1
|
So M, Ono M, Oogai S, Kondo M, Yamazaki K, Nachtegael C, Hamajima H, Mutoh R, Kato M, Kawate H, Oki T, Kawata Y, Kumamoto S, Tokui N, Takei T, Shimizu K, Inoue A, Yamamoto N, Unoki M, Tanabe K, Nakashima K, Sasaki H, Hojo H, Nagata Y, Suetake I. Inhibitory effects of extracts from Eucalyptus gunnii on α-synuclein amyloid fibrils. Biosci Biotechnol Biochem 2024; 88:1289-1298. [PMID: 39169473 DOI: 10.1093/bbb/zbae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead to cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.
Collapse
Affiliation(s)
- Masatomo So
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Misaki Ono
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Shigeki Oogai
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Minako Kondo
- ARFS, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kaede Yamazaki
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Charlotte Nachtegael
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Hiroshi Hamajima
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Risa Mutoh
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kato
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Hisaya Kawate
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Tomoyuki Oki
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Shiho Kumamoto
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Noritaka Tokui
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Inoue
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Motoko Unoki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Tanabe
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yasuo Nagata
- Saga Food & Cosmetic Laboratory, Saga Prefectural Industrial Innovation Center, Saga, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
- Institute of Preventive and Medical Dietetics, Nakamura Gakuen University, Fukuoka, Japan
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Roy R, Paul S. Illustrating the Effect of Small Molecules Derived from Natural Resources on Amyloid Peptides. J Phys Chem B 2023; 127:600-615. [PMID: 36638829 DOI: 10.1021/acs.jpcb.2c07607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The onset of amyloidogenic diseases is associated with the misfolding and aggregation of proteins. Despite extensive research, no effective therapeutics are yet available to treat these chronic degenerative diseases. Targeting the aggregation of disease-specific proteins is regarded as a promising new approach to treat these diseases. In the past few years, rapid progress in this field has been made in vitro, in vivo, and in silico to generate potential drug candidates, ranging from small molecules to polymers to nanoparticles. Small molecular probes, mostly those derived from natural sources, have been of particular interest among amyloid inhibitors. Here, we summarize some of the most important natural small molecular probes which can inhibit the aggregation of Aβ, hIAPP, and α-syn peptides and discuss how their binding efficacy and preference for the peptides vary with their structure and conformation. This provides a comprehensive idea of the crucial factors which should be incorporated into the future design of novel drug candidates useful for the treatment of amyloid diseases.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| |
Collapse
|
3
|
Smith AA, Moore KBE, Ambs PM, Saraswati AP, Fortin JS. Recent Advances in the Discovery of Therapeutics to Curtail Islet Amyloid Polypeptide Aggregation for Type 2 Diabetes Treatment. Adv Biol (Weinh) 2022; 6:e2101301. [PMID: 35931462 DOI: 10.1002/adbi.202101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/04/2022] [Indexed: 01/28/2023]
Abstract
In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap. To date, most of the experimental treatments are limited to only in vitro stages of testing. In general, the proposed therapeutics use various targeting strategies, such as binding to the N-terminal region of islet amyloid polypeptide on residues 1-19 or the hydrophobic region of IAPP. Other strategies include targeting the peptide self-assembly through π-stacking. These methods are realized by using several different families of compounds, four of which are highlighted in this review: naturally occurring products, small molecules, organometallic compounds, and nanoparticles. Each of these categories holds immense potential to optimize and develop inhibitor(s) of pancreatic amyloidosis in the near future.
