1
|
Knol MGE, Wulfmeyer VC, Müller RU, Rinschen MM. Amino acid metabolism in kidney health and disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00872-8. [PMID: 39198707 DOI: 10.1038/s41581-024-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/01/2024]
Abstract
Amino acids form peptides and proteins and are therefore considered the main building blocks of life. The kidney has an important but under-appreciated role in the synthesis, degradation, filtration, reabsorption and excretion of amino acids, acting to retain useful metabolites while excreting potentially harmful and waste products from amino acid metabolism. A complex network of kidney transporters and enzymes guides these processes and moderates the competing concentrations of various metabolites and amino acid products. Kidney amino acid metabolism contributes to gluconeogenesis, nitrogen clearance, acid-base metabolism and provision of fuel for tricarboxylic acid cycle and urea cycle intermediates, and is thus a central hub for homeostasis. Conversely, kidney disease affects the levels and metabolism of a variety of amino acids. Here, we review the metabolic role of the kidney in amino acid metabolism and describe how different diseases of the kidney lead to aberrations in amino acid metabolism. Improved understanding of the metabolic and communication routes that are affected by disease could provide new mechanistic insights into the pathogenesis of kidney diseases and potentially enable targeted dietary or pharmacological interventions.
Collapse
Affiliation(s)
- Martine G E Knol
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Murashevych B, Bilenkyi G, Girenko D, Bilenkyi E. N-Chlorotaurine Solutions as Agents for Infusion Detoxification Therapy: Preclinical Studies. Int J Mol Sci 2024; 25:8345. [PMID: 39125912 PMCID: PMC11313245 DOI: 10.3390/ijms25158345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
N-chlorotaurine (NCT) is a broad-spectrum antimicrobial agent with outstanding tolerability, effective for topical and inhalation use. This paper presents the results of studies of single and repeated intravenous infusions of NCT to laboratory animals. The studies were conducted on female Wistar Han rats. The effect of NCT infusions on the general condition, behavioral reactions, main biochemical and hematological parameters, hemocoagulation system, cardiovascular system, and on the condition of the internal organs was studied. It was found that NCT infusions do not reveal deviations in the studied parameters that could indicate a toxic effect. The estimated LD50 is more than 80 mg/kg. In a subchronic experiment, a statistically significant decrease in cholesterol (by up to 11%), glucose (by up to 15%) and excess bases (up to four times) in the blood, and an increase in heart rate (by up to 31%) and frequency of defecations (by up to 35%), as well as pronounced antiplatelet effect, were found. In animals with simulated endotoxicosis, a decrease in the cytolysis and oxidative stress markers was observed. Such effects are caused by both chlorine-active compounds and taurine.The results obtained indicate broad prospects for the use of NCT solutions as an infusion detoxifying agent.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Gennadii Bilenkyi
- Clinical Hospital of Emergency Medical Care of the Dnipro City Council, 65 Volodymyra Antonovycha Str., 49000 Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, 8 Gagarina Ave., 49005 Dnipro, Ukraine;
| | - Emil Bilenkyi
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, 49044 Dnipro, Ukraine
| |
Collapse
|
3
|
Alkahtani A, Grootveld M, Bhogadia M, Baysan A. Exploring Salivary Metabolic Alterations in Type 2 Diabetes: Implications for Dental Caries and Potential Influences of HbA1c and Vitamin D Levels. Metabolites 2024; 14:372. [PMID: 39057695 PMCID: PMC11279097 DOI: 10.3390/metabo14070372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus is considered to be the most common health issue affecting almost 1 in 11 adults globally. Oral health complications including xerostomia, periodontal disease, dental caries, and soft tissue lesions are prevalent among individuals with diabetes, and therefore an understanding of the potential association between salivary metabolites and dental caries progression would enable the early detection and prevention of this non-communicable disease. Therefore, the aim of this study was to compare salivary biomarkers between individuals with type 2 diabetes (T2DM) with those without this disorder (ND) using 1H NMR-based metabolomics strategies. The objectives were to identify T2DM-associated biomarker signatures and their potential impact on dental caries. In addition, HbA1c and vitamin D levels were also analysed for this purpose. METHODS Stimulated whole-mouth saliva (SWS) samples were collected from T2DM and ND (n = 30 in each case) participants randomly selected from a group of 128 participants recruited for this case-control study. All participants were advised to refrain from eating, drinking, and smoking for at least 1-2 h prior to sample collection. Following preparation, SWS supernatants underwent 1H NMR analysis at an operating frequency of 800 MHz, and the dataset acquired was analysed using a range of multivariate metabolomics techniques. RESULTS Metabolomics analysis of data acquired demonstrated that, together with up- and downregulated blood HbA1c and vitamin D levels, key salivary discriminators between these two classifications included lactate, taurine, creatinine, α-glucose, and formate to a lesser extent. The bacterial catabolites lactate and formate were both significantly upregulated in the T2DM group, and these have previously been implicated in the pathogenesis of dental caries. Significance analysis of metabolites (SAM)-facilitated AUROC analysis yielded an 83% accuracy for this distinction. CONCLUSION In conclusion, this study highlights the significant differences in salivary metabolites between individuals with T2DM and healthy controls. Such differences appear to be related to the development and progression of dental caries in T2DM patients.
