1
|
Wu C, Zhang H, Yang N, Wang C, Zhang M, Liu N, Lei H. Transcriptomics and proteomics analyses reveal the molecular mechanisms of yeast cells regulated by Phe-Cys against ethanol-oxidation cross-stress. Food Chem 2025; 464:141694. [PMID: 39442214 DOI: 10.1016/j.foodchem.2024.141694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Antioxidant dipeptide Phe-Cys (FC) could dramatically improve yeast cells resistance to ethanol-oxidation cross-stress, but the regulatory mechanisms remain unclear. Therefore, transcriptomic and proteomic analyses were conducted to investigate the effects of FC treatment on yeast under ethanol-oxidation cross-stress. Following FC supplementation, 875 differential expressed genes (DEGs) and 1296 differential expressed proteins (DEPs) were identified. Integrated analysis revealed a substantial enrichment of DEGs and DEPs in the KEGG pathways of carbon metabolism, amino acid biosynthesis, cofactor biosynthesis, and glycolysis/gluconeogenesis. Furthermore, FC improved yeast cell membrane integrity by promoting fatty acids and steroids biosynthesis, and implemented a high-energy strategy by upregulating glycolysis and oxidative phosphorylation. Additionally, alterations in DEGs and DEPs levels associated with amino acids metabolism accelerated protein synthesis and enhanced cell viability. In conclusion, this study elucidated the response mechanisms of yeast to FC treatment under ethanol-oxidation cross-stress, providing a theoretical basis for the application of FC in high-gravity brewing.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Chengxin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Na Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Wu S, Ji J, Sheng L, Ye Y, Zhang Y, Sun X. Lysine and valine weaken antibiotic resistance in Salmonella Typhimurium induced by disinfectant stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135858. [PMID: 39305589 DOI: 10.1016/j.jhazmat.2024.135858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
Disinfectants are widely used in food production and environmental sanitation to prevent illness, but bacteria resistance to these disinfectants and co-resistance to antibiotics pose a threat to public health. This study investigated the impact of commonly used disinfectants on the resistance of Salmonella Typhimurium (ST) to disinfectants and antibiotics, and explored the metabolic mechanisms underlying the resistance changes. The results showed that subinhibitory concentrations of disinfectants had a minor impact on the resistance of ST to four disinfectants. However, chlorine-containing disinfectants stress enhanced bacteria resistance to ampicillin, while quaternary ammonium compounds stress increased resistance to tetracycline and gentamicin. Untargeted metabolomics analysis revealed significant changes in glutathione metabolism and lysine and valine degradation pathways after disinfectant exposure. Specifically, ST activated lysine decarboxylation, leading to a significant decrease in lysine levels after benzalkonium chloride exposure, while valine and leucine degradation pathways were activated by sodium hypochlorite stress. The addition of downregulated L-lysine and L-valine increased the sensitivity of ST to antibiotics, providing further evidence for the findings of metabolomics. This study provides guidance for the proper use of disinfectants in food processing and establishes a strategy based on metabolomics to control antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Shang Wu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Xia H, Song N, Liu D, Zhou R, Shangguan L, Chen X, Dai J. Exploring the stress response mechanisms to 2-phenylethanol conferred by Pdr1p mutation in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:109. [PMID: 39090744 PMCID: PMC11295549 DOI: 10.1186/s13068-024-02559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The 2-phenylethanol (2-PE) tolerance phenotype is crucial to the production of 2-PE, and Pdr1p mutation can significantly increase the tolerance of 2-PE in Saccharomyces cerevisiae. However, its underlying molecular mechanisms are still unclear, hindering the rational design of superior 2-PE tolerance performance. RESULTS Here, the physiology and biochemistry of the PDR1_862 and 5D strains were analyzed. At 3.5 g/L 2-PE, the ethanol concentration of PDR1_862 decreased by 21%, and the 2-PE production of PDR1_862 increased by 16% than those of 5D strain. Transcriptome analysis showed that at 2-PE stress, Pdr1p mutation increased the expression of genes involved in the Ehrlich pathway. In addition, Pdr1p mutation attenuated sulfur metabolism and enhanced the one-carbon pool by folate to resist 2-PE stress. These metabolic pathways were closely associated with amino acids metabolism. Furthermore, at 3.5 g/L 2-PE, the free amino acids content of PDR1_862 decreased by 31% than that of 5D strain, among the free amino acids, cysteine was key amino acid for the enhancement of 2-PE stress tolerance conferred by Pdr1p mutation. CONCLUSIONS The above results indicated that Pdr1p mutation enhanced the Ehrlich pathway to improve 2-PE production of S. cerevisiae, and Pdr1p mutation altered the intracellular amino acids contents, in which cysteine might be a biomarker in response to Pdr1p mutation under 2-PE stress. The findings help to elucidate the molecular mechanisms for 2-PE stress tolerance by Pdr1p mutation in S. cerevisiae, identify key metabolic pathway responsible for 2-PE stress tolerance.