Collapse
Affiliation(s)
- Alyssa A Smith
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Kendall B E Moore
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Akella Prasanth Saraswati
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica S Fortin
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, Tejaswini B, Sarkar S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. FRONTIERS IN PLANT SCIENCE 2022; 13:1006617. [PMID: 36237504 PMCID: PMC9552866 DOI: 10.3389/fpls.2022.1006617] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Salinity stress is one of the significant abiotic stresses that influence critical metabolic processes in the plant. Salinity stress limits plant growth and development by adversely affecting various physiological and biochemical processes. Enhanced generation of reactive oxygen species (ROS) induced via salinity stress subsequently alters macromolecules such as lipids, proteins, and nucleic acids, and thus constrains crop productivity. Due to which, a decreasing trend in cultivable land and a rising world population raises a question of global food security. In response to salt stress signals, plants adapt defensive mechanisms by orchestrating the synthesis, signaling, and regulation of various osmolytes and phytohormones. Under salinity stress, osmolytes have been investigated to stabilize the osmotic differences between the surrounding of cells and cytosol. They also help in the regulation of protein folding to facilitate protein functioning and stress signaling. Phytohormones play critical roles in eliciting a salinity stress adaptation response in plants. These responses enable the plants to acclimatize to adverse soil conditions. Phytohormones and osmolytes are helpful in minimizing salinity stress-related detrimental effects on plants. These phytohormones modulate the level of osmolytes through alteration in the gene expression pattern of key biosynthetic enzymes and antioxidative enzymes along with their role as signaling molecules. Thus, it becomes vital to understand the roles of these phytohormones on osmolyte accumulation and regulation to conclude the adaptive roles played by plants to avoid salinity stress.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar Choudhary
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nivedita Chaudhary
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shweta Gupta
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mamatamayee Sahu
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Boddu Tejaswini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Subrata Sarkar
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
5
|
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12:556-569. [PMID: 36105173 PMCID: PMC9463490 DOI: 10.1016/j.jpha.2022.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic disorders are often silent and go unnoticed in patients because of the lack of suitable prognostic and diagnostic markers. The current therapeutic regimens available for managing T2DM do not reverse diabetes; instead, they delay the progression of diabetes. Their efficacy (in principle) may be significantly improved if implemented at earlier stages. The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) or amylin has been associated with a gradual decrease in pancreatic β-cell function and mass in patients with T2DM. Hence, hIAPP has been recognized as a therapeutic target for managing T2DM. This review summarizes hIAPP's role in mediating dysfunction and apoptosis in pancreatic β-cells via induction of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, inflammatory cytokine secretion, autophagy blockade, etc. Furthermore, it explores the possibility of using intermediates of the hIAPP aggregation pathway as potential drug targets for T2DM management. Finally, the effects of common antidiabetic molecules and repurposed drugs; other hIAPP mimetics and peptides; small organic molecules and natural compounds; nanoparticles, nanobodies, and quantum dots; metals and metal complexes; and chaperones that have demonstrated potential to inhibit and/or reverse hIAPP aggregation and can, therefore, be further developed for managing T2DM have been discussed. Misfolded species of hIAPP form toxic oligomers in pancreatic β-cells. hIAPP amyloids has been detected in the pancreas of about 90% subjects with T2DM. Inhibitors of hIAPP aggregation can help manage T2DM.
Collapse
|
6
|
Sahoo BR, Souders CL, Watanabe-Nakayama T, Deng Z, Linton H, Suladze S, Ivanova MI, Reif B, Ando T, Martyniuk CJ, Ramamoorthy A. Conformational Tuning of Amylin by Charged Styrene-Maleic-Acid Copolymers. J Mol Biol 2022; 434:167385. [PMID: 34883118 PMCID: PMC8752516 DOI: 10.1016/j.jmb.2021.167385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 02/01/2023]
Abstract
