1
|
Li L, Li N, Fu J, Liu J, Ping Wen X, Cao H, Xu H, Zhang Y, Cao R. Synthesis of an autochthonous microbial community by analyzing the core microorganisms responsible for the critical flavor of bran vinegar. Food Res Int 2024; 175:113742. [PMID: 38129049 DOI: 10.1016/j.foodres.2023.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Traditional bran vinegar brewing unfolds through natural fermentation, a process driven by spontaneous microbial activity. The unique metabolic activities of various microorganisms lead to distinct flavors and qualities in each batch of vinegar, making it challenging to consistently achieve the desired characteristic flavor compounds. Therefore, identifying the critical microbial species responsible for flavor production and designing starter cultures with improved fermentation efficiency and characteristic flavors are effective methods to address this discrepancy. In this study, 11 core functional microbial species affecting the fermentation flavor of Sichuan shai vinegar (Cupei were placed outside solarization and night-dew for more than one year, and vinegar was the liquid leached from Cupei) (SSV), were revealed by combining PacBio full-length diversity sequencing based on previous metagenomics. The effects of environmental factors and microbial interactions on the growth of 11 microorganisms during fermentation were verified using fermentation experiments. Ultimately, the microbial community was strategically synthesized using a 'top-down' approach, successfully replicating the distinctive flavor profile of Sichuan shai vinegar (SSV). The results showed that the interaction between microorganisms and environmental factors affected microorganism growth. Compared with traditional fermentation, the synthetic microbial community's vinegar-fermented grains (Cupei) can reproduce the key flavor of SSV and is conducive to the production of amino acids. In this study, the key flavor of SSV was reproduced through rational design of the synthetic microbial community. This achievement holds profound significance for the broader application of microbiome assembly strategies in the realm of fermented foods.
Collapse
Affiliation(s)
- Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China.
| | - Na Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Junjie Fu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Jun Liu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Xue Ping Wen
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Hong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Hongwei Xu
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Ying Zhang
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Rong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| |
Collapse
|
2
|
Bullé Rêgo ES, Santos DL, Hernández-Macedo ML, Padilha FF, López JA. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Varela C, Borneman AR. Molecular approaches improving our understanding of Brettanomyces physiology. FEMS Yeast Res 2022; 22:6585649. [PMID: 35561744 DOI: 10.1093/femsyr/foac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Brettanomyces species and particularly B. bruxellensis as the most studied representative, are strongly linked to industrial fermentation processes. This association is considered either positive or undesirable depending on the industry. While in some brewing applications and in kombucha production Brettanomyces yeasts contribute to the flavour and aroma profile of these beverages, in winemaking and bioethanol production Brettanomyces is considered a spoilage or contaminant microorganism. Nevertheless, understanding Brettanomyces biology and metabolism in detail will benefit all industries. This review discusses recent molecular biology tools including genomics, transcriptomics and genetic engineering techniques that can improve our understanding of Brettanomyces physiology and how these approaches can be used to make the industrial potential of this species a reality.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia.,School of Agriculture, Food & Wine, Faculty of Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
5
|
Sohlberg E, Sarlin T, Juvonen R. Fungal diversity on brewery filling hall surfaces and quality control samples. Yeast 2022; 39:141-155. [PMID: 34957597 PMCID: PMC9303908 DOI: 10.1002/yea.3687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
Breweries produce an increasing selection of beer and nonbeer beverages. Yeast and filamentous fungi may compromise quality and safety of these products in several ways. Recent studies on fungal communities in breweries are scarce and mostly conducted with culture-dependent methods. We explored fungal diversity in the production of alcoholic and nonalcoholic beverages in four breweries. Samples were taken for next generation sequencing (NGS) at the key contamination sites in 10 filling lines. Moreover, fungal isolates were identified in 68 quality control samples taken from raw materials, filling line surfaces, air, and products. NGS gave a comprehensive view of fungal diversity on filling line surfaces. The surface-attached communities mainly contained ascomycetous fungi. Depending on the site, the dominant genera included Candida, Saccharomyces, Torulaspora, Zygosaccharomyces, Alternaria, Didymella, and Exophiala. Sanger sequencing revealed 28 and 27 species of yeast and filamentous fungi, respectively, among 91 isolates. The most common species Saccharomyces cerevisiae, Zygosaccharomyces rouxii, and Wickerhamomuces anomalus were detected throughout production. Filling line surface and air samples showed the greatest diversity of yeast and filamentous fungi, respectively. The isolates of the most common yeast genera Candida, Pichia, Saccharomyces, and Wickerhamomyces showed low spoilage abilities in carbonated, chemically preserved drinks but could grow in products with reduced hurdles. Preservative resistant yeasts were rare, belonging to the species Dekkera bruxellensis, Pichia manschurica, and Zygosaccharomyces bailii. Penicillium spp. were dominant filamentous fungi. The results of this study help to evaluate spoilage risks caused by fungal contaminants detected in breweries.
