1
|
Banerji A, Brinkman NE, Davis B, Franklin A, Jahne M, Keely SP. Food Webs and Feedbacks: The Untold Ecological Relevance of Antimicrobial Resistance as Seen in Harmful Algal Blooms. Microorganisms 2024; 12:2121. [PMID: 39597512 PMCID: PMC11596618 DOI: 10.3390/microorganisms12112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) has long been framed as an epidemiological and public health concern. Its impacts on the environment are unclear. Yet, the basis for AMR is altered cell physiology. Just as this affects how microbes interact with antimicrobials, it can also affect how they interact with their own species, other species, and their non-living environment. Moreover, if the microbes are globally notorious for causing landscape-level environmental issues, then these effects could alter biodiversity and ecosystem function on a grand scale. To investigate these possibilities, we compiled peer-reviewed literature from the past 20 years regarding AMR in toxic freshwater cyanobacterial harmful algal blooms (HABs). We examined it for evidence of AMR affecting HAB frequency, severity, or persistence. Although no study within our scope was explicitly designed to address the question, multiple studies reported AMR-associated changes in HAB-forming cyanobacteria (and co-occurring microbes) that pertained directly to HAB timing, toxicity, and phase, as well as to the dynamics of HAB-afflicted aquatic food webs. These findings highlight the potential for AMR to have far-reaching environmental impacts (including the loss of biodiversity and ecosystem function) and bring into focus the importance of confronting complex interrelated issues such as AMR and HABs in concert, with interdisciplinary tools and perspectives.
Collapse
Affiliation(s)
- Aabir Banerji
- US Environmental Protection Agency, Office of Research and Development, Duluth, MN 55804, USA
| | - Nichole E. Brinkman
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Benjamin Davis
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Alison Franklin
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Michael Jahne
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| | - Scott P. Keely
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA; (N.E.B.); (B.D.); (M.J.)
| |
Collapse
|
2
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
3
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
5
|
Kim J, Lee G, Han S, Kim MJ, Shin JH, Lee S. Microbial communities in aerosol generated from cyanobacterial bloom-affected freshwater bodies: an exploratory study in Nakdong River, South Korea. Front Microbiol 2023; 14:1203317. [PMID: 37520352 PMCID: PMC10374321 DOI: 10.3389/fmicb.2023.1203317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Toxic blooms of cyanobacteria, which can produce cyanotoxins, are prevalent in freshwater, especially in South Korea. Exposure to cyanotoxins via ingestion, inhalation, and dermal contact may cause severe diseases. Particularly, toxic cyanobacteria and their cyanotoxins can be aerosolized by a bubble-bursting process associated with a wind-driven wave mechanism. A fundamental question remains regarding the aerosolization of toxic cyanobacteria and cyanotoxins emitted from freshwater bodies during bloom seasons. To evaluate the potential health risk of the aerosolization of toxic cyanobacteria and cyanotoxins, the objectives of this study were as follows: 1) to quantify levels of microcystin in the water and air samples, and 2) to monitor microbial communities, including toxic cyanobacteria in the water and air samples. Water samples were collected from five sites in the Nakdong River, South Korea, from August to September 2022. Air samples were collected using an air pump with a mixed cellulose ester membrane filter. Concentrations of total microcystins were measured using enzyme-linked immunosorbent assay. Shotgun metagenomic sequencing was used to investigate microbial communities, including toxic cyanobacteria. Mean concentrations of microcystins were 960 μg/L ranging from 0.73 to 5,337 μg/L in the water samples and 2.48 ng/m3 ranging from 0.1 to 6.8 ng/m3 in the air samples. In addition, in both the water and air samples, predominant bacteria were Microcystis (PCC7914), which has a microcystin-producing gene, and Cyanobium. Particularly, abundance of Microcystis (PCC7914) comprised more than 1.5% of all bacteria in the air samples. This study demonstrates microbial communities with genes related with microcystin synthesis, antibiotic resistance gene, and virulence factors in aerosols generated from cyanobacterial bloom-affected freshwater body. In summary, aerosolization of toxic cyanobacteria and cyanotoxins is a critical concern as an emerging exposure route for potential risk to environmental and human health.
