1
|
Wang CY, Li XM, Du HX, Yan Y, Chen ZZ, Zhang CX, Yan XB, Hao SY, Gou JY. Change of Flavonoid Content in Wheatgrass in a Historic Collection of Wheat Cultivars. Antioxidants (Basel) 2024; 13:899. [PMID: 39199145 PMCID: PMC11351879 DOI: 10.3390/antiox13080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/01/2024] Open
Abstract
Wheatgrass is recognized for its nutritional and medicinal properties, partly attributed to its flavonoid content. The objective of this study was to assess the flavonoid content and antioxidant properties of wheatgrass obtained from a wide range of 145 wheat cultivars, which included Chinese landraces (CL), modern Chinese cultivars (MCC), and introduced modern cultivars (IMC). The flavonoids were extracted using a solution of 80% methanol, and their content was evaluated using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The results revealed the assessed cultivars showed significant variation in their total flavonoid content (TFC), with MCCs generally having higher amounts compared to CLs. PCA analysis demonstrated clear variations in flavonoid profiles between different cultivar groups, emphasizing the evolutionary inconsistencies in wheat breeding. The antioxidant assays, ABTS, DPPH, and FRAP, exhibited robust abilities for eliminating radicals, which were found to be directly associated with the amounts of flavonoids. In addition, this study investigated the correlation between the content of flavonoids and the ability to resist powdery mildew in a collection of mutated wheat plants. Mutants exhibiting heightened flavonoid accumulation demonstrated a decreased severity of powdery mildew, suggesting that flavonoids play a protective role against fungal infections. The results highlight the potential of wheatgrass as a valuable source of flavonoids that have antioxidant and protective effects. This potential is influenced by the genetic diversity and breeding history of wheatgrass. Gaining insight into these connections can guide future wheat breeding endeavors aimed at improving nutritional value and in strengthening disease resistance. The current finding provides critical information for developing wheatgrass with high flavonoid content and antioxidant activity.
Collapse
Affiliation(s)
- Chu-Yang Wang
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Xiao-Ming Li
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Han-Xiao Du
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Yan Yan
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Zhong-Zhong Chen
- MOE Engineering Research Center of Gene Technology, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; (C.-Y.W.); (X.-M.L.); (H.-X.D.); (Y.Y.); (Z.-Z.C.)
| | - Chen-Xi Zhang
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| | - Xin-Bo Yan
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| | - Shui-Yuan Hao
- Department of Agronomy, Hetao College, Bayannur 015000, China
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; (C.-X.Z.); (X.-B.Y.)
| |
Collapse
|
2
|
Wubuli A, Abdulla R, Zhao J, Wu T, Aisa HA. Exploring anti-inflammatory and antioxidant-related quality markers of Artemisia absinthium L. based on spectrum-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1152-1173. [PMID: 38591190 DOI: 10.1002/pca.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Artemisia absinthium L. is a well-known medicinal, aromatic, and edible plant with important medicinal and economic properties and a long history of use in treating liver inflammation and other diseases; however, there has been insufficient progress in quality control. OBJECTIVE This study aimed to investigate the quality markers for the anti-inflammatory and antioxidant activities of A. absinthium based on spectrum-effect relationship analysis. MATERIALS AND METHODS Eighteen batches of A. absinthium from different origins were used. Chemical fingerprints were obtained by ultra-performance liquid chromatography (UPLC). The chemical compositions were identified by quadrupole-Orbitrap high-resolution mass spectrometry. Anti-inflammatory activity was assessed by inhibition of cyclooxygenase-2 and 15-lipoxygenase in vitro and inhibition of nitric oxide release in lipopolysaccharide-induced BV-2 cells. Antioxidant activity was assessed by DPPH and ABTS radical scavenging assays. The relationship between bioactivity and chemical fingerprints was then analyzed using chemometrics including gray relational analysis, bivariate correlation analysis, and orthogonal partial least squares analysis. RESULTS Different batches of A. absinthium extracts possessed significant anti-inflammatory and antioxidant activities to varying degrees. Eighty compounds were identified from A. absinthium, and 12 main common peaks were obtained from the UPLC fingerprints. P3 (chlorogenic acid), P5 (isochlorogenic acid A), and P6 (isochlorogenic acid C) were screened as the most promising active compounds by correlation analysis and further validated for their remarkable anti-inflammatory effects. CONCLUSION This is the first study to screen the quality markers of A. absinthium by establishing the spectrum-effect relationship, which can provide a reference for the development of quality standards and further research on A. absinthium.