Collapse
Affiliation(s)
- Huili Xia
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Na Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, Hubei, People's Republic of China
| | - Daoqi Liu
- College of Biological and Food Engineering, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Rong Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, Hubei, People's Republic of China
| | - Lingling Shangguan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, Hubei, People's Republic of China
| | - Xiong Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, Hubei, People's Republic of China
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Jiang G, Wang C, Wang Y, Wang J, Xue Y, Lin Y, Hu X, Lv Y. Exogenous putrescine plays a switch-like influence on the pH stress adaptability of biofilm-based activated sludge. Appl Environ Microbiol 2024; 90:e0056924. [PMID: 38916292 PMCID: PMC11267902 DOI: 10.1128/aem.00569-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial community adaptability to pH stress plays a crucial role in biofilm formation. This study aims to investigate the regulatory mechanisms of exogenous putrescine on pH stress, as well as enhance understanding and application for the technical measures and molecular mechanisms of biofilm regulation. Findings demonstrated that exogenous putrescine acted as a switch-like distributor affecting microorganism pH stress, thus promoting biofilm formation under acid conditions while inhibiting it under alkaline conditions. As pH decreases, the protonation degree of putrescine increases, making putrescine more readily adsorbed. Protonated exogenous putrescine could increase cell membrane permeability, facilitating its entry into the cell. Subsequently, putrescine consumed intracellular H+ by enhancing the glutamate-based acid resistance strategy and the γ-aminobutyric acid metabolic pathway to reduce acid stress on cells. Furthermore, putrescine stimulated ATPase expression, allowing for better utilization of energy in H+ transmembrane transport and enhancing oxidative phosphorylation activity. However, putrescine protonation was limited under alkaline conditions, and the intracellular H+ consumption further exacerbated alkali stress and inhibits cellular metabolic activity. Exogenous putrescine promoted the proportion of fungi and acidophilic bacteria under acidic stress and alkaliphilic bacteria under alkali stress while having a limited impact on fungi in alkaline biofilms. Increasing Bdellovibrio under alkali conditions with putrescine further aggravated the biofilm decomposition. This research shed light on the unclear relationship between exogenous putrescine, environmental pH, and pH stress adaptability of biofilm. By judiciously employing putrescine, biofilm formation could be controlled to meet the needs of engineering applications with different characteristics.IMPORTANCEThe objective of this study is to unravel the regulatory mechanism by which exogenous putrescine influences biofilm pH stress adaptability and understand the role of environmental pH in this intricate process. Our findings revealed that exogenous putrescine functioned as a switch-like distributor affecting the pH stress adaptability of biofilm-based activated sludge, which promoted energy utilization for growth and reproduction processes under acidic conditions while limiting biofilm development to conserve energy under alkaline conditions. This study not only clarified the previously ambiguous relationship between exogenous putrescine, environmental pH, and biofilm pH stress adaptability but also offered fresh insights into enhancing biofilm stability within extreme environments. Through the modulation of energy utilization, exerting control over biofilm growth and achieving more effective engineering goals could be possible.
