1
|
Chen SB, Yan WJ, Ang YS. Gated spin manipulation in a bipolar Rashba semiconductor: a Janus TeSSe monolayer. Phys Chem Chem Phys 2024. [PMID: 39431461 DOI: 10.1039/d4cp02910k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
It is very important to realize the electronically controlled spin direction for spintronic devices. Inspired by the bipolar Rashba semiconductor (BRS) concept recently proposed by Yang's group (X. Fu, et al. J. Phys. Chem. Lett., 2023, 14(50), 11292-11297), which presented a novel solution for spin precession manipulation using a BRS, through first-principles calculations, we confirm that Janus TeSSe is a BRS. Therefore, in a spin field-effect transistor based on BRS Janus TeSSe, the spin texture direction can be electronically controlled by applying a gate voltage. We describe in detail the special opposite spin texture of Janus TeSSe, and how the gate voltage regulates the spin direction of the physical mechanism. Furthermore, the regulation of the energy band and Rashba coefficient by charge doping, external electric field, and strain engineering is studied. In summary, we propose a new Janus BRS TeSSe monolayer capable of achieving electrical control of rotation through electrical gating, which enriches the family of two-dimensional BRS materials and inspires experimental researchers to conduct studies related to spin manipulation.
Collapse
Affiliation(s)
- Shao-Bo Chen
- College of Electronic and Information Engineering, Anshun University, Anshun 561000, People Republic of China.
| | - Wan-Jun Yan
- College of Electronic and Information Engineering, Anshun University, Anshun 561000, People Republic of China.
| | - Yee Sin Ang
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
2
|
Feng Q, Li X, Li X. A Route to Two-Dimensional Room-Temperature Organometallic Multiferroics: The Marriage of d-p Spin Coupling and Structural Inversion Symmetry Breaking. NANO LETTERS 2024; 24:3462-3469. [PMID: 38451166 DOI: 10.1021/acs.nanolett.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Two-dimensional (2D) room-temperature multiferroic materials are highly desirable but still very limited. Herein, we propose a potential strategy to obtain such materials in 2D metal-organic frameworks (MOFs) by utilizing the d-p direct spin coupling in conjunction with center-symmetry-breaking six-membered heterocyclic rings. Based on this strategy, a screening of 128 2D MOFs results in the identification of three multiferroics, that is, Cr(1,2-oxazine)2, Cr(1,2,4-triazine)2, and Cr(1,2,3,4-trazine)2, simultaneously exhibiting room-temperature ferrimagnetism and ferroelectricity/antiferroelectricity. The room-temperature ferrimagnetic order (306-495 K) in these MOFs originates from the strong d-p direct magnetic exchange interaction between Cr cations and ligand anions. Specifically, Cr(1,2-oxazine)2 exhibits ferroelectric behavior with an out-of-plane polarization of 4.24 pC/m, whereas the other two manifest antiferroelectric characteristics. Notably, all three materials present suitable polarization switching barriers (0.18-0.31 eV). Furthermore, these MOFs are all bipolar magnetic semiconductors with moderate band gaps, in which the spin direction of carriers can be manipulated by electrical gating.
Collapse
Affiliation(s)
- Qingqing Feng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei, Anhui 320601, China
| | - Xiangyang Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
3
|
Chen J, Wang X, An Y, Gong SJ. Recent progress in 2D bipolar magnetic semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:083001. [PMID: 37956444 DOI: 10.1088/1361-648x/ad0bff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Bipolar magnetic semiconductor (BMS) is a class of magnetic semiconductors, whose valence band maximum and conduction band minimum are fully spin-polarized with opposite spin directions. Due to the special energy band, half-metallicity can be easily obtained in BMS by gate voltage, and the spin polarization can be reversed between spin-up and down when the gate voltage switches from positive to negative. BMSs have great potential applications in spintronic devices, such as the field-effect spin valves, spin filters and spin transistors,etc. With the rapid progress of the two-dimensional (2D) magnetic materials, researchers have identified a series of potential intrinsic 2D BMS materials using high-throughput computational methods. Additionally, methods such as doping, application of external stress, introduction of external fields, stacking of interlayer antiferromagnetic semiconductors, and construction of Janus structures have endowed existing materials with BMS properties. This paper reviews the research progress of 2D BMS. These advancements provide crucial guidance for the design and synthesis of BMS materials and offer innovative pathways for the future development of spintronics.
