1
|
Li Y, He W, Liu S, Hu X, He Y, Song X, Yin J, Nie S, Xie M. Innovative omics strategies in fermented fruits and vegetables: Unveiling nutritional profiles, microbial diversity, and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e70030. [PMID: 39379298 DOI: 10.1111/1541-4337.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Fermented fruits and vegetables (FFVs) are not only rich in essential nutrients but also contain distinctive flavors, prebiotics, and metabolites. Although omics techniques have gained widespread recognition as an analytical strategy for FFVs, its application still encounters several challenges due to the intricacies of biological systems. This review systematically summarizes the advances, obstacles and prospects of genomics, transcriptomics, proteomics, metabolomics, and multi-omics strategies in FFVs. It is evident that beyond traditional applications, such as the exploration of microbial diversity, protein expression, and metabolic pathways, omics techniques exhibit innovative potential in deciphering stress response mechanisms and uncovering spoilage microorganisms. The adoption of multi-omics strategies is paramount to acquire a multidimensional network fusion, thereby mitigating the limitations of single omics strategies. Although substantial progress has been made, this review underscores the necessity for a comprehensive repository of omics data and the establishment of universal databases to ensure precision in predictions. Furthermore, multidisciplinary integration with other physical or biochemical approaches is imperative, as it enriches our comprehension of this intricate process.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yuxing He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Fan Y, Yang X, Hu C, Wei B, Xu F, Guo Q. Fermentation Performance Evaluation of Lactic Acid Bacteria Strains for Sichuan Radish Paocai Production. Foods 2024; 13:1813. [PMID: 38928755 PMCID: PMC11202693 DOI: 10.3390/foods13121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fermented vegetable products play a significant role in various cuisines, and understanding the fermentation dynamics of lactic acid bacteria (LAB) strains is essential for optimizing their production and quality. Here, we sought to investigate the fermentation performance of five LAB strains isolated from Sichuan paocai as starters for paocai. Sensory evaluation revealed that the inoculation of radish paocai samples with LAB strains effectively improved the overall liking and sensory satisfaction of participants, increasing the scores to varying degrees in terms of taste, flavor, texture, and coloration. Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus exhibited a good salt resistance in radish juice and could grow in a medium containing 10% NaCl. Four indicator strains commonly found in contaminated paocai were effectively inhibited by fermented LAB broths, which improved the edibility and safe production of paocai. Compared to spontaneous fermentation (CK), radish paocai inoculated with LAB showed a significantly accelerated acid production rate, shortening the fermentation period by approximately two days. The contents of titratable total acids, organic acids, and free amino acids were higher in the inoculated samples and were enriched in the taste of radish paocai. The content of volatile organic compounds in the inoculated samples was higher than that in CK. Based on OPLS-DA analysis, 31 key indicators of paocai quality were screened and used to rank the fermentation performances of the five strains using the TOPSIS method; here, Lpb. plantarum and Lcb. rhamnosus achieved the highest scores. This study provides a reference for selecting LAB strains as efficient and secure fermentation starters to optimize paocai quality.
Collapse
Affiliation(s)
- Yiwen Fan
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Xu Yang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Cihai Hu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Banghong Wei
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| | - Fei Xu
- School of Healthy Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.F.); (C.H.)
- Shanghai Engineering Research Center of Food Rapid Detection, Shanghai 200093, China
| | - Quanyou Guo
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai 200093, China; (X.Y.); (B.W.)
| |
Collapse
|
3
|
NISHIMURA H, SHIWA Y, TOMITA S, ENDO A. Microbial composition and metabolic profiles during machine-controlled intra-factory fermentation of cocoa beans harvested in semitropical area of Japan. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:29-42. [PMID: 38188660 PMCID: PMC10767318 DOI: 10.12938/bmfh.2023-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/13/2023] [Indexed: 01/09/2024]
Abstract
Cocoa bean fermentation is typically performed in a spontaneous manner on farms in tropical countries or areas and involves several microbial groups. Metabolism by microbes markedly affects the quality of cocoa beans fermented and the chocolate produced thereof. The present study characterized the microbiota and their metabolic profiles in temperature- and humidity-controlled intra-factory cocoa fermentation in a semitropical area of Japan. Although environmental factors were uniform, the microbiota of cocoa beans subjected to intra-factory fermentation was not stable between tests, particularly in terms of the cell count levels and species observed. Fermentation was sometimes delayed, and fermenting microbes were present at very low levels after 24 hr of fermentation. Due to the unstable microbiota, the profiles of water-soluble compounds differed between tests, indicating the unstable qualities of the fermented cocoa beans. These results suggest the necessity of starter cultures not only in on-farm fermentation but also in machine-controlled intra-factory cocoa fermentation.