Collapse
Affiliation(s)
| | - Tuija Sarlin
- VTT Technical Research Centre of FinlandEspooFinland
| | | |
Collapse
|
6
|
Lebleux M, Denimal E, De Oliveira D, Marin A, Desroche N, Alexandre H, Weidmann S, Rousseaux S. Prediction of Genetic Groups within Brettanomyces bruxellensis through Cell Morphology Using a Deep Learning Tool. J Fungi (Basel) 2021; 7:jof7080581. [PMID: 34436120 PMCID: PMC8396822 DOI: 10.3390/jof7080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation between the results of this method using the primer OPA-09 and those of a previous microsatellite analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the correlation suggested in a previous study between genetic groups and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These results open up very promising new perspectives in oenology for the study of microbial ecosystems.
Collapse
Affiliation(s)
- Manon Lebleux
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
- Correspondence:
| | - Emmanuel Denimal
- AgroSup Dijon, Direction Scientifique, Appui à la Recherche, 26 Boulevard Docteur Petitjean, F-21000 Dijon, France;
| | - Déborah De Oliveira
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Ambroise Marin
- Plateau D’imagerie DimaCell, Esplanade Erasme, Agrosup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France;
| | | | - Hervé Alexandre
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Stéphanie Weidmann
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| | - Sandrine Rousseaux
- Laboratoire VAlMiS-IUVV, AgroSup Dijon, UMR PAM A 02.102, University Bourgogne Franche-Comté, F-21000 Dijon, France; (D.D.O.); (H.A.); (S.W.); (S.R.)
| |
Collapse
|
7
|
Dimopoulou M, Kefalloniti V, Tsakanikas P, Papanikolaou S, Nychas GJE. Assessing the Biofilm Formation Capacity of the Wine Spoilage Yeast Brettanomyces bruxellensis through FTIR Spectroscopy. Microorganisms 2021; 9:microorganisms9030587. [PMID: 33809238 PMCID: PMC7999561 DOI: 10.3390/microorganisms9030587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Brettanomyces bruxellensis is a wine spoilage yeast known to colonize and persist in production cellars. However, knowledge on the biofilm formation capacity of B. bruxellensis remains limited. The present study investigated the biofilm formation of 11 B. bruxellensis strains on stainless steel coupons after 3 h of incubation in an aqueous solution. FTIR analysis was performed for both planktonic and attached cells, while comparison of the obtained spectra revealed chemical groups implicated in the biofilm formation process. The increased region corresponding to polysaccharides and lipids clearly discriminated the obtained spectra, while the absorption peaks at the specific wavenumbers possibly reveal the presence of β-glucans, mannas and ergosterol. Unsupervised clustering and supervised classification were employed to identify the important wavenumbers of the whole spectra. The fact that all the metabolic fingerprints of the attached versus the planktonic cells were similar within the same cell phenotype class and different between the two phenotypes, implies a clear separation of the cell phenotype; supported by the results of the developed classification model. This study represents the first to succeed at applying a non-invasive technique to reveal the metabolic fingerprint implicated in the biofilm formation capacity of B. bruxellensis, underlying the homogenous mechanism within the yeast species.