Collapse
Affiliation(s)
- Ju Chen
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Xuening Wang
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yipeng An
- School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Shi-Jing Gong
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 30006, People's Republic of China
| |
Collapse
|
4
|
Li J, Li X, Yang J. Chemically Controlled Reversible Magnetic Phase Transition in Two-Dimensional Organometallic Lattices. NANO LETTERS 2023; 23:9126-9132. [PMID: 37781926 DOI: 10.1021/acs.nanolett.3c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Developing an efficient method to reversibly control materials' spin order is urgently needed but challenging in spintronics. Though various physical field control methods have been advancing, the chemical control of spin is little exploited. Here, we propose a chemical means for such spin manipulation, i.e., utilizing the well-known lactim-lactam tautomerization to reversibly modulate the magnetic phase transition in two-dimensional (2D) organometallic lattices. The proposal is verified by theoretically designing several 2D organometallic frameworks with antiferromagnetic to ferrimagnetic spin order transformation modulated by lactim-lactam tautomerization on organic linkers. The transition originates from the change in spin states of organic linkers (from singlet to doublet) via tautomerization. Such a transition further switches materials' electronic structures from normal semiconductors with zero spin polarization to bipolar magnetic semiconductors with valence and conduction band edges 100% spin polarized in opposite spin channels. Moreover, the magnitude of magnetic anisotropy energy also enhances by 5- to 9-fold.
Collapse
Affiliation(s)
- Junyao Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingxing Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jinlong Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
5
|
Teh S, Jeng HT. Magnetoelastic and Magnetoelectric Coupling in Two-Dimensional Nitride MXenes: A Density Functional Theory Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2644. [PMID: 37836286 PMCID: PMC10574495 DOI: 10.3390/nano13192644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023]
Abstract
Two-dimensional multiferroic (2D) materials have garnered significant attention due to their potential in high-density, low-power multistate storage and spintronics applications. MXenes, a class of 2D transition metal carbides and nitrides, were first discovered in 2011, and have become the focus of research in various disciplines. Our study, utilizing first-principles calculations, examines the lattice structures, and electronic and magnetic properties of nitride MXenes with intrinsic band gaps, including V2NF2, V2NO2, Cr2NF2, Mo2NO2, Mo2NF2, and Mn2NO2. These nitride MXenes exhibit orbital ordering, and in some cases the orbital ordering induces magnetoelastic coupling or magnetoelectric coupling. Most notably, Cr2NF2 is a ferroelastic material with a spiral magnetic ordered phase, and the spiral magnetization propagation vector is coupled with the direction of ferroelastic strain. The ferroelectric phase can exist as an excited state in V2NO2, Cr2NF2, and Mo2NF2, with their magnetic order being coupled with polar displacements through orbital ordering. Our results also suggest that similar magnetoelectric coupling effects persist in the Janus MXenes V8N4O7F, Cr8N4F7O, and Mo8N4F7O. Remarkably, different phases of Mo8N4F7O, characterized by orbital ordering rearrangements, can be switched by applying external strain or an external electric field. Overall, our theoretical findings suggest that nitride MXenes hold promise as 2D multiferroic materials.
Collapse
Affiliation(s)
- Sukhito Teh
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Horng-Tay Jeng
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Yuan S, Meng G, Liu D, Zhao W, Zhu H, Chi Y, Ren H, Guo W. Synergy of Substrate Chemical Environments and Single-Atom Catalysts Promotes Catalytic Performance: Nitrogen Reduction on Chiral and Defected Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52544-52552. [PMID: 36367754 DOI: 10.1021/acsami.2c17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The catalytic activities of single-atom catalysts (SACs) are strongly influenced by the local chemical environments of their substrates, by which the electronic structures of the SACs can be effectively tuned. Together with the freedom of available reactive metallic centers, it would be feasible to maximize the catalytic performance by means of a synergetic optimization in the chemical space spanned by the features of both the substrate and the catalytic center. In this work, using first-principles calculations, we systematically assessed the synergetic effect between the substrate geometric/electronic structures and the catalytic centers on the electrocatalytic nitrogen reduction reaction (NRR). Carbon nanotubes with different chirality, defects, and chemical functionalization were used to support 15 transition metal atoms. Three SACs, TiN4CNT(3,3), TiN4CNT(5,5), and VN4CNT(3,3), simultaneously possess high NRR selectivities (w.r.t hydrogen evolution) and low overpotentials of 0.35, 0.35, and 0.37 V, respectively. Electronic structure analysis elucidated that larger metal atoms anchored on CNTs with higher curvature and doped by N atoms facilitate the rupture of the N-N bond in *NH2NH2 to lower the overpotentials. The synergy of substrate chemical environments and single atomic catalysis is a promising strategy to optimize the catalytic performance.
Collapse
Affiliation(s)
- Saifei Yuan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Guodong Meng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Dongyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Yuhua Chi
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao266580, Shandong, China
| |
Collapse
|