1
|
Beauchemin ET, Hunter C, Maurice CF. Dextran sodium sulfate-induced colitis alters the proportion and composition of replicating gut bacteria. mSphere 2024:e0082524. [PMID: 39723822 DOI: 10.1128/msphere.00825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both ex vivo and in situ in the dextran sodium sulfate (DSS) mouse model of colitis. We show that the proportion of replicating gut bacteria decreases when mice have the highest levels of inflammation and returns to baseline levels as mice begin recovering. In addition, we report significant alterations in the composition of the replicating gut bacterial community ex vivo during colitis development. On the taxa level, we observe significant changes in the abundance of taxa such as the mucus-degrading Akkermansia and the poorly described Erysipelatoclostridium genus. We further demonstrate that many taxa exhibit variable replication rates in situ during colitis, including Akkermansia muciniphila. Lastly, we show that colitis development is positively correlated with increases in the presence and abundance of bacteria in situ which are predicted to be fast replicators. This could suggest that taxa with the potential to replicate quickly may have an advantage during intestinal inflammation. These data support the need for additional research using activity-based approaches to further characterize the gut bacterial response to intestinal inflammation and its consequences for both