Human amylin forms structurally heterogeneous amyloids that have been linked to type-2 diabetes. Thus, understanding the molecular interactions governing amylin aggregation can provide mechanistic insights in its pathogenic formation. Here, we demonstrate that fibril formation of amylin is altered by synthetic amphipathic copolymer derivatives of the styrene-maleic-acid (SMAQA and SMAEA). High-speed AFM is used to follow the real-time aggregation of amylin by observing the rapid formation of de novo globular oligomers and arrestment of fibrillation by the positively-charged SMAQA. We also observed an accelerated fibril formation in the presence of the negatively-charged SMAEA. These findings were further validated by fluorescence, SOFAST-HMQC, DOSY and STD NMR experiments. Conformational analysis by CD and FT-IR revealed that the SMA copolymers modulate the conformation of amylin aggregates. While the species formed with SMAQA are α-helical, the ones formed with SMAEA are rich in β-sheet structure. The interacting interfaces between SMAEA or SMAQA and amylin are mapped by NMR and microseconds all-atom MD simulation. SMAEA displayed π-π interaction with Phe23, electrostatic π-cation interaction with His18 and hydrophobic packing with Ala13 and Val17; whereas SMAQA showed a selective interaction with amylin's C terminus (residues 31-37) that belongs to one of the two β-sheet regions (residues 14-19 and 31-36) involved in amylin fibrillation. Toxicity analysis showed both SMA copolymers to be non-toxic in vitro and the amylin species formed with the copolymers showed minimal deformity to zebrafish embryos. Together, this study demonstrates that chemical tools, such as copolymers, can be used to modulate amylin aggregation, alter the conformation of species.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Zhou Deng
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Hunter Linton
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Saba Suladze
- Department of Chemistry, Technische Universität München, Garching 85748, Germany
| | - Magdalena I Ivanova
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Bernd Reif
- Department of Chemistry, Technische Universität München, Garching 85748, Germany
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa 9201192, Japan
| | - Christopher J Martyniuk
- Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Paul S, Paul S. Molecular insights into the urea-choline- O-sulfate interactions in aqueous solution. Phys Chem Chem Phys 2021; 23:25317-25334. [PMID: 34747954 DOI: 10.1039/d1cp02821a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Urea and choline-O-sulfate (COS) are both osmolytes, but have opposite effects on protein structure. Urea has been well-known for years to destabilize protein structure. Though COS has been revealed as an osmoprotective molecule against urea induced denaturation of proteins, the mechanism of this compensation is still unexplored. This study focuses on a theoretical investigation of the interdependent behavior of urea and COS in a mixture, to explore how urea becomes a weaker denaturing agent in the presence of COS. In this study, we have considered every possible interaction among the solute (urea and COS) and solvent (water) both at room temperature and high temperature, employing two different force field parameters i.e., CHARMM General Force Field parameters (CGenFF) and General AMBER Force Field (GAFF) parameters through classical molecular dynamics simulation studies. Different techniques have been used to analyze the average interactions between COS and urea as well as their solvation properties, which show that in the presence of COS, urea becomes a less effective denaturant than when alone. The water-water interaction shows that the mixed osmolyte solution of urea and COS strengthens the water hydrogen bonding network. The enhanced solvation of urea and COS in the urea-COS mixture and their mutual interactions, results in the exclusion of free urea as well as COS from the solution. This synergistic behavior of urea and COS could be the major reason behind COS counteracting urea's denaturation of proteins.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: From genesis to counteracting mechanisms. J Cell Physiol 2021; 237:1119-1142. [PMID: 34636428 DOI: 10.1002/jcp.30600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in β-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards β-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in β-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved β-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato C S Branco
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| |
Collapse
|
9
|
Assessing the role of osmolytes on the conformational harmony of islet amyloid polypeptide. Int J Biol Macromol 2020; 164:2569-2582. [DOI: 10.1016/j.ijbiomac.2020.08.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
10
|
Tang Y, Zhang D, Zhang Y, Liu Y, Gong X, Chang Y, Ren B, Zheng J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:8286-8308. [DOI: 10.1021/acsabm.0c01234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
11
|
Paul S, Paul S. In silico study of osmolytic effects of choline-O-sulfate on urea induced unfolding of Trp-cage mini-protein: An atomistic view from replica exchange molecular dynamics simulation. Arch Biochem Biophys 2020; 695:108484. [DOI: 10.1016/j.abb.2020.108484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
|
12
|
The conformational stability of terminal helices of λ-repressor protein in aqueous dodine and choline-O-sulfate solutions. Int J Biol Macromol 2020; 154:1332-1346. [DOI: 10.1016/j.ijbiomac.2019.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
|
13
|
