1
|
Vidal-Quist JC, Ortego F, Rombauts S, Hernández-Crespo P. The genome-wide response of Dermatophagoides pteronyssinus to cystatin A, a peptidase inhibitor from human skin, sheds light on its digestive physiology and allergenicity. INSECT MOLECULAR BIOLOGY 2024; 33:662-677. [PMID: 38878274 DOI: 10.1111/imb.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/19/2024] [Indexed: 11/06/2024]
Abstract
The digestive physiology of house dust mites (HDMs) is particularly relevant for their allergenicity since many of their allergens participate in digestion and are excreted into faecal pellets, a main source of exposure for allergic subjects. To gain insight into the mite dietary digestion, the genome of the HDM Dermatophagoides pteronyssinus was screened for genes encoding peptidases (n = 320), glycosylases (n = 77), lipases and esterases (n = 320), peptidase inhibitors (n = 65) and allergen-related proteins (n = 52). Basal gene expression and transcriptional responses of mites to dietary cystatin A, a cysteine endopeptidase inhibitor with previously shown antinutritional effect on mites, were analysed by RNAseq. The ingestion of cystatin A resulted in significant regulation of different cysteine endopeptidase and glycosylase genes. One Der p 1-like and two cathepsin B-like cysteine endopeptidase genes of high basal expression were induced, which suggests their prominent role in proteolytic digestion together with major allergen Der p 1. A number of genes putatively participating in the interaction of mites with their microbiota and acquired by horizontal gene transfer were repressed, including genes encoding the peptidase Der p 38, two 1,3-beta-glucanases, a lysozyme and a GH19 chitinase. Finally, the disruption of mite digestion resulted in the regulation of up to 17 allergen and isoallergen genes. Altogether, our results shed light on the putative role of specific genes in digestion and illustrate the connection between the digestive physiology of HDM and allergy.
Collapse
Affiliation(s)
- José Cristian Vidal-Quist
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Félix Ortego
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Stephane Rombauts
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Pedro Hernández-Crespo
- Entomología Aplicada a la Agricultura y la Salud, Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| |
Collapse
|
2
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Xiong Q, Wan ATY, Liu X, Fung CSH, Xiao X, Malainual N, Hou J, Wang L, Wang M, Yang KY, Cui Y, Leung ELH, Nong W, Shin SK, Au SWN, Jeong KY, Chew FT, Hui JHL, Leung TF, Tungtrongchitr A, Zhong N, Liu Z, Tsui SKW. Comparative Genomics Reveals Insights into the Divergent Evolution of Astigmatic Mites and Household Pest Adaptations. Mol Biol Evol 2022; 39:6582989. [PMID: 35535514 PMCID: PMC9113151 DOI: 10.1093/molbev/msac097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1–2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.
Collapse
Affiliation(s)
- Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Angel Tsz-Yau Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoyu Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Cathy Sin-Hang Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiaojun Xiao
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Nat Malainual
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jinpao Hou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mingqiang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Kevin Yi Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | - Yubao Cui
- Department of Clinical Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Elaine Lai-Han Leung
- Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Soo-Kyung Shin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | - Kyoung Yong Jeong
- Institute of Allergy, Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, Korea
| | - Fook-Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jerome Ho-Lam Hui
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ting-Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhigang Liu
- Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
4
|
Ait Yahia S, Audousset C, Alvarez-Simon D, Vorng H, Togbe D, Marquillies P, Delacre M, Rose S, Bouscayrol H, Rifflet A, Quesniaux V, Boneca IG, Chamaillard M, Tsicopoulos A. NOD1 sensing of house dust mite-derived microbiota promotes allergic experimental asthma. J Allergy Clin Immunol 2021; 148:394-406. [PMID: 33508265 DOI: 10.1016/j.jaci.2020.12.649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asthma severity has been linked to exposure to gram-negative bacteria from the environment that are recognized by NOD1 receptor and are present in house dust mite (HDM) extracts. NOD1 polymorphism has been associated with asthma. OBJECTIVE We sought to evaluate whether either host or HDM-derived microbiota may contribute to NOD1-dependent disease severity. METHODS A model of HDM-induced experimental asthma was used and the effect of NOD1 deficiency was evaluated. Contribution of host microbiota was evaluated by fecal transplantation. Contribution of HDM-derived microbiota was assessed by 16S ribosomal RNA sequencing, mass spectrometry analysis, and peptidoglycan depletion of the extracts. RESULTS In this model, loss of the bacterial sensor NOD1 and its adaptor RIPK2 improved asthma features. Such inhibitory effect was not related to dysbiosis caused by NOD1 deficiency, as shown by fecal transplantation of Nod1-deficient microbiota to wild-type germ-free mice. The 16S ribosomal RNA gene sequencing and mass spectrometry analysis of HDM allergen, revealed the presence of some muropeptides from gram-negative bacteria that belong to the Bartonellaceae family. While such HDM-associated muropeptides were found to activate NOD1 signaling in epithelial cells, peptidoglycan-depleted HDM had a decreased ability to instigate asthma in vivo. CONCLUSIONS These data show that NOD1-dependent sensing of HDM-associated gram-negative bacteria aggravates the severity of experimental asthma, suggesting that inhibiting the NOD1 signaling pathway may be a therapeutic approach to treating asthma.
