1
|
Liu X, Li A, Luo G, Zhu J. Saussurea involucrata SiLEA5 Enhances Tolerance to Drought Stress in Solanum lycopersicum. Foods 2024; 13:3641. [PMID: 39594056 PMCID: PMC11594126 DOI: 10.3390/foods13223641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Drought adversely affects plant growth, which leads to reduced crop yields and exacerbates food insecurity. Late embryogenesis abundant (LEA) proteins are crucial for plants' responses to abiotic stresses. This research further investigates the role of SiLEA5 by utilizing transgenic tomatoes under drought stress. The expression of SiLEA5 was upregulated under drought and abscisic acid (ABA) treatment, resulting in decreased electrolyte leakage and malondialdehyde content, alongside increased levels of osmotic regulators and antioxidant enzyme activity. These biochemical alterations reduce oxidative damage and enhance drought resistance. qRT-PCR analysis revealed the upregulation of ABA signaling genes and key enzymes involved in proline biosynthesis (P5CS) and dehydrin (DHN) synthesis under drought stress. Additionally, overexpression of SiLEA5 increased the net photosynthetic rate (Pn) and fruit yield of tomatoes by regulating stomatal density and aperture. These findings suggest that SiLEA5 may be a potential target for improving drought tolerance in tomatoes and other crops.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye 734000, China;
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
| | - Aowei Li
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
| | - Guanghong Luo
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye 734000, China;
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi 832000, China;
| |
Collapse
|
2
|
Li J, Hou R, Zhang F. A new Schizophyllum commune strain as a potential biocontrol agent against blueberry root rot. Arch Microbiol 2024; 206:235. [PMID: 38722413 DOI: 10.1007/s00203-024-03959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/20/2024]
Abstract
In recent years, blueberry root rot has been caused mainly by Fusarium commune, and there is an urgent need for a green and efficient method to control this disease. To date, research on Schizophyllum commune has focused on antioxidant mechanisms, reactive dye degradation, etc., but the mechanism underlying the inhibition of pathogenic microorganisms is still unclear. Here, the control effects of S. commune on F. commune and blueberry root rot were studied using adversarial culture, tissue culture, and greenhouse pot experiments. The results showed that S. commune can dissolve insoluble phosphorus and secrete various extracellular hydrolases. The results of hyphal confrontation and fermentation broth antagonism experiments showed that S. commune had a significant inhibitory effect on F. commune, with inhibition rates of 70.30% and 22.86%, respectively. Microscopy results showed distortion of F. commune hyphae, indicating that S. commune is strongly parasitic. S. commune had a significant growth-promoting effect on blueberry tissue-cultured seedlings. After inoculation with S. commune, inoculation with the pathogenic fungus, or inoculation at a later time, the strain significantly reduced the root rot disease index in the potted blueberry seedlings, with relative control effects of 79.14% and 62.57%, respectively. In addition, S. commune G18 significantly increased the antioxidant enzyme contents in the aboveground and underground parts of potted blueberry seedlings. We can conclude that S. commune is a potential biocontrol agent that can be used to effectively control blueberry root rot caused by F. commune in the field.
Collapse
Affiliation(s)
- Jinziyue Li
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Rui Hou
- College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Fumei Zhang
- College of Forestry, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Yang H, Wu Y, Che J, Wu W, Lyu L, Li W. LC-MS and GC-MS Metabolomics Analyses Revealed That Different Exogenous Substances Improved the Quality of Blueberry Fruits under Soil Cadmium Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:904-915. [PMID: 38112527 DOI: 10.1021/acs.jafc.3c05879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exogenous substances (ESs) can regulate plant growth and respond to environmental stress, but the effects of different ESs on blueberry fruit quality under soil cadmium (Cd) toxicity and related metabolic mechanisms are still unclear. In this study, four ES treatments [salicylic acid (SA), spermidine (Spd), 2,4-epibrassinolide (EBR), and melatonin (MT)] significantly increased blueberry fruit size, single-fruit weight, sweetness, and anthocyanin content under soil Cd toxicity and effectively reduced fruit Cd content to safe consumption levels by promoting mineral uptake (Ca, Mg, Mn, Cu and Zn). Furthermore, a total of 445, 360, 429, and 554 differentially abundant metabolites (DAMs) (LC-MS) and 63, 48, 79, and 73 DAMs (GC-MS) were identified from four comparison groups (SA/CK, Spd/CK, EBR/CK and MT/CK), respectively. The analyses revealed that ESs improved blueberry fruit quality and tolerance to Cd toxicity mainly by regulating the changes in metabolites related to ABC transporters, the TCA cycle, flavonoid biosynthesis, and phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing 210014, China
| | - Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing 210014, China
