1
|
Aktaş H, Custodio-Mendoza J, Szpicer A, Pokorski P, Samborska K, Kurek MA. Polysaccharide-potato protein coacervates for enhanced anthocyanin bioavailability and stability. Int J Biol Macromol 2024; 282:136829. [PMID: 39490469 DOI: 10.1016/j.ijbiomac.2024.136829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Anthocyanins (ACNs) possess strong antioxidants, anti-cancer, anti-obesity, anti-diabetic, and anti-inflammatory properties but are limited use by their susceptibility to environmental factors. This study aims to overcome these limitations by developing and assessing a novel coacervate system, consisting of potato protein isolate (PPI) combined with various polysaccharides, to stabilize and encapsulate anthocyanins from black carrot concentrate The polysaccharides included in this system include inulin, gum Arabic, guar gum, pectin, and soluble fiber. The coacervate system's effectiveness in maintaining stability and increasing the bioavailability of anthocyanins was evaluated compared to conventional soybean protein-based systems. The results show that pH considerably influences potato protein solubility, with maximum solubility at strongly acidic (pH 2) conditions. Hygroscopicity and moisture content analysis of the coacervates showed significant variations, with potato protein-guar gum (PPIGG) microcapsules having the lowest moisture content and potato protein gum Arabic (PPIGA) microcapsules having the highest moisture content. SEM imaging illustrated distinct microcapsule morphologies, while FT-IR measurement verified the successful integration of proteins and polysaccharides. The significance of the research reflects its proof that potato protein isolate (PPI) based coacervate systems consists of potato protein with polysaccharides, particularly those containing gum Arabic and pectin, have significant potential for improving anthocyanin stability and bioavailability. These findings guide future studies to investigate other polysaccharides, improve coacervation processes, and explore applications in the food and nutraceutical sectors. It also offers valuable insights for creating efficient encapsulation techniques for bioactive substances.
Collapse
Affiliation(s)
- Havva Aktaş
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Jorge Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Arkadiusz Szpicer
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Patryk Pokorski
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| | - Marcin A Kurek
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| |
Collapse
|
2
|
Ling B, Shao L, Jiang H, Wu S. Wide pH, Adaptable High Internal Phase Pickering Emulsion Stabilized by a Crude Polysaccharide from Thesium chinense Turcz. Molecules 2024; 29:4312. [PMID: 39339307 PMCID: PMC11434410 DOI: 10.3390/molecules29184312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The ultrasound-assisted extraction conditions of Thesium chinense Turcz. crude polysaccharide (TTP) were optimized, and a TTP sample with a yield of 11.9% was obtained. TTP demonstrated the ability to stabilize high-internal-phase oil-in-water emulsions with an oil phase volume reaching up to 80%. Additionally, the emulsions stabilized by TTP were examined across different pH levels, ionic strengths, and temperatures. The results indicated that the emulsions stabilized by TTP exhibited stability over a wide pH range of 1-11. The emulsion remained stable under ionic strengths of 0-500 mM and temperatures of 4-55 °C. The microstructure of the emulsions was observed using confocal laser scanning microscopy, and the stabilization mechanism of the emulsion was hypothesized. Soluble polysaccharides formed a network structure in the continuous phase, and the insoluble polysaccharides dispersed in the continuous phase, acting as a bridge structure, which worked together to prevent oil droplet aggregation. This research was significant for developing a new food-grade emulsifier with a wide pH range of applicability.
Collapse
Affiliation(s)
- Borong Ling
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lijun Shao
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huicong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shufang Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Bashash M, Wang-Pruski G, He QS, Sun X. The emulsifying capacity and stability of potato proteins and peptides: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70007. [PMID: 39223759 DOI: 10.1111/1541-4337.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
The potato has recently attracted more attention as a promising protein source. Potato proteins are commonly extracted from potato fruit juice, a byproduct of starch production. Potato proteins are characterized by superior techno-functional properties, such as water solubility, gel-forming, emulsifying, and foaming properties. However, commercially isolated potato proteins are often denatured, leading to a loss of these functionalities. Extensive research has explored the influence of different conditions and techniques on the emulsifying capacity and stability of potato proteins. However, there has been no comprehensive review of this topic yet. This paper aims to provide an in-depth overview of current research progress on the emulsifying capacity and stability of potato proteins and peptides, discussing research challenges and future perspectives. This paper discusses genetic diversity in potato proteins and various methods for extracting proteins from potatoes, including thermal and acid precipitation, salt precipitation, organic solvent precipitation, carboxymethyl cellulose complexation, chromatography, and membrane technology. It also covers enzymatic hydrolysis for producing potato-derived peptides and methods for identifying potato protein-derived emulsifying peptides. Furthermore, it reviews the influence of factors, such as physicochemical properties, environmental conditions, and food-processing techniques on the emulsifying capacity and stability of potato proteins and their derived peptides. Finally, it highlights chemical modifications, such as acylation, succinylation, phosphorylation, and glycation to enhance emulsifying capacity and stability. This review provides insight into future research directions for utilizing potato proteins as sustainable protein sources and high-value food emulsifiers, thereby contributing to adding value to the potato processing industry.