Collapse
Affiliation(s)
- Saliha Ait Yahia
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Camille Audousset
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Daniel Alvarez-Simon
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Han Vorng
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Philippe Marquillies
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Myriam Delacre
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Stéphanie Rose
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Hélène Bouscayrol
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001, Paris, France; Institut National de la Santé et de la Recherche Médicale, Équipe Avenir, Paris, France
| | - Valérie Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics, UMR 7355 CNRS-Universitaire of Orléans, Orléans, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; CNRS, UMR 2001, Paris, France; Institut National de la Santé et de la Recherche Médicale, Équipe Avenir, Paris, France
| | - Mathias Chamaillard
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- University of Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-Unite Mixte de Recherche (UMR) 9017-Centre d'Infection et d'Immunité de Lille, Lille, France.
| |
Collapse
|
5
|
Molva V, Bostlova M, Nesvorna M, Hubert J. Do the microorganisms from laboratory culture spent growth medium affect house dust mite fitness and microbiome composition? INSECT SCIENCE 2020; 27:266-275. [PMID: 30102013 DOI: 10.1111/1744-7917.12636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 05/09/2023]
Abstract
The interaction of house dust mites (HDM) and microorganisms is the key factor in the survival of these mites in human-made environments. Spent growth medium (SPGM) provides the rest of the diet, along with dead mite bodies and microorganisms. SPGM represents a source of microorganisms for the recolonization of mite food and the mite digestive tract. An experiment was performed to observe how adding SPGM to the HDM diet affects HDM population growth, the microbiome composition and the microbial respiration in microcosms. We analyzed American house dust mite (Dermatophagoides farinae) and European house dust mite (Dermatophagoides pteronyssinus) originating from control diets and diets treated with an extract of SPGM from 1- and 3-month-old mite cultures. The microbiome was described using 16S and 18S barcode sequencing. The composition of the bacterial and fungal microbiomes differed between the HDM species, but the SPGM treatment influenced only the bacterial profile of D. farinae. In the D. farinae microbiome of specimens on SPGM-treated diets compared to those of the control situation, the Lactobacillus profile decreased, while the Cardinium, Staphylococcus, Acinetobacter, and Sphingomonas profiles increased. The addition of SPGM extract decreased the microbial respiration in the microcosms with and without mites in almost all cases. Adding SPGM did not influence the population growth of D. farinae, but it had a variable effect on D. pteronyssinus. The results indicated that the HDM are marginally influenced by the microorganisms in their feces.
Collapse
Affiliation(s)
- Vit Molva
- Crop Research Institute, Prague 6-Ruzyne, Czechia
- Faculty of Science, Department of Parasitology, Charles University, Prague 2, Czechia
| | | | | | - Jan Hubert
- Crop Research Institute, Prague 6-Ruzyne, Czechia
| |
Collapse
|
6
|
Klimov P, Molva V, Nesvorna M, Pekar S, Shcherbachenko E, Erban T, Hubert J. Dynamics of the microbial community during growth of the house dust mite Dermatophagoides farinae in culture. FEMS Microbiol Ecol 2019; 95:5581497. [DOI: 10.1093/femsec/fiz153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
ABSTRACTThe variation in house dust mite microbial communities is important because various microorganisms modulate the production of allergens by their mite hosts and/or contaminate immunotherapeutic extracts. Temporal changes in mite microbiomes and the mite culture environment occurring at different stages of mite culture development are particularly understudied in this system. Here, we analyzed the dynamics of microbial communities during the culture growth of Dermatophagoides farinae. Changes in microbiomes were related to three key variables: the mite population density, microbial microcosm respiration and concentration of guanine (the mite nitrogenous waste metabolite). Mite populations exhibited the following phases: exponential growth, plateau and exponential decline. The intracellular bacterium Cardinium and the yeast Saccharomyces cerevisiae prevailed in the internal mite microbiomes, and the bacterium Lactobacillus fermentum was prevalent in the mite diet. The reduction in the mite population size during the late phases of culture development was related to the changes in their microbial profiles: the intracellular bacterium Cardinium was replaced by Staphylococcus, Oceanobacillus and Virgibacillus, and S. cerevisiae was replaced by the antagonistic fungi Aspergillus penicillioides and Candida. Increases in the guanine content were positively correlated with increases in the Staphylococcus and A. penicillioides profiles in the culture environment. Our results show that the mite microbiome exhibits strong, dynamic alterations in its profiles across different mite culture growth stages.