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Hao M, Wang M, Tang T, Zhao D, Yin S, Shi Y, Liu X, Wudong G, Yang Y, Zhang M, Qi L, Zhou D, Liu W, Jin Y, Wang A. Regulation of the Gene for Alanine Racemase Modulates Amino Acid Metabolism with Consequent Alterations in Cell Wall Properties and Adhesive Capability in Brucella spp. Int J Mol Sci 2023; 24:16145. [PMID: 38003334 PMCID: PMC10671322 DOI: 10.3390/ijms242216145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Brucella, a zoonotic facultative intracellular pathogenic bacterium, poses a significant threat both to human health and to the development of the livestock industry. Alanine racemase (Alr), the enzyme responsible for alanine racemization, plays a pivotal role in regulating virulence in this bacterium. Moreover, Brucella mutants with alr gene deletions (Δalr) exhibit potential as vaccine candidates. However, the mechanisms that underlie the detrimental effects of alr knockouts on Brucella pathogenicity remain elusive. Here, initially, we conducted a bioinformatics analysis of Alr, which demonstrated a high degree of conservation of the protein within Brucella spp. Subsequent metabolomics studies unveiled alterations in amino acid pathways following deletion of the alr gene. Furthermore, alr deletion in Brucella suis S2 induced decreased resistance to stress, antibiotics, and other factors. Transmission electron microscopy of simulated macrophage intracellular infection revealed damage to the cell wall in the Δalr strain, whereas propidium iodide staining and alkaline phosphatase and lactate dehydrogenase assays demonstrated alterations in cell membrane permeability. Changes in cell wall properties were revealed by measurements of cell surface hydrophobicity and zeta potential. Finally, the diminished adhesion capacity of the Δalr strain was shown by immunofluorescence and bacterial enumeration assays. In summary, our findings indicate that the alr gene that regulates amino acid metabolism in Brucella influences the properties of the cell wall, which modulates bacterial adherence capability. This study is the first demonstration that Alr impacts virulence by modulating bacterial metabolism, thereby providing novel insights into the pathogenic mechanisms of Brucella spp.
Collapse
Affiliation(s)
- Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Ting Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Danyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Shurong Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Gaowa Wudong
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Mengyu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China; (M.H.); (M.W.); (T.T.); (D.Z.); (S.Y.); (Y.S.); (X.L.); (G.W.); (Y.Y.); (M.Z.); (L.Q.); (D.Z.); (W.L.); (Y.J.)
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
5
|
Yang H, Han T, Wu Y, Lyu L, Wu W, Li W. Quality analysis and metabolomic profiling of the effects of exogenous abscisic acid on rabbiteye blueberry. FRONTIERS IN PLANT SCIENCE 2023; 14:1224245. [PMID: 37492772 PMCID: PMC10364122 DOI: 10.3389/fpls.2023.1224245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023]
Abstract
Blueberry is a characteristic berry fruit shrub of the genus Vaccinium in the Rhododendron family. The fruit is rich in anthocyanins and has a variety of nutritional and health functions. This study aimed to systematically study the effect of exogenous abscisic acid (ABA) application on ripening and metabolites in blueberry fruits. Blueberry fruit ripening was divided into six stages for further analysis. In this study, nontarget metabolomics was performed to demonstrate the effect on metabolite levels. The results showed that 1000 mg/L ABA significantly promoted fruit ripening and increased anthocyanin content. Moreover, exogenous ABA treatment can affect endogenous ABA levels and improve its antioxidant capacity. Important metabolites of the flavonoid pathway were detected, and the results showed that anthocyanin synthesis increased, and some other bioactive metabolite levels decreased. After comprehensive assessments, we believe that 1000 mg/L exogenous ABA application will have positive impacts on blueberry fruit quality and economic benefits.
Collapse
Affiliation(s)
- Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tianyu Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Wei Z, Yang H, Shi J, Duan Y, Wu W, Lyu L, Li W. Effects of Different Light Wavelengths on Fruit Quality and Gene Expression of Anthocyanin Biosynthesis in Blueberry ( Vaccinium corymbosm). Cells 2023; 12:cells12091225. [PMID: 37174623 PMCID: PMC10177116 DOI: 10.3390/cells12091225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Different light wavelengths display diverse effects on fruit quality formation and anthocyanin biosynthesis. Blueberry is a kind of fruit rich in anthocyanin with important economic and nutritional values. This study explored the effects of different light wavelengths (white (W), red (R), blue (B) and yellow (Y)) on fruit quality and gene expression of anthocyanin biosynthesis in blueberry. We found that the B and W treatments attained the maximum values of fruit width, fruit height and fruit weight in blueberry fruits. The R treatment attained the maximum activities of superoxide dismutase (SOD) and peroxidase (POD), and the Y treatment displayed the maximum contents of ascorbic acid (AsA), glutathione (GSH) and total phenol in fruits, thus improving blueberry-fruit antioxidant capacity. Interestingly, there were differences in the solidity-acid ratio of fruit under different light-wavelength treatments. Moreover, blue light could significantly improve the expression levels of anthocyanin biosynthesis genes and anthocyanin content in fruits. Correlation and principal component analysis showed that total acid content and antioxidant enzymes were significantly negatively correlated with anthocyanin content in blueberry fruits. These results provide new insights for the application of light wavelength to improve blueberry fruit quality and anthocyanin content.