Collapse
Affiliation(s)
- Ashwaq Alkahtani
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
| | - Martin Grootveld
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (M.B.); (M.G.)
| | - Mohammed Bhogadia
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (M.B.); (M.G.)
| | - Aylin Baysan
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
| |
Collapse
|
4
|
Miguel-Albarreal AD, Rivero-Pino F, Marquez-Paradas E, Grao-Cruces E, Gonzalez-de la Rosa T, Montserrat-de la Paz S. Mediterranean Diet Combined with Regular Aerobic Exercise and Hemp Protein Supplementation Modulates Plasma Circulating Amino Acids and Improves the Health Status of Overweight Individuals. Nutrients 2024; 16:1594. [PMID: 38892526 PMCID: PMC11174559 DOI: 10.3390/nu16111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Plant protein is considered a sustainable health-promoting strategy to prevent metabolic syndrome. Lifestyle changes (including dietary patterns and exercise) have been demonstrated to exert an effect on human health by modulating the biochemical status in humans. The objective of this study was to assess whether supplementation with hemp protein within a Mediterranean diet context together with exercise could help to ameliorate the metabolic statuses of patients prone to developing metabolic syndrome. For this study, 23 patients followed with Mediterranean diet and engaged in aerobic exercise according to the WHO's recommendations, while also being supplemented with hemp protein, for 12 weeks. A comparison of anthropometric, biochemical, and mineral data as well as amino acid values was made between the start and the end of the study, with the subjects acting as their own control group. Statistical analyses included a paired t-test, Wilcoxon paired test, Pearson correlation coefficient, and Sparse Partial Least Squares Discriminant Analysis to evaluate significant differences and correlations among parameters. There were statistically significant changes in total cholesterol, HDL-C (+52.3%), LDL-C (-54.0%), and TAG levels (-49.8%), but not in glucose plasma levels. Following the intervention, plasma concentrations of some amino acids, including α-aminoadipic acid, phosphoethanolamine, and 1-metylhistidine, increased, whereas those of asparagine and alanine declined. Different correlations between amino acids and the other parameters evaluated were reported and discussed. A Mediterranean diet combined with regular aerobic exercise, together with protein supplementation, can highly improve the metabolic parameters and anthropometric parameters of subjects with obesity and impaired glucose levels, ameliorating their health status and likely delaying the development of metabolic syndrome.
Collapse
Affiliation(s)
- Antonio D. Miguel-Albarreal
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.D.M.-A.); (E.M.-P.); (E.G.-C.); (T.G.-d.l.R.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain
| |
Collapse
|
5
|
Ho KM, Lee A, Wu W, Chan MT, Ling L, Lipman J, Roberts J, Litton E, Joynt GM, Wong M. Flattening the biological age curve by improving metabolic health: to taurine or not to taurine, that' s the question. J Geriatr Cardiol 2023; 20:813-823. [PMID: 38098466 PMCID: PMC10716614 DOI: 10.26599/1671-5411.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The aging population is an important issue around the world especially in developed countries. Although medical advances have substantially extended life span, the same cannot be said for the duration of health span. We are seeing increasing numbers of elderly people who are frail and/or have multiple chronic conditions; all of these can affect the quality of life of the elderly population as well as increase the burden on the healthcare system. Aging is mechanistically related to common medical conditions such as diabetes mellitus, ischemic heart disease, cognitive decline, and frailty. A recently accepted concept termed 'Accelerated Biological Aging' can be diagnosed when a person's biological age-as measured by biomarkers of DNA methylation-is older than their corresponding chronological age. Taurine, a conditionally essential amino acid, has received much attention in the past few years. A substantial number of animal studies have provided a strong scientific foundation suggesting that this amino acid can improve cellular and metabolic health, including blood glucose control, so much that it has been labelled one of the 'longevity amino acids'. In this review article, we propose the rationale that an adequately powered randomized-controlled-trial (RCT) is needed to confirm whether taurine can meaningfully improve metabolic and microbiome health, and biological age. This trial should incorporate certain elements in order to provide the much-needed evidence to guide doctors, and also the community at large, to determine whether this promising and inexpensive amino acid is useful in improving human metabolic health.