Collapse
Affiliation(s)
- Pavel Klimov
- Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, Ann Arbor, MI 48109, USA
- Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| | - Vit Molva
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 1594/7, CZ-12800 Prague 2, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 267/2, CZ-61137 Brno, Czechia
| | | | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, CZ-16106 Prague 6-Ruzyne, Czechia
| |
Collapse
|
7
|
Tang VH, Stewart GA, Chang BJ. Dermatophagoides pteronyssinus lytFM encoding an NlpC/P60 endopeptidase is also present in mite-associated bacteria that express LytFM variants. FEBS Open Bio 2017; 7:1267-1280. [PMID: 28904857 PMCID: PMC5586350 DOI: 10.1002/2211-5463.12263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 12/25/2022] Open
Abstract
The bodies and faecal pellets of the house dust mite (HDM), Dermatophagoides pteronyssinus, are the source of many allergenic and nonallergenic proteins. One of these, the 14-kDa bacteriolytic enzyme LytFM, originally isolated from the spent HDM growth medium, may contribute to bacteriolytic activity previously detected by zymography at 14 kDa in the culture supernatants of some bacterial species isolated from surface-sterilised HDM. Based on previously reported findings of lateral gene transfer between microbes and their eukaryotic hosts, we investigated the presence of lytFM in the genomes of nine Gram-positive bacteria from surface-sterilised HDM, and the expression by these isolates of LytFM and its variants LytFM1/LytFM2. The lytFM gene was detected by PCR in the genomes of three of the isolates: Bacillus licheniformis strain 1, B. licheniformis strain 2 and Staphylococcus aureus. Expression of the variant LytFM1 was detected in culture supernatants of these bacteria by mass spectrometry (MS) and ELISA, and the bacterial LytFM proteins were shown by zymography to be able to hydrolyse peptidoglycan. Our previous reports of LytFM homologues in other mite species and their phylogenetic analysis had suggested that they originated from a common mite ancestor. The phylogenetic analysis reported herein and the detection of other D. pteronyssinus proteins by MS in the culture supernatants of the three isolates that secreted LytFM1 further support the hypothesis of lateral gene transfer to the bacterial endosymbionts from their HDM host. The complete sequence homology observed between the genes amplified from the microbes and those in their eukaryotic host indicated that the lateral gene transfer was an event that occurred recently.
Collapse
Affiliation(s)
- Vivian H Tang
- Marshall Centre for Infectious Diseases Research and Training School of Biomedical Sciences The University of Western Australia Crawley WA Australia
| | - Geoffrey A Stewart
- Marshall Centre for Infectious Diseases Research and Training School of Biomedical Sciences The University of Western Australia Crawley WA Australia
| | - Barbara J Chang
- Marshall Centre for Infectious Diseases Research and Training School of Biomedical Sciences The University of Western Australia Crawley WA Australia
| |
Collapse
|
8
|
Erban T, Harant K, Hubert J. Detailed two-dimensional gel proteomic mapping of the feces of the house dust mite Dermatophagoides pteronyssinus and comparison with D. farinae: Reduced trypsin protease content in D. pteronyssinus and different isoforms. J Proteomics 2017; 162:11-19. [PMID: 28442447 DOI: 10.1016/j.jprot.2017.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Major domestic mite allergens are present in feces. We present a detailed 2D-E-MS/MS proteomic analysis of the Dermatophagoides pteronyssinus feces. Precise cultivation yielded a pure fecal extract. We detected differences in fecal allergens/digestive enzymes between D. pteronyssinus and D. farinae using 2D-E fingerprinting, including unique information on species-specific protease isoforms. Proteomic analysis was performed by 2D-E coupled with MALDI-TOF/TOF identification. The species-specific differences in the fecal extracts of the mites were attributed to trypsin-like proteases known as group 3 allergens. In D. farinae, Der f 3 exhibited high abundance with a pI similar (acidic) to that of the cysteine protease Der f 1 and the chymotrypsin protease Der f 6, whereas in D. pteronyssinus, Der p 3 was rarely detected and exhibited low abundance only at basic pI. Moreover, Der p 9 was detected at a pI of ~ 10, in contrast to Der p 1 and Der p 6, suggesting different compartmentalization in the body. Overall, in D. pteronyssinus feces, allergens of groups 1, 2, 6, and 15 were quantitatively similar to those of D. farinae with the exception of the group 3 and 9 allergens. This work provides novel insights into mite-defecated proteins/digestive enzymes, which are important allergens. SIGNIFICANCE Millions of people are affected by allergy and asthma, and their number is growing. In homes, the major triggers of allergy and asthma are the house dust mites Dermatophagoides farinae and D. pteronyssinus, and a clear understanding of the development of diseases caused by these mites is needed. The major sources of mite allergens are their feces, which are deposited in the environment and are easily inhaled as part of aeroplankton. However, descriptions of and comparisons between the major fecal allergens of these two mites are lacking. This study shows that similar group 1 (cysteine protease), 2 (NPC2 family), 6 (chymotrypsin) and 15 (chitinase-like) allergens are present in the feces of these two mite species, as determined by 2D-E mapping, whereas group 3 (trypsin) and 9 (collagenolytic protease) allergens in the feces of the two species are different. The results provide unique MS/MS mapped fingerprints of mite species-specific isoforms in feces. The presence of ubiquitin in mite feces suggests that these proteins participate in the post-translational modification of fecal proteins. The findings are essential for understanding differences between D. farinae and D. pteronyssinus with respect to immunoreactivity, protease activation mechanisms, association with microbes, and food utilization.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, Czechia.
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, Czechia
| |
Collapse
|