Collapse
Affiliation(s)
- Zhiwen Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Jie Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yongkang Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Huo D, Hao Y, Zou J, Qin L, Wang C, Du D. Integrated transcriptome and metabonomic analysis of key metabolic pathways in response to cadmium stress in novel buckwheat and cultivated species. FRONTIERS IN PLANT SCIENCE 2023; 14:1142814. [PMID: 37008482 PMCID: PMC10064074 DOI: 10.3389/fpls.2023.1142814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Buckwheat (Fagopyrum tataricum), an important food crop, also has medicinal uses. It is widely planted in Southwest China, overlapping with planting areas remarkably polluted by cadmium (Cd). Therefore, it is of great significance to study the response mechanism of buckwheat under Cd stress and further develop varieties with excellent Cd tolerance. METHODS In this study, two critical periods of Cd stress treatment (days 7 and 14 after Cd treatment) of cultivated buckwheat (Pinku-1, named K33) and perennial species (F. tatari-cymosum Q.F. Chen) (duoku, named DK19) were analyzed using transcriptome and metabolomics. RESULTS The results showed that Cd stress led to changes in reactive oxygen species (ROS) and the chlorophyll system. Moreover, Cd-response genes related to stress response, amino acid metabolism, and ROS scavenging were enriched or activated in DK19. Transcriptome and metabolomic analyses highlighted the important role of galactose, lipid (glycerophosphatide metabolism and glycerophosphatide metabolism), and glutathione metabolism in response to Cd stress in buckwheat, which are significantly enriched at the gene and metabolic levels in DK19. DISCUSSION The results of the present study provide valuable information for a better understanding of the molecular mechanisms underlying Cd tolerance in buckwheat and useful clues for the genetic improvement of drought tolerance in buckwheat.
Collapse
Affiliation(s)
- Dongao Huo
- Guizhou Normal University, Guiyang, China
- College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China
| | - Ying Hao
- Guizhou Normal University, Guiyang, China
| | - Juan Zou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Lixia Qin
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Chuangyun Wang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
8
|
Yin M, Li C, Wang Y, Fu J, Sun Y, Zhang Q. Comparison analysis of metabolite profiling in seeds and bark of Ulmus parvifolia, a Chinese medicine species. PLANT SIGNALING & BEHAVIOR 2022; 17:2138041. [PMID: 36317599 PMCID: PMC9629078 DOI: 10.1080/15592324.2022.2138041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Ulmus parvifolia (U. parvifolia) is a Chinese medicine plant whose bark and leaves are used in the treatment of some diseases such as inflammation, diarrhea and fever. However, metabolic signatures of seeds have not been studied. The seeds and bark of U. parvifolia collected at the seed ripening stage were used for metabolite profiling analysis through the untargeted metabolomics approach. A total of 2,578 and 2,207 metabolites, while 503 and 132 unique metabolites were identified in seeds and bark, respectively. Additionally, 574 differential metabolites (DEMs) were detected in the two different organs of U. parvifolia, which were grouped into 52 classes. Most kinds of metabolites classed into prenol lipids class. The relative content of flavonoids class was the highest. DEMs contained some bioactive compounds (e.g., flavonoids, terpene glycosides, triterpenoids, sesquiterpenoids) with antioxidant, anti-inflammatory, and anti-cancer activities. Most kinds of flavonoids and sesquiterpenes were up-regulated in seeds. There were more varieties of terpene glycosides and triterpenoids showing up-regulated in bark. The pathway enrichment was performed, while flavonoid biosynthesis, flavone and flavonol biosynthesis were worthy of attention. This study identified DEMs with pharmaceutical value between seeds and bark during seed maturation and offered a molecular basis for alternative or complementary use of seeds and bark of U. parvifolia as a Chinese medicinal material.
Collapse
Affiliation(s)
- MingLong Yin
- Forestry College, Shandong Agricultural University, Tai’an, China
| | - ChuanRong Li
- Forestry College, Shandong Agricultural University, Tai’an, China
| | - YuShan Wang
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - JunHui Fu
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - YangYang Sun
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - Qian Zhang
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| |
Collapse
|