Collapse
Affiliation(s)
- Ayixiamuguli Wubuli
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Yang SH, Kim YJ, Lee H, Seo WD, Kwon EY, Kim JK. Comparative metabolomic analysis of mouse plasma in response to different dietary conditions. Food Sci Biotechnol 2024; 33:2169-2178. [PMID: 39130654 PMCID: PMC11315845 DOI: 10.1007/s10068-023-01479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 08/13/2024] Open
Abstract
Plasma metabolites offer insights into aging processes and aging-related biomarkers. Here, the dietary effects of various functional foods on older adult mice were evaluated using metabolomic techniques. Fifty-week-old mice were divided into four groups (n = 4 each) and fed either a normal diet (AC) or the diets from Triticum aestivum sprout (TA), Schisandra chinensis (SZ), or Pisum sativum sprout (PS) extracts. Additionally, a group of 8-week-old mice fed a normal diet (YC; n = 5) was included for the comparison. The PS group had a significantly lower free fatty acid content and higher ornithine, proline, citric acid, and oxalic acid contents than the AC group. The PS group also showed reduced oxidative stress and muscle damage, suggesting the higher anti-aging efficacy of P. sativum sprouts than the other diets. These findings suggest plasma metabolite profiling is an effective tool to assess the anti-aging effects of functional foods. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01479-8.
Collapse
Affiliation(s)
- So Hwi Yang
- Division of Life Sciences, College of Life Sciences, and Bioengineering, Incheon National University, Inchon, 22012 Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences, College of Life Sciences, and Bioengineering, Incheon National University, Inchon, 22012 Republic of Korea
| | - HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk 55365 Republic of Korea
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk 55365 Republic of Korea
| | - Eun Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701 Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences, and Bioengineering, Incheon National University, Inchon, 22012 Republic of Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Inchon, 22012 Republic of Korea
| |
Collapse
|
4
|
Gamito G, Monteiro CJ, Dias MC, Oliveira H, Silva AM, Faustino MAF, Silva S. Impact of Fe 3O 4-porphyrin hybrid nanoparticles on wheat: Physiological and metabolic advance. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134243. [PMID: 38657506 DOI: 10.1016/j.jhazmat.2024.134243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.
Collapse
Affiliation(s)
- Gonçalo Gamito
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carlos Jp Monteiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria Celeste Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; University of Coimbra, Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Helena Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur Ms Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Hao J, Na R, Sun L, Jia Y, Han F, Fu Z, Wang Z, Zhao M, Gao C, Ge G. Chemical profile and quantitative comparison of constituents in different medicinal parts of Lactuca indica during varied harvest periods using UPLC-MS/MS method. Food Chem X 2023; 20:101031. [PMID: 38144840 PMCID: PMC10740015 DOI: 10.1016/j.fochx.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Lactuca indica L. cv. Mengzao (LIM), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. This research delves into the influence of various harvest periods (vegetative, budding, blossom, and fruiting) on distinct medicinal parts (roots, stems, leaves, flowers, and seeds) of LIM, employing plant metabolomics to assess its chemical constituents. A total of 66 chemical constituents were identified in LIM, with 11 chemical components emerging as potential markers for distinguish medicinal parts. Notably, nutritional organs exhibited elevated levels of cichoric acid, rutin and chlorogenic acid. Specifically, leaves during the budding stage displayed the highest chicoric acid content at 11.70 mg·g-1. Conversely, reproductive organs showed heightened concentrations of cichoric acid, rutin and chlorogenic acid, with seeds exhibiting the peak cichoric acid content at 4.53 mg g-1. This study enriches our understanding of LIM by offering novel insights into quality assessment and the comprehensive utilization of its diverse parts.