Collapse
|
8
|
Niedźwiedź I, Juzwa W, Skrzypiec K, Skrzypek T, Waśko A, Kwiatkowski M, Pawłat J, Polak-Berecka M. Morphological and physiological changes in Lentilactobacillus hilgardii cells after cold plasma treatment. Sci Rep 2020; 10:18882. [PMID: 33144617 PMCID: PMC7609761 DOI: 10.1038/s41598-020-76053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022] Open
Abstract
Atmospheric cold plasma (ACP) inactivation of Lentilactobacillus hilgardii was investigated. Bacteria were exposed to ACP dielectric barrier discharge with helium and oxygen as working gases for 5, 10, and 15 min. The innovative approach in our work for evaluation of bacterial survival was the use in addition to the classical plate culture method also flow cytometry which allowed the cells to be sorted and revealed different physiological states after the plasma treatment. Results showed total inhibition of bacterial growth after 10-min of ACP exposure. However, the analysis of flow cytometry demonstrated the presence of 14.4% of active cells 77.5% of cells in the mid-active state and 8.1% of dead cells after 10 min. In addition, some of the cells in the mid-active state showed the ability to grow again on culture medium, thus confirming the hypothesis of induction of VBNC state in L .hilgardii cells by cold plasma. In turn, atomic force microscopy (AFM) which was used to study morphological changes in L. hilgardii after plasma treatment at particular physiological states (active, mid-active, dead), showed that the surface roughness of the mid-active cell (2.70 ± 0.75 nm) was similar to that of the control sample (2.04 ± 0.55 nm). The lack of considerable changes on the cell surface additionally explains the effective cell resuscitation. To the best of our knowledge, AFM was used for the first time in this work to analyze cells which have been sorted into subpopulations after cold plasma treatment and this is the first work indicating the induction of VBNC state in L. hilgardii cells after exposure to cold plasma.
Collapse
Affiliation(s)
- Iwona Niedźwiedź
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland
| | - Krzysztof Skrzypiec
- Analytical Laboratory, Maria Curie-Skłodowska University, M. Curie-Skłodowska Square 3/22, 20-031, Lublin, Poland
| | - Tomasz Skrzypek
- Laboratory of Confocal and Electron Microscopy, Interdisciplinary Research Center, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Adam Waśko
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Michał Kwiatkowski
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618, Lublin, Poland
| | - Joanna Pawłat
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Nadbystrzycka 38A, 20-618, Lublin, Poland
| | - Magdalena Polak-Berecka
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland.
| |
Collapse
|
9
|
Pinto L, Baruzzi F, Cocolin L, Malfeito-Ferreira M. Emerging technologies to control Brettanomyces spp. in wine: Recent advances and future trends. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Križanović S, Tomašević M, Režek Jambrak A, Ćurko N, Gracin L, Lukić K, Kovačević Ganić K. Effect of Thermosonication and Physicochemical Properties of Wine on Culturability, Viability, and Metabolic Activity of Brettanomyces bruxellensis Yeast in Red Wines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3302-3311. [PMID: 31515992 DOI: 10.1021/acs.jafc.9b03661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The aim of this research was to investigate the short- and long-term effects of thermosonication and different physicochemical properties of wine on culturability, viability, and metabolic activity of Brettanomyces bruxellensis yeast. Thermosonication was conducted at 43 °C during 1, 2, and 3 min, while wine variations included several pH, alcohol, and sugar levels. Cell culturability and viability were determined immediately after treatment and during 90 days of storage, while metabolic activity was determined after 90 days of storage. Results showed that, although culturability was not confirmed in dry wines immediately after 3 min of treatment, thermosonication did not result in complete inactivation of the B. bruxellensis population. Herein, the first evidence of a viable but not culturable (VBNC) state of B. bruxellensis after thermosonication exposure was observed. Moreover, thermosonication reduced the production of volatile phenols. Obtained results suggest application of thermosonication for reduction of the B. bruxellensis population only in early stages of wine contamination.