Collapse
Affiliation(s)
- Moein Bashash
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
4
|
Can Karaca A, Assadpour E, Jafari SM. Plant protein-based emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 316:102918. [PMID: 37172542 DOI: 10.1016/j.cis.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Emulsion-based delivery systems (EBDSs) can be used as effective carriers for bioactive compounds (bioactives). Recent studies have shown that plant proteins (PLPs) have the potential to be utilized as stabilizers of emulsions for loading, protection and delivery of bioactives. Different strategies combining physical, chemical and biological techniques can be applied for alteration of the structural characteristics and improving the emulsification and encapsulation performance of PLPs. The stability, release, and bioavailability of the encapsulated bioactives can be tailored via optimizing the processing conditions and formulation of the emulsions. This paper presents cutting-edge information on PLP-based emulsions carrying bioactives in terms of their preparation methods, physicochemical characteristics, stability, encapsulation efficiency and release behavior of bioactives. Strategies applied for improvement of emulsifying and encapsulation properties of PLPs used in EBDSs are also reviewed. Special emphasis is given to the use of PLP-carbohydrate complexes for stabilizing bioactive-loaded emulsions.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
Khorramifar A, Sharabiani VR, Karami H, Kisalaei A, Lozano J, Rusinek R, Gancarz M. Investigating Changes in pH and Soluble Solids Content of Potato during the Storage by Electronic Nose and Vis/NIR Spectroscopy. Foods 2022; 11:4077. [PMID: 36553819 PMCID: PMC9778509 DOI: 10.3390/foods11244077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Potato is an important agricultural product, ranked as the fourth most common product in the human diet. Potato can be consumed in various forms. As customers expect safe and high-quality products, precise and rapid determination of the quality and composition of potatoes is of crucial significance. The quality of potatoes may alter during the storage period due to various phenomena. Soluble solids content (SSC) and pH are among the quality parameters experiencing alteration during the storage process. This study is thus aimed to assess the variations in SSC and pH during the storage of potatoes using an electronic nose and Vis/NIR spectroscopic techniques with the help of prediction models including partial least squares (PLS), multiple linear regression (MLR), principal component regression (PCR), support vector regression (SVR) and an artificial neural network (ANN). The variations in the SSC and pH are ascending and significant. The results also indicate that the SVR model in the electronic nose has the highest prediction accuracy for the SSC and pH (81, and 92%, respectively). The artificial neural network also managed to predict the SSC and pH at accuracies of 83 and 94%, respectively. SVR method shows the lowest accuracy in Vis/NIR spectroscopy while the PLS model exhibits the best performance in the prediction of the SSC and pH with respective precision of 89 and 93% through the median filter method. The accuracy of the ANN was 85 and 90% in the prediction of the SSC and pH, respectively.
Collapse
Affiliation(s)
- Ali Khorramifar
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Vali Rasooli Sharabiani
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Hamed Karami
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Asma Kisalaei
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Jesús Lozano
- Department of Electric Technology, Electronics and Automation, University of Extremadura, Avda. de Elvas S/n, 06006 Badajoz, Spain
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Faculty of Production and Power Engineering, University of Agriculture in Kraków, Balicka 116B, 30-149 Krakow, Poland
| |
Collapse
|
6
|
Jiménez-Munoz L, Tsochatzis ED, Corredig M. Impact of the Structural Modifications of Potato Protein in the Digestibility Process under Semi-Dynamic Simulated Human Gastrointestinal In Vitro System. Nutrients 2022; 14:nu14122505. [PMID: 35745236 PMCID: PMC9230451 DOI: 10.3390/nu14122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The raising consumer demand for plant-derived proteins has led to an increased production of alternative protein ingredients with varying processing histories. In this study, we used a commercially available potato protein ingredient with a nutritionally valuable amino acid profile and high technological functionality to evaluate if the digestibility of a suspension with the same composition is affected by differences in the structure. Four isocaloric (4% protein, w/w) matrices (suspension, gel, foam and heat-set foam) were prepared and their gastrointestinal fate was followed utilizing a semi-dynamic in vitro digestion model. The microstructure was observed by confocal laser scanning microscopy, protein breakdown was tested by electrophoresis and free amino acids after intestinal digestion was estimated using liquid chromatography/triple-quadruple-mass spectrometry (LC-TQMS). The heat-treated samples showed a higher degree of hydrolysis and lower trypsin inhibitory activity than the non-heat-treated samples. An in vitro digestible indispensable amino acid score was calculated based on experimental data, showing a value of 0.9 based on sulfur amino acids/valine as the limiting amino acids. The heated samples also showed a slower gastric emptying rate. The study highlights the effect of the food matrix on the distribution of the peptides created during various stages of gastric emptying.
Collapse
Affiliation(s)
- Luis Jiménez-Munoz
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- Correspondence: author:
| | - Emmanouil D. Tsochatzis
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
- European Food Safety Authority-EFSA, Via Carlo Magno 1A, 43146 Parma, Italy
| | - Milena Corredig
- Department of Food Science, CiFOOD Center for Innovative Foods, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (E.D.T.); (M.C.)
| |
Collapse
|