Collapse
Affiliation(s)
- Kwok M. Ho
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- School of Veterinary & Life Sciences, Murdoch University, Perth, Australia
| | - Anna Lee
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - William Wu
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Lowell Ling
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jeffrey Lipman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Jason Roberts
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Edward Litton
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Gavin M. Joynt
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Martin Wong
- JC School of Public Health and Primary Care, Centre for Health Education and Health Promotion, Chinese University of Hong Kong, Hong Kong, China
- School of Public Health, Peking University, Beijing, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Cerf ME. Maternal and Child Health, Non-Communicable Diseases and Metabolites. Metabolites 2023; 13:756. [PMID: 37367913 DOI: 10.3390/metabo13060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Mothers influence the health and disease trajectories of their children, particularly during the critical developmental windows of fetal and neonatal life reflecting the gestational-fetal and lactational-neonatal phases. As children grow and develop, they are exposed to various stimuli and insults, such as metabolites, that shape their physiology and metabolism to impact their health. Non-communicable diseases, such as diabetes, cardiovascular disease, cancer and mental illness, have high global prevalence and are increasing in incidence. Non-communicable diseases often overlap with maternal and child health. The maternal milieu shapes progeny outcomes, and some diseases, such as gestational diabetes and preeclampsia, have gestational origins. Metabolite aberrations occur from diets and physiological changes. Differential metabolite profiles can predict the onset of non-communicable diseases and therefore inform prevention and/or better treatment. In mothers and children, understanding the metabolite influence on health and disease can provide insights for maintaining maternal physiology and sustaining optimal progeny health over the life course. The role and interplay of metabolites on physiological systems and signaling pathways in shaping health and disease present opportunities for biomarker discovery and identifying novel therapeutic agents, particularly in the context of maternal and child health, and non-communicable diseases.
Collapse
Affiliation(s)
- Marlon E Cerf
- Grants, Innovation and Product Development, South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
7
|
Impact of Diet Composition on Insulin Resistance. Nutrients 2022; 14:nu14183716. [PMID: 36145093 PMCID: PMC9505491 DOI: 10.3390/nu14183716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
|
8
|
Liu Y, Zhang C, Kong Y, Liu H, Guo J, Yang H, Deng L. Modification of Collagen Film via Surface Grafting of Taurine Molecular to Promote Corneal Nerve Repair and Epithelization Process. J Funct Biomater 2022; 13:jfb13030098. [PMID: 35893466 PMCID: PMC9326765 DOI: 10.3390/jfb13030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Corneal defects can seriously affect human vision, and keratoplasty is the most widely accepted therapy method for visual rehabilitation. Currently, effective treatment for clinical patients has been restricted due to a serious shortage of donated cornea tissue and high-quality artificial repair materials. As the predominant component of cornea tissue, collagen-based materials have promising applications for corneal repair. However, the corneal nerve repair and epithelization process after corneal transplantation must be improved. This research proposes a new collagen-based scaffold with good biocompatibility and biological functionality enhanced by surface chemical grafting of natural taurine molecular. The chemical composition of collagen-taurine (Col-Tau) material is evaluated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and its hydrophilic properties, light transmittance, swelling performance and mechanical tensile properties have been measured. The research results indicate that the Col-Tau sample has high transmittance and good mechanical properties, and exhibits excellent capacity to promote corneal nerve cell growth and the epithelization process of corneal epithelial cells. This novel Col-Tau material, which can be easily prepared at a low cost, should have significant application potential for the treating corneal disease in the future.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China; (C.Z.); (Y.K.); (H.L.); (J.G.)
- Correspondence: (Y.L.); (H.Y.); (L.D.)
| | - Chuanlei Zhang
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China; (C.Z.); (Y.K.); (H.L.); (J.G.)
| | - Yanhui Kong
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China; (C.Z.); (Y.K.); (H.L.); (J.G.)
| | - Huiyu Liu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China; (C.Z.); (Y.K.); (H.L.); (J.G.)
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China; (C.Z.); (Y.K.); (H.L.); (J.G.)
| | - Hui Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (H.Y.); (L.D.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China; (C.Z.); (Y.K.); (H.L.); (J.G.)
- Correspondence: (Y.L.); (H.Y.); (L.D.)
| |
Collapse
|