Collapse
Affiliation(s)
- Jinnam Kim
- Major of Food Science & Nutrition, Division of Food Science, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Soyeong Han
- Major of Food Science & Nutrition, Division of Food Science, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daegu, Republic of Korea
| | - Seungjun Lee
- Major of Food Science & Nutrition, Division of Food Science, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
6
|
Barney RE, Huang G, Gallagher TL, Tischbein M, DeWitt J, Martindale R, LaRochelle EMP, Tsongalis GJ, Stommel EW. Validation of a Droplet Digital PCR (ddPCR) Assay to Detect Cyanobacterial 16S rDNA in Human Lung Tissue. TOXICS 2023; 11:531. [PMID: 37368631 DOI: 10.3390/toxics11060531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Cyanobacteria produce a variety of secondary metabolites, including toxins that may contribute to the development of disease. Previous work was able to detect the presence of a cyanobacterial marker in human nasal and broncoalveolar lavage samples; however, it was not able to determine the quantification of the marker. To further research the relationship between cyanobacteria and human health, we validated a droplet digital polymerase chain reaction (ddPCR) assay to simultaneously detect the cyanobacterial 16S marker and a human housekeeping gene in human lung tissue samples. The ability to detect cyanobacteria in human samples will allow further research into the role cyanobacteria plays in human health and disease.
Collapse
Affiliation(s)
- Rachael E Barney
- Dartmouth-Hitchcock Medical Center, Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Guohong Huang
- Dartmouth-Hitchcock Medical Center, Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Torrey L Gallagher
- Dartmouth-Hitchcock Medical Center, Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Maeve Tischbein
- Dartmouth-Hitchcock Medical Center, Department of Neurology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - John DeWitt
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | - Rachel Martindale
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | - Ethan M P LaRochelle
- Dartmouth-Hitchcock Medical Center, Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Gregory J Tsongalis
- Dartmouth-Hitchcock Medical Center, Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Elijah W Stommel
- Dartmouth-Hitchcock Medical Center, Department of Neurology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
7
|
Zhang Y, Duy SV, Whalen JK, Munoz G, Gao X, Sauvé S. Cyanotoxins dissipation in soil: Evidence from microcosm assays. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131534. [PMID: 37146322 DOI: 10.1016/j.jhazmat.2023.131534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Cyanobacteria proliferate in warm, nutrient-rich environments, and release cyanotoxins into natural waters. If cyanotoxin-contaminated water is used to irrigate agricultural crops, this could expose humans and other biota to cyanotoxins. However, cyanotoxins may be degraded by the diverse microbial consortia, be adsorbed or otherwise dissipate in agricultural soil. This study investigates the disappearance and transformation of 9 cyanotoxins in controlled soil microcosms after 28 d. Six soil types were exposed to factorial combinations of light, redox conditions and microbial activity that influenced the recovery of anabaenopeptin-A (AP-A), anabaenopeptin-B (AP-B), anatoxin-a (ATX-a), cylindrospermopsin (CYN), and the microcystin (MC) congeners -LR, -LA, -LY, -LW, and -LF. Cyanotoxins estimated half-lives were from hours to several months, depending on the compound and soil conditions. Cyanotoxins were eliminated via biological reactions in aerobic and anaerobic soils, although anaerobic conditions accelerated the biological dissipation of ATX-a, CYN and APs. ATX-a was sensitive to photolytic degradation, but CYN, and MCs were not reduced through photochemical transformation. MC-LR and -LA were recovered after exposure to light, redox conditions and low microbial activity, suggesting that they persisted in extractable forms, compared to other cyanotoxins in soil. Cyanotoxin degradation products were identified using high-resolution mass spectrometry, revealing their potential degradation pathways in soil.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada; Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Xuesong Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China; College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| |
Collapse
|
8
|
Assessment of the Appearance and Toxin Production Potential of Invasive Nostocalean Cyanobacteria Using Quantitative Gene Analysis in Nakdong River, Korea. Toxins (Basel) 2022; 14:toxins14050294. [PMID: 35622541 PMCID: PMC9145623 DOI: 10.3390/toxins14050294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Invasive nostocalean cyanobacteria (INC) were first reported in tropical regions and are now globally spreading rapidly due to climate change, appearing in temperate regions. INC require continuous monitoring for water resource management because of their high toxin production potential. However, it is difficult to analyze INC under a microscope because of their morphological similarity to nostocalean cyanobacteria such as the genus Aphanizomenon. This study calculates the gene copy number per cell for each target gene through quantitative gene analysis on the basis of genus-specific primers of genera Cylindrospermopsis, Sphaerospermopsis, and Cuspidothrix, and the toxin primers of anatoxin-a, saxitoxin, and cylindrospermopsin. In addition, quantitative gene analysis was performed at eight sites in the Nakdong River to assess the appearance of INC and their toxin production potential. Genera Cylindrospermopsis and Sphaerospermopsis did not exceed 100 cells mL−1 at the maximum, with a low likelihood of related toxin occurrence. The genus Cuspidothrix showed the highest cell density (1759 cells mL−1) among the INC. Nakdong River has potential for the occurrence of anatoxin-a through biosynthesis by genus Cuspidothrix because the appearance of this genus coincided with that of the anatoxin-a synthesis gene (anaF) and the detection of the toxin by ELISA.