Collapse
Affiliation(s)
- Hiroya NISHIMURA
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of
Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 099-2493,
Japan
| | - Yuh SHIWA
- Department of Molecular Microbiology, Faculty of Life
Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502,
Japan
- NODAI Genome Research Centre, Tokyo University of
Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Satoru TOMITA
- Institute of Food Research, National Agriculture and Food
Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Akihito ENDO
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of
Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 099-2493,
Japan
- Department of Nutritional Science and Food Safety, Faculty of
Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo
156-8502, Japan
| |
Collapse
|
4
|
Regulation of the nitrite, biogenic amine and flavor quality of Cantonese pickle by selected lactic acid bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Yang Z, Zhu X, Wen A, Qin L. Development of probiotics beverage using cereal enzymatic hydrolysate fermented with Limosilactobacillus reuteri. Food Sci Nutr 2022; 10:3143-3153. [PMID: 36171765 PMCID: PMC9469843 DOI: 10.1002/fsn3.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Although most probiotic products are milk based, lactose intolerance and vegetarianism inspired the idea of developing nondairy probiotic products. In this study, probiotic beverages were produced from four enzymatically hydrolyzed cereal substrates (coix seed, quinoa, millet, and brown rice) and fermented by Limosilactobacillus reuteri. Fermentation parameters, including pH, titratable acidity, viable count, organic acids, and volatile components were determined. Results showed that the pH values decreased and titratable acidity increased with the fermentation process (p < .05). Although the final pH in all samples was below 4.0, the growth of L. reuteri was not significantly inhibited by low pH. The number of viable bacteria (12.96 log CFU/ml) in coix seed substrate was significantly higher than that in other samples after the fermentation for 24 h (p < .05). Lactic acid and acetic acid were the main organic acids after fermentation and the highest in quinoa (lactic acid: 7.58 mg/ml; acetic acid: 2.23 mg/ml). The flavor analysis indicated that there were differences in the flavor components of different cereal beverages. Forty-nine volatile compounds were identified in four beverages, including acids, alcohols, aldehydes, ketones, and esters. The results of the electronic tongue showed that the umami taste of the fermented coix seed was better than that of other samples, displaying the more pleasant taste characteristics. In conclusion, it is feasible to prepare probiotic symbiotic cereal beverage with L. reuteri as starter culture. This study provides a reference for the development of nondairy probiotic products.
Collapse
Affiliation(s)
- Zhoujie Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education)College of Life Sciences/Institute of Agro‐bioengineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Xiaoli Zhu
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Anyan Wen
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| | - Likang Qin
- School of Liquor and Food EngineeringGuizhou UniversityGuiyangGuizhou ProvinceChina
| |
Collapse
|
6
|
Flavour Generation during Lactic Acid Fermentation of Brassica Vegetables—Literature Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermentation is a method of food preservation that has been used for centuries. Lactic acid fermentation, apart from extending the shelf-life of vegetables, affects significantly the flavour of food products. In this review, the formation of flavour, including both taste and aroma, in fermented Brassica vegetables is summarized. The flavour-active compounds are generated in various metabolic pathways from many precursors present in raw materials used for fermentation. In Brassica vegetables, a unique group of chemicals, namely glucosinolates, is present, which significantly influence the flavour of fermented products. In this summary, we took a closer look at the flavour of two of the most commonly eaten worldwide fermented Brassica products, which are sauerkraut and kimchi. Finally, the needs and directions for future studies were addressed.
Collapse
|
7
|
Gao Y, Hou L, Gao J, Li D, Tian Z, Fan B, Wang F, Li S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021; 10:2294. [PMID: 34681343 PMCID: PMC8534989 DOI: 10.3390/foods10102294] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Jie Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| |
Collapse
|