Paul S, Paul S. Molecular dynamics simulation study on the inhibitory effects of choline-O-sulfate on hIAPP protofibrilation. J Comput Chem 2019; 40:1957-1968. [PMID: 31062393 DOI: 10.1002/jcc.25851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes mellitus (T2Dm) is a neurodegenerative disease, which occurs due to the self-association of human islet amyloid polypeptide (hIAPP), also known as human amylin. It was reported experimentally that choline-O-sulfate (COS), a small organic molecule having a tertiary amino group and sulfate group, can prevent the aggregation of human amylin without providing the mechanism of the action of COS in the inhibition process. In this work, we investigate the influence of COS on the full-length hIAPP peptide by performing 500 ns classical molecular dynamics simulations. From pure water simulation (without COS), we have identified the residues 11-20 and 23-36 that mainly participate in the fibril formation, but in the presence of 1.07 M COS these residues become totally free of β-sheet conformation. Our results also show that the sulfate oxygen of COS directly interacts with the peptide backbone, which leads to the local disruption of peptide-peptide interaction. Moreover, the presence of favorable peptide-COS vdW interaction energy and high coordination number of COS molecules in the first solvation shell of the peptide indicates the hydrophobic solvation of the peptide residues by COS molecules, which also play a crucial role in the prevention of β-sheet formation. Finally, from the potential of mean force (PMFs) calculations, we observe that the free energy between two peptides is more negative in the absence of COS and with increasing concentration of COS, it becomes unfavorable significantly indicating that the peptide dimer formation is most stable in pure water, which becomes less favorable in the presence of COS. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
14
|
Paul S, Paul S. Inhibitory Effect of Choline-O-sulfate on Aβ16–22 Peptide Aggregation: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:3475-3489. [DOI: 10.1021/acs.jpcb.9b02727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India 781039
| |
Collapse
|
15
|
Paul S, Paul S. How Does Aqueous Choline-O-Sulfate Solution Nullify the Action of Urea in Protein Denaturation? J Chem Inf Model 2018; 58:1858-1869. [DOI: 10.1021/acs.jcim.8b00395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India−781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India−781039
| |
Collapse
|
16
|
Kuwasako K, Nameki N, Tsuda K, Takahashi M, Sato A, Tochio N, Inoue M, Terada T, Kigawa T, Kobayashi N, Shirouzu M, Ito T, Sakamoto T, Wakamatsu K, Güntert P, Takahashi S, Yokoyama S, Muto Y. Solution structure of the first RNA recognition motif domain of human spliceosomal protein SF3b49 and its mode of interaction with a SF3b145 fragment. Protein Sci 2016; 26:280-291. [PMID: 27862552 PMCID: PMC5275738 DOI: 10.1002/pro.3080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 01/17/2023]
Abstract
The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598–631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1‐α1‐β2‐β3‐α2‐β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607–616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix–helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull‐down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix–helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145. PDB Code(s): 5GVQ
Collapse
Affiliation(s)
- Kanako Kuwasako
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan.,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Nobukazu Nameki
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kengo Tsuda
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Atsuko Sato
- Department of Chemical & Biological Sciences, Japan Women's University, Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Naoya Tochio
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Makoto Inoue
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takanori Kigawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Naohiro Kobayashi
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takuhiro Ito
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Kaori Wakamatsu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Peter Güntert
- Tatsuo Miyazawa Memorial Program, RIKEN Genomic Sciences Center, Yokohama, 230-0045, Japan.,Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute of Advanced Studies, Goethe University Frankfurt, Max-von-Laue-Str, Frankfurt am Main, 60438, Germany
| | - Seizo Takahashi
- Department of Chemical & Biological Sciences, Japan Women's University, Mejirodai, Bunkyo, Tokyo, 112-8681, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yutaka Muto
- Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan.,RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
17
|
Wang H, Hosoda K, Ishii T, Arai R, Kohno T, Terawaki SI, Wakamatsu K. Protein stabilizer, NDSB-195, enhances the dynamics of the β4 -α2 loop of ubiquitin. J Pept Sci 2016; 22:174-80. [PMID: 26856691 DOI: 10.1002/psc.2855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Non-detergent sulfobetaines (NDSBs) are a new group of small, synthetic protein stabilizers, which have advantages over classical compatible osmolytes, such as polyol, amines, and amino acids: they do not increase solution viscosity, unlike polyols, and they are zwitterionic at all pH ranges, unlike amines and amino acids. NDSBs also facilitate the crystallization and refolding of proteins. The mechanism whereby NDSBs exhibit such activities, however, remains elusive. To gain insight into this mechanism, we studied, using nuclear magnetic resonance (NMR), the effects of dimethylethylammonium propane sulfonate (NDSB-195) on the dynamics of ubiquitin, on which a wealth of information has been accumulated. By analyzing the line width of amide proton resonances and the transverse relaxation rates of nitrogen atoms, we found that NDSB-195 enhances the microsecond-millisecond dynamics of a β4 -α2 loop of ubiquitin. Although those compounds that enhance protein dynamics are generally considered to destabilize protein molecules, NDSB-195 enhanced the stability of ubiquitin against guanidium chloride denaturation. Thus, the simultaneous enhancement of stability and flexibility by a single compound can be attained.