Collapse
|
9
|
Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon 2022; 211:21-35. [DOI: 10.1016/j.toxicon.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
10
|
Juurakko CL, diCenzo GC, Walker VK. Cold Acclimation in Brachypodium Is Accompanied by Changes in Above-Ground Bacterial and Fungal Communities. PLANTS (BASEL, SWITZERLAND) 2021; 10:2824. [PMID: 34961295 PMCID: PMC8704670 DOI: 10.3390/plants10122824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 01/04/2023]
Abstract
Shifts in microbiota undoubtedly support host plants faced with abiotic stress, including low temperatures. Cold-resistant perennials prepare for freeze stress during a period of cold acclimation that can be mimicked by transfer from growing conditions to a reduced photoperiod and a temperature of 4 °C for 2-6 days. After cold acclimation, the model cereal, Brachypodium distachyon, was characterized using metagenomics supplemented with amplicon sequencing (16S ribosomal RNA gene fragments and an internal transcribed spacer region). The bacterial and fungal rhizosphere remained largely unchanged from that of non-acclimated plants. However, leaf samples representing bacterial and fungal communities of the endo- and phyllospheres significantly changed. For example, a plant-beneficial bacterium, Streptomyces sp. M2, increased more than 200-fold in relative abundance in cold-acclimated leaves, and this increase correlated with a striking decrease in the abundance of Pseudomonas syringae (from 8% to zero). This change is of consequence to the host, since P. syringae is a ubiquitous ice-nucleating phytopathogen responsible for devastating frost events in crops. We posit that a responsive above-ground bacterial and fungal community interacts with Brachypodium's low temperature and anti-pathogen signalling networks to help ensure survival in subsequent freeze events, underscoring the importance of inter-kingdom partnerships in the response to cold stress.
Collapse
Affiliation(s)
- Collin L. Juurakko
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - George C. diCenzo
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
| | - Virginia K. Walker
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada; (G.C.d.); (V.K.W.)
- Department of Biomedical and Molecular Sciences, School of Environmental Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
11
|
Maity S, Guchhait R, Chatterjee A, Pramanick K. Co-occurrence of co-contaminants: Cyanotoxins and microplastics, in soil system and their health impacts on plant - A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148752. [PMID: 34225156 DOI: 10.1016/j.scitotenv.2021.148752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanotoxins (CTX) and micro/nanoplastics (M/NP) are ubiquitously distributed in every environmental compartment. But the distribution, abundance and associated ecological risks of CTX are still poorly understood in soil system. On the other hand, M/NP could serve as vectors for persistent organic/inorganic pollutants in the natural environment through the sorption of pollutants onto them. Thus, co-occurrence of CTX and M/NP in soils suggests the sorption of CTX onto M/NP. So, major aim of this review is to understand the relevance of CTX and M/NP in soils as co-contaminants, possible interactions between them and ecological risks of CTX in terms of phytotoxicity. In this study, we comprehensively discuss different sources and fate of CTX and the sorption of CTX onto M/NP in soil system, considering the partition coefficient of different phases of soil and mass balance. Phytotoxicity of CTX, CTX mixture and co-contaminants has also been discussed with insights on the mechanism of action. This study indicates the need for the evaluation of sorption between co-contaminants, especially CTX and M/NP, and their phytotoxicity assessment using environmentally relevant concentrations.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India; Department of zoology, Mahishadal Raj College, Purba Medinipur, West Bengal, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Tsoumalakou E, Papadimitriou T, Berillis P, Kormas KA, Levizou E. Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147948. [PMID: 34051502 DOI: 10.1016/j.scitotenv.2021.147948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Irrigation water coming from freshwater bodies that suffer toxic cyanobacterial blooms causes adverse effects on crop productivity and quality and raises concerns regarding food contamination and human exposure to toxins. The common agricultural practice of spray irrigation is an important exposure route to cyanotoxins, yet its impact on crops has received little attention. In the present study we attempted an integrated approach at the macro- and microscopic level to investigate whether spray or drip irrigation with microcystins (MCs)-rich water differently affect spinach performance. Growth and functional features, structural characteristics of stomata, and toxin bioaccumulation were determined. Additionally, the impact of irrigation method and water type on the abundance of leaf-attached microorganisms was assessed. Drip irrigation with MCs-rich water had detrimental effects on growth and photosynthetic characteristics of spinach, while spray irrigation ameliorated to various extents the observed impairments. The stomatal characteristics were differently affected by the irrigation method. Drip-irrigated spinach leaves showed significantly lower stomatal density in the abaxial epidermis and smaller stomatal size in the adaxial side compared to spray-irrigation treatment. Nevertheless, the latter deteriorated traits related to fresh produce quality and safety for human consumption; both the abundance of leaf-attached microorganisms and the MCs bioaccumulation in edible tissues well exceeded the corresponding values of drip-irrigated spinach with MC-rich water. The results highlight the significance of both the use of MCs-contaminated water in vegetable production and the irrigation method in shaping plant responses as well as health risk due to human and livestock exposure to MCs.
Collapse
Affiliation(s)
- E Tsoumalakou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - T Papadimitriou
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - P Berillis
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - K A Kormas
- University of Thessaly, Department of Agriculture Ichthyology & Aquatic Environment, Fytokou, 38446 Nea Ionia, Volos, Greece
| | - E Levizou
- University of Thessaly, Department of Agriculture Crop Production and Rural Environment, Fytokou, 38446 Nea Ionia, Volos, Greece.
| |
Collapse
|
13
|
Buscaroli E, Braschi I, Cirillo C, Fargue-Lelièvre A, Modarelli GC, Pennisi G, Righini I, Specht K, Orsini F. Reviewing chemical and biological risks in urban agriculture: A comprehensive framework for a food safety assessment of city region food systems. Food Control 2021; 126:108085. [PMID: 34345121 PMCID: PMC8080888 DOI: 10.1016/j.foodcont.2021.108085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
Attention to urban agriculture (UA) has recently grown among practitioners, scientists, and the public, resulting in several initiatives worldwide. Despite the positive perception of modern UA and locally grown, fresh produce, the potential food safety risks connected to these practices may be underestimated, leading to regulatory gaps. Thus, there is a need for assessment tools to evaluate the food safety risks connected to specific UA initiatives, to assist practitioners in self-evaluation and control, and to provide policy makers and scholars a means to pursue and assess food safety in city regions, avoiding either a lack or an excess of regulation that could ultimately hinder the sector. To address this aim, this paper reviews the most recent and relevant literature on UA food safety assessments. Food safety indicators were identified first. Then, a food safety assessment framework for UA initiatives was developed. The framework uses business surveys and food analyses (if available) as a data source for calculating a food safety index for single UA businesses and the whole UA landscape of a given city region. The proposed framework was designed to allow its integration into the CRFS (City Region Food System) toolkit developed by FAO (Food and Agriculture Organization of the United Nations), RUAF foundation (Resource Centres on Urban Agriculture and Food Security) and Wilfrid Laurier University. Connection of several biological and chemical food safety risks to UA techniques. Identifiable food safety risk factors for diverse UA practices. Framework for the assessment of food safety levels of UA initiatives. Development of a risk-based assessment that can be integrated into the FAO CRFS framework.
Collapse
Affiliation(s)
- E Buscaroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - I Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - C Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - G C Modarelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - G Pennisi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - I Righini
- Wageningen UR Greenhouse Horticulture, Wageningen, the Netherlands
| | - K Specht
- ILS- Research Institute for Regional and Urban Development, Dortmund, Germany
| | - F Orsini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|