lagoons, barns, and screened solids. Two methods were used to detect stx1/2 and rfbE genes in samples. A prevalence rate of 9% for stx1 and/or stx2 and 19% for rfbE was observed from the 518 bovine manure samples evaluated. A most probable number (MPN) assay was performed on stx+ samples when applicable. The geometric mean for stx+ samples (n = 20) was 3.37 MPN g-1 (0.53 log MPN g-1) with a maximum value of 6,800 MPN g-1 (3.83 log MPN g-1). This research was part of a larger nationwide geographical study on the prevalence and concentration of STEC in bovine manure to help guide regulations on feasible pre-harvest intervals for the application of untreated BSAAO.
Collapse
Affiliation(s)
- Christopher A. Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Jaysankar De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Bruna Bertoldi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
| | - Laurel Dunn
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Travis Chapin
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, California, United States of America
| | - Michelle D. Danyluk
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pushpakanth P, John Kennedy Z, Balachandar D. Source tracking of Shiga-like toxin-producing Escherichia coli in the fresh vegetable production system of South India. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01479-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Erickson MC, Liao JY, Payton AS, Cook PW, Bakker HCDEN, Bautista J, Díaz-Pérez JC. Survival of Salmonella enterica and Escherichia coli O157:H7 Sprayed onto the Foliage of Field-Grown Cabbage Plants. J Food Prot 2019; 82:479-485. [PMID: 30806554 DOI: 10.4315/0362-028x.jfp-18-326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To reduce the number of cabbage pathogen outbreaks, it is essential to understand the fate of enteric pathogens that contaminate plants in the field. To assist in that effort, two independent trials were conducted with a red cultivar (cv. Red Dynasty) and a green cultivar (cv. Bravo F1) of field-grown cabbage ( Brassica oleracea var. capitata). In the first trial, plants with small heads were sprayed with an inoculum containing both attenuated Salmonella enterica Typhimurium and Escherichia coli O157:H7 (5.0 log CFU/mL). Initial pathogen levels (ca. 3.9 log CFU per head), determined through plate count enumeration (limit of detection was 1.3 log CFU/g), dropped precipitously such that 2 days later, they could not be detected by enrichment culture in 22 to 35% of the heads. However, subsequent declines were at a slower rate; no differences were observed between red and green cabbage heads ( P > 0.05), and heads were still positive for the pathogens 22 days after being sprayed with the inoculum. As a result, the logistic model revealed that for every 2 days contaminated cabbage heads remained in the field, the probability of finding a positive sample decreased by a factor of 1.1 (95% confidence interval from 1.0 to 1.2, P = 0.0022) and 1.2 (95% confidence interval from 1.0 to 1.4, P ≤ 0.0001) for Salmonella and E. coli O157:H7, respectively. In the second trial occurring 2 weeks later, plants with medium red or green cabbage heads were sprayed with an inoculum at a dose of 3.5 log CFU/mL. A similar decay in prevalence over time occurred for green cabbage as in trial 1; however, pathogen decline in red cabbage was less in trial 2 than in trial 1. The extended persistence of pathogens in cabbage heads exhibited in both trials infers that harvest of contaminated cabbage destined for raw consumption is risky. Additional field studies are necessary to determine whether similar pathogen fates occur in other regions or climates and to clarify the effect of the maturity of red cabbage on pathogen inactivation.
Collapse
Affiliation(s)
- Marilyn C Erickson
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jye-Yin Liao
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Alison S Payton
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Peter W Cook
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Henk C DEN Bakker
- 1 Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797
| | - Jesus Bautista
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| | - Juan Carlos Díaz-Pérez
- 2 Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, Georgia 31793-5766, USA
| |
Collapse
|