Collapse
Affiliation(s)
- Haimei Wang
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kazuo Hosoda
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Takeshi Ishii
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ryo Arai
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Toshiyuki Kohno
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Shin-Ichi Terawaki
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kaori Wakamatsu
- Department of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
18
|
Fortin JS, Benoit-Biancamano MO. In Vitro Evaluation of Hypoglycemic Agents to Target Human Islet Amyloid Polypeptide: A Key Protein Involved in Amyloid Deposition and Beta-Cell Loss. Can J Diabetes 2015; 39:373-82. [DOI: 10.1016/j.jcjd.2015.01.291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 11/26/2022]
|
19
|
Mizukoshi Y, Takeuchi K, Arutaki M, Takizawa T, Hanzawa H, Takahashi H, Shimada I. Suppression of problematic compound oligomerization by cosolubilization of nondetergent sulfobetaines. ChemMedChem 2015; 10:736-41. [PMID: 25760302 PMCID: PMC4471626 DOI: 10.1002/cmdc.201500057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/24/2022]
Abstract
Numerous small organic compounds exist in equilibrium among monomers, soluble oligomers, and insoluble aggregates in aqueous solution. Compound aggregation is a major reason for false positives in drug screening, and even soluble oligomers can interfere with structural and biochemical analyses. However, an efficient way to manage the equilibrium of aggregation-prone compounds, especially those involved with soluble oligomers, has not been established. In this study, solution NMR spectroscopy was used as a suitable technique to detect compound oligomers in equilibrium, and it was demonstrated that cosolubilization of nondetergent sulfobetaines (NDSBs) can largely suppress compound oligomerization and aggregation by shifting the equilibrium toward the monomers. The rotational correlation time was obtained from the ratio of the selective and nonselective longitudinal NMR relaxation times, which directly and quantitatively reflected the apparent sizes of the compounds in the equilibrium. The rotational correlation time of the aggregation-prone compound SKF86002 (1 mM) was substantially reduced from 0.31 to 0.23 ns by cosolubilization of 100 mM NDSB195. NDSB cosolubilization allowed us to perform successful structural and biochemical experiments with substantially fewer artifacts, which represents a strategy to directly resolve the problematic oligomerization and aggregation of compounds.
Collapse
Affiliation(s)
- Yumiko Mizukoshi
- Biomedicinal Information Research Center (BIRC) and Molecular Profiling Research Center (Molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Japan Biological Informatics Consortium (JBIC), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064 (Japan)
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
AbstractAbnormal protein folding and self-assembly causes over 30 cureless human diseases for which no disease-modifying therapies are available. The common side to all these diseases is formation of aberrant toxic protein oligomers and amyloid fibrils. Both types of assemblies are drug targets, yet each presents major challenges to drug design, discovery, and development. In this review, we focus on two small molecules that inhibit formation of toxic amyloid protein assemblies — the green-tea derivative (−)-epigallocatechin-3-gallate (EGCG), which was identified through a combination of epidemiologic data and a compound library screen, and the molecular tweezer CLR01, whose inhibitory activity was discovered in our group based on rational reasoning, and subsequently confirmed experimentally. Both compounds act in a manner that is not specific to one particular protein and thus are useful against a multitude of amyloidogenic proteins, yet they act via distinct putative mechanisms. CLR01 disrupts protein aggregation through specific binding to lysine residues, whereas the mechanisms underlying the activity of EGCG are only recently beginning to unveil. We discuss current in vitro and, where available, in vivo literature related to EGCG and CLR01’s effects on amyloid β-protein, α-synuclein, transthyretin, islet amyloid polypeptide, and calcitonin. We also describe the toxicity, pharmacokinetics, and mechanism of action of each compound.
Collapse
|