Collapse
Affiliation(s)
- Stela Križanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marina Tomašević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Natka Ćurko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Leo Gracin
- University Department of Marine Studies, University of Split, Ulica Ruđera Boškovića 37, 21000 Split, Croatia
| | - Katarina Lukić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Karin Kovačević Ganić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
García-Alcaraz JL, Flor Montalvo F, Martínez Cámara E, Sáenz-Diez Muro JC, Jiménez-Macías E, Blanco-Fernández J. Comparative environmental impact analysis of techniques for cleaning wood wine barrels. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Filipe-Ribeiro L, Cosme F, Nunes FM. New molecularly imprinted polymers for reducing negative volatile phenols in red wine with low impact on wine colour. Food Res Int 2020; 129:108855. [PMID: 32036903 DOI: 10.1016/j.foodres.2019.108855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
4-Ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) formation in red wines by Dekkera/Brettanomyces yeasts reduce significantly wine consumer's acceptability. Polymers with specific adsorption for volatile phenols (VPs) could be a valuable tool for wine producers for removing this negative sensory defect. In this work, a new molecularly imprinted polymer (MIP) was synthesised using ethylene glycol dimethacrylate (EDMA) as cross-linker and ethylene glycol methyl ether acrylate as functional monomers. Although there was observed a competitive binding of the more abundant structurally related phenolic compounds of the wine matrix, it was still able to reduce 38 to 63% the wine VPs, depending on the wine VPs levels, presenting higher performance than the respective non-imprinted polymers (NIP). Sensory analysis of the MIP treated wine resulted in a significant decrease in the phenolic attribute and significant increase of the fruity and floral attributes, with no significant differences in the wine colour perceived by the expert panel. The sensory improvement of the MIP was significantly higher than that observed for the correspondent NIP.
Collapse
Affiliation(s)
- Luís Filipe-Ribeiro
- Chemistry Department, CQ-VR, Chemistry Research Centre - Vila Real, Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real 5000-801, Portugal.
| | - Fernanda Cosme
- Biology and Environmental Department, CQ-VR, Chemistry Research Center - Vila Real, Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real 5000-801, Portugal
| | - Fernando M Nunes
- Chemistry Department, CQ-VR, Chemistry Research Centre - Vila Real, Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real 5000-801, Portugal
| |
Collapse
|
13
|
Cibrario A, Avramova M, Dimopoulou M, Magani M, Miot-Sertier C, Mas A, Portillo MC, Ballestra P, Albertin W, Masneuf-Pomarede I, Dols-Lafargue M. Brettanomyces bruxellensis wine isolates show high geographical dispersal and long persistence in cellars. PLoS One 2019; 14:e0222749. [PMID: 31851678 PMCID: PMC6919574 DOI: 10.1371/journal.pone.0222749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Brettanomyces bruxellensis is the main wine spoiler yeast all over the world, yet the structure of the populations associated with winemaking remains elusive. In this work, we considered 1411 wine isolates from 21 countries that were genotyped using twelve microsatellite markers. We confirmed that B. bruxellensis isolates from wine environments show high genetic diversity, with 58 and 42% of putative triploid and diploid individuals respectively distributed in 5 main genetic groups. The distribution in the genetic groups varied greatly depending on the country and/or the wine-producing region. However, the two possible triploid wine groups showing sulfite resistance/tolerance were identified in almost all regions/countries. Genetically identical isolates were also identified. The analysis of these clone groups revealed that a given genotype could be isolated repeatedly in the same winery over decades, demonstrating unsuspected persistence ability. Besides cellar residency, a great geographic dispersal was also evidenced, with some genotypes isolated in wines from different continents. Finally, the study of old isolates and/or isolates from old vintages revealed that only the diploid groups were identified prior 1990 vintages. The putative triploid groups were identified in subsequent vintages, and their proportion has increased steadily these last decades, suggesting adaptation to winemaking practices such as sulfite use. A possible evolutionary scenario explaining these results is discussed.
Collapse
Affiliation(s)
- Alice Cibrario
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Marta Avramova
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Maria Dimopoulou
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environments, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maura Magani
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Albert Mas
- Biotecnología Enológica. Dept. Bioquímica i Biotecnologia, Facultat d‘Enologia. Universitat Rovira i Virgili. C/ Marcel·lí Domingo, Tarragona, Spain
| | - Maria C. Portillo
- Biotecnología Enológica. Dept. Bioquímica i Biotecnologia, Facultat d‘Enologia. Universitat Rovira i Virgili. C/ Marcel·lí Domingo, Tarragona, Spain
| | - Patricia Ballestra
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Warren Albertin
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- ENSCBP, Bordeaux INP, Pessac, France
| | - Isabelle Masneuf-Pomarede
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- Bordeaux Sciences Agro, Gradignan, France
| | - Marguerite Dols-Lafargue
- Univ. Bordeaux, ISVV, Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Villenave d’Ornon, France
- ENSCBP, Bordeaux INP, Pessac, France
| |
Collapse
|
14
|
Dimopoulou M, Renault M, Dols-Lafargue M, Albertin W, Herry JM, Bellon-Fontaine MN, Masneuf-Pomarede I. Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|