1
|
Wang SF, Hung YH, Tsao CH, Chiang CY, Teoh PG, Chiang ML, Lin WH, Hsu DK, Jan HM, Lin HC, Lin CH, Liu FT, Chen HY. Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology 2022; 32:760-777. [PMID: 35789267 DOI: 10.1093/glycob/cwac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Galectin-3 (GAL3) is a β-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsien Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan
| | - Cho-Ying Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pak-Guan Teoh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Lin Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, University of California Davis, California, USA
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| |
Collapse
|
2
|
Yu FH, Huang KJ, Wang CT. Conditional activation of an HIV-1 protease attenuated mutant by a leucine zipper dimerization motif. Virus Res 2020; 295:198258. [PMID: 33316353 DOI: 10.1016/j.virusres.2020.198258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/26/2022]
Abstract
Mature HIV-1 protease (PR) functions as a dimer. Changes in HIV-1 PR activation can block virus assembly via premature or enhanced Gag cleavage. HIV-1 PR precursor contains N terminal-linked p6*, a possible modulating factor in PR activation. We found that p6* replacement with a leucine zipper (LZ) dimerization motif (creating a DWzPR construct) or an LZ insertion at the PR C-terminus significantly reduced virus yields due to enhanced Gag cleavage, suggesting that an LZ insertion promotes PR activation by facilitating PR dimer formation. However, introducing T26S (a PR activity-attenuated mutation) into DWzPR strongly impaired Gag cleavage, except when the native C-terminal p6* tetrapeptide remained at the LZ/PR junction. LZ insertion at the PR C-terminus still strongly enhanced PR T26S Gag cleavage. Our data suggest that in addition to p6* mutations, a single amino acid substitution within PR can impair PR activation, likely due to conformational changes triggered by the PR precursor.
Collapse
Affiliation(s)
- Fu-Hsien Yu
- Department of Medical Research, National Yang-Ming University School of Medicine, Taiwan; Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taiwan
| | - Kuo-Jung Huang
- Department of Medical Research, National Yang-Ming University School of Medicine, Taiwan
| | - Chin-Tien Wang
- Department of Medical Research, National Yang-Ming University School of Medicine, Taiwan; Taipei Veterans General Hospital, Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taiwan.
| |
Collapse
|
3
|
Ning J, Erdemci-Tandogan G, Yufenyuy EL, Wagner J, Himes BA, Zhao G, Aiken C, Zandi R, Zhang P. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat Commun 2016; 7:13689. [PMID: 27958264 PMCID: PMC5159922 DOI: 10.1038/ncomms13689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation. Two competing models—disassembly/reassembly and displacive—have been proposed for how immature spherical HIV virions transform into mature particles with conical cores. Here the authors provide evidence that both disassembly/reassembly and displacive processes occur sequentially during the maturation process.
Collapse
Affiliation(s)
- Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Gonca Erdemci-Tandogan
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Ernest L Yufenyuy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jef Wagner
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | - Christopher Aiken
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, Pennsylvania 15260, USA.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
4
|
Glutamic Acid Residues in HIV-1 p6 Regulate Virus Budding and Membrane Association of Gag. Viruses 2016; 8:117. [PMID: 27120610 PMCID: PMC4848609 DOI: 10.3390/v8040117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 Gag p6 protein regulates the final abscission step of nascent virions from the cell membrane by the action of its two late (l-) domains, which recruit Tsg101 and ALIX, components of the ESCRT system. Even though p6 consists of only 52 amino acids, it is encoded by one of the most polymorphic regions of the HIV-1 gag gene and undergoes various posttranslational modifications including sumoylation, ubiquitination, and phosphorylation. In addition, it mediates the incorporation of the HIV-1 accessory protein Vpr into budding virions. Despite its small size, p6 exhibits an unusually high charge density. In this study, we show that mutation of the conserved glutamic acids within p6 increases the membrane association of Pr55 Gag followed by enhanced polyubiquitination and MHC-I antigen presentation of Gag-derived epitopes, possibly due to prolonged exposure to membrane bound E3 ligases. The replication capacity of the total glutamic acid mutant E0A was almost completely impaired, which was accompanied by defective virus release that could not be rescued by ALIX overexpression. Altogether, our data indicate that the glutamic acids within p6 contribute to the late steps of viral replication and may contribute to the interaction of Gag with the plasma membrane.
Collapse
|