Collapse
Affiliation(s)
- Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yongchao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Jiayi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yimei Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yuting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Xurui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| | - Yahui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, China
| |
Collapse
|
5
|
Wu C, Zhang H, Yang N, Liu N, Yang H, Xu H, Lei H. Antioxidant Dipeptides Enhance Osmotic Stress Tolerance by Regulating the Yeast Cell Wall and Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4339-4347. [PMID: 38351620 DOI: 10.1021/acs.jafc.3c09320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study aimed to investigate the role of the yeast cell wall and membrane in enhancing osmotic tolerance by antioxidant dipeptides (ADs) including Ala-His (AH), Thr-Tyr (TY), and Phe-Cys (FC). Results revealed that ADs could improve the integrity of the cell wall by restructuring polysaccharide structures. Specifically, FC significantly (p < 0.05) reduced the leakage of nucleic acid and protein by 2.86% and 5.36%, respectively, compared to the control. In addition, membrane lipid composition played a crucial role in enhancing yeast tolerance by ADs, including the increase of cell membrane integrity and the decrease of permeability by regulating the ratio of unsaturated fatty acids. The up-regulation of gene expression associated with the cell wall integrity pathway (RLM1, SLT2, MNN9, FKS1, and CHS3) and fatty acid biosynthesis (ACC1, HFA1, OLE1, ERG1, and FAA1) further confirmed the positive impact of ADs on yeast tolerance against osmotic stress.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Na Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Wei J, Nie Y, Du H, Xu Y. Serine Improves Lactic Acid Stress Tolerance and Ethanol Production in Zygosaccharomyces bailii in Baijiu Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20295-20303. [PMID: 37929595 DOI: 10.1021/acs.jafc.3c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Lactic acid is the primary inhibitor of the growth and ethanol production of yeasts in Baijiu fermentation. Certain amino acids have been found to be related to stress tolerance in yeasts. This study explored the effect of lactic acid stress on the ethanol-producing yeast Zygosaccharomyces bailii and evaluated the ability of serine to increase the lactic acid tolerance of Z. bailii in vitro. Serine significantly improved Z. bailii viability by 16.5% and ethanol production by 226.6% under lactic acid stress. Under lactic acid stress, serine supplementation led to an increase of 41.9% in cell wall integrity, 31.9% in cell membrane integrity, 296.6% in intracellular adenosine triphosphate (ATP), and 18.4% in the mitochondrial membrane potential. Finally, field emission scanning electron microscopy (FESEM) indicated that serine supplementation maintained the cell shape and reduced cell leakage. This study revealed a novel lactic acid tolerance mechanism of core functional yeasts during Jiang-flavor Baijiu fermentation.
Collapse
Affiliation(s)
- Junlin Wei
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Xu J, Zhao N, Meng X, Li J, Zhang T, Xu R, Wei X, Fan M. Transcriptomic and Metabolomic Profiling Uncovers Response Mechanisms of Alicyclobacillus acidoterrestris DSM 3922 T to Acid Stress. Microbiol Spectr 2023; 11:e0002223. [PMID: 37318333 PMCID: PMC10434157 DOI: 10.1128/spectrum.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Alicyclobacillus acidoterrestris, which has strong acidophilic and heat-resistant properties, can cause spoilage of pasteurized acidic juice. The current study determined the physiological performance of A. acidoterrestris under acidic stress (pH 3.0) for 1 h. Metabolomic analysis was carried out to investigate the metabolic responses of A. acidoterrestris to acid stress, and integrative analysis with transcriptome data was also performed. Acid stress inhibited the growth of A. acidoterrestris and altered its metabolic profiles. In total, 63 differential metabolites, mainly enriched in amino acid metabolism, nucleotide metabolism, and energy metabolism, were identified between acid-stressed cells and the control. Integrated transcriptomic and metabolomic analysis revealed that A. acidoterrestris maintains intracellular pH (pHi) homeostasis by enhancing amino acids decarboxylation, urea hydrolysis, and energy supply, which was verified using real-time quantitative PCR and pHi measurement. Additionally, two-component systems, ABC transporters, and unsaturated fatty acid synthesis also play crucial roles in resisting acid stress. Finally, a model of the responses of A. acidoterrestris to acid stress was proposed. IMPORTANCE Fruit juice spoilage caused by A. acidoterrestris contamination has become a major concern and challenge in the food industry, and this bacterium has been suggested as a target microbe in the design of the pasteurization process. However, the response mechanisms of A. acidoterrestris to acid stress still remain unknown. In this study, integrative transcriptomic, metabolomic, and physiological approaches were used to uncover the global responses of A. acidoterrestris to acid stress for the first time. The obtained results can provide new insights into the acid stress responses of A. acidoterrestris, which will point out future possible directions for the effective control and application of A. acidoterrestris.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Food Engineering, Luohe Vocational College of Food, Luohe, Henan, China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruoyun Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Food Engineering, Luohe Vocational College of Food, Luohe, Henan, China
| |
Collapse
|