Collapse
Affiliation(s)
- Junfeng Hao
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Risu Na
- Center of Ecology and Agrometeorology of Inner Mongolia, Hohhot 010000, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010000, China
| | - Yushan Jia
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Feng Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhihui Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhijun Wang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Muqier Zhao
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Cuiping Gao
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Gentu Ge
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
6
|
Park J, Kil YS, Ryoo GH, Jin CH, Hong MJ, Kim JB, Jung CH, Nam JW, Han AR. Phytochemical profile and anti-inflammatory activity of the hull of γ-irradiated wheat mutant lines ( Triticum aestivum L.). Front Nutr 2023; 10:1334344. [PMID: 38188878 PMCID: PMC10771830 DOI: 10.3389/fnut.2023.1334344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Wheat (Triticum aestivum Linn.; Poaceae) is the second most cultivated food crop among all global cereal crop production. The high carbohydrate content of its grains provides energy, multiple nutrients, and dietary fiber. After threshing, a substantial amount of wheat hull is produced, which serves as the non-food component of wheat. For the valorization of these by-products as a new resource from which functional components can be extracted, the hull from the seeds of cultivated wheat mutant lines bred after γ-irradiation were collected. Untargeted metabolite analysis of the hull of the original cultivar (a crossbreeding cultivar., Woori-mil × D-7) and its 983 mutant lines were conducted using ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry technique. A total of 55 molecules were tentatively identified, including 21 compounds found in the Triticum species for the first time and 13 compounds not previously described. Among them, seven flavonolignans with a diastereomeric structure, isolated as a single compound from the hull of T. aestivum in our previous study, were used as the standards in the metabolite analysis. The differences in their collision cross-section values were shown to contribute to the clear distinction between tricine-lignan stereoisomers. To select functionally active agents with anti-inflammatory activity among the identified compounds, the wheat hull samples were evaluated for their inhibitory effect on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. As a result of multivariate analysis based on the results of chemical and biological profiles of the wheat hull samples, 10 metabolites were identified as key markers, contributing to the distinction between active and inactive mutant lines. Considering that one of the four key markers attributed to anti-inflammatory activity has been identified to be a flavonolignan, the wheat hull could be a valuable source of diverse tricin-lignan type compounds and used as a natural health-promoting product in food supplements.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Zhang T, Yang X, Wang F, Liu P, Xie M, Lu C, Liu J, Sun J, Fan B. Comparison of the Metabolomics of Different Dendrobium Species by UPLC-QTOF-MS. Int J Mol Sci 2023; 24:17148. [PMID: 38138977 PMCID: PMC10742841 DOI: 10.3390/ijms242417148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Dendrobium Sw. (family Orchidaceae) is a renowned edible and medicinal plant in China. Although widely cultivated and used, less research has been conducted on differential Dendrobium species. In this study, stems from seven distinct Dendrobium species were subjected to UPLC-QTOF-MS/MS analysis. A total of 242 metabolites were annotated, and multivariate statistical analysis was employed to explore the variance in the extracted metabolites across the various groups. The analysis demonstrated that D. nobile displays conspicuous differences from other species of Dendrobium. Specifically, D. nobile stands out from the remaining six taxa of Dendrobium based on 170 distinct metabolites, mainly terpene and flavonoid components, associated with cysteine and methionine metabolism, flavonoid biosynthesis, and galactose metabolism. It is believed that the variations between D. nobile and other Dendrobium species are mainly attributed to three metabolite synthesis pathways. By comparing the chemical composition of seven species of Dendrobium, this study identified the qualitative components of each species. D. nobile was found to differ significantly from other species, with higher levels of terpenoids, flavonoids, and other compounds that are for the cardiovascular field. By comparing the chemical composition of seven species of Dendrobium, these qualitative components have relevance for establishing quality standards for Dendrobium.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Xinxin Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Pengfei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Mengzhou Xie
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Cong Lu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Jiameng Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Jing Sun
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Bei Fan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| |
Collapse
|