1
|
An T, Liang Z, Chen Z, Li G. Recent progress in online detection methods of bioaerosols. FUNDAMENTAL RESEARCH 2024; 4:442-454. [PMID: 38933213 PMCID: PMC10239662 DOI: 10.1016/j.fmre.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 10/29/2023] Open
Abstract
The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Sajjad B, Hussain S, Rasool K, Hassan M, Almomani F. Comprehensive insights into advances in ambient bioaerosols sampling, analysis and factors influencing bioaerosols composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122473. [PMID: 37659632 DOI: 10.1016/j.envpol.2023.122473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
While the study of bioaerosols has a long history, it has garnered heightened interest in the past few years, focusing on both culture-dependent and independent sampling and analysis approaches. Observations have been made regarding the seasonal fluctuations in microbial communities and their connection to particular ambient atmospheric factors. The study of airborne microbial communities is important in public health and atmospheric processes. Nevertheless, the establishment of standardized protocols for evaluating airborne microbial communities and utilizing microbial taxonomy as a means to identify distinct bioaerosols sources and seasonal patterns remains relatively unexplored. This article discusses the challenges and limitations of ambient bioaerosols sampling and analysis, including the lack of standardized methods and the heterogeneity of sources. Future prospects in the field of bioaerosols, including the use of high-throughput sequencing technologies, omics studies, spectroscopy and fluorescence-based monitoring to provide comprehensive incite on metabolic capacity, and activity are also presented. Furthermore, the review highlights the factors that affect bioaerosols composition, including seasonality, atmospheric conditions, and pollution levels. Overall, this review provides a valuable resource for researchers, policymakers, and stakeholders interested in understanding and managing bioaerosols in various environments.
Collapse
Affiliation(s)
- Bilal Sajjad
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar; Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Sabir Hussain
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Mujtaba Hassan
- Department of Environmental Science, Institute of Space Technology, Islamabad, Pakistan
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Sharma Ghimire P, Joshi DR, Tripathee L, Chen P, Sajjad W, Kang S. Seasonal taxonomic composition of microbial communal shaping the bioaerosols milieu of the urban city of Lanzhou. Arch Microbiol 2022; 204:222. [PMID: 35344106 DOI: 10.1007/s00203-022-02832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
Here, the taxonomical composition and seasonal dynamics of airborne microbial communities were described in the urban city of Lanzhou, Northwest China. Year-long samples were studied in two filter membranes (Quartz and PTFE). Higher microbial loads were reported in the PTFE than in the quartz filter. Onefold decrease was reported in bacterial loads in spring and summer than winter and autumn for both filters. The fungal loadings were lowest during winter and highest during autumn, followed by summer. The microbial communities included Actinobacteria and Proteobacteria, Ascomycota, and Basidiomycota as major components. Maximum abundance of the members from Gammaproteobacteria, Coriobacteria and Clostridia were studied in all seasons on PTFE membrane, followed by, Erysipelotrichia, Negativicutes and Fusobacteria. Members of Actinobacteria and Bacilli showed higher abundance in spring and winter, with a small proportion during autumn. Members of Clostridia, Gammaproteobacteria, Bacilli, and Actinobacteria showed maximum abundance on the quartz filter in all the seasons. Similarly, on the PTFE, fungi including Dothideomycetes and Agaricomycetes were dominant, followed by Saccharomycetes during summer and winter. The result showed that PM2.5, SO42-, NO2-, Na+, EC, and OC are important environmental parameters influencing the seasonal microbial community. However, the relation of the microbiome with the environment cannot be confidently defined because the environmental factors are changeable and yet interrelated.
Collapse
Affiliation(s)
- Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.,Himalayan Environment Research Institute (HERI), Kathmandu, 44602, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, 44613, Nepal
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.,Himalayan Environment Research Institute (HERI), Kathmandu, 44602, Nepal
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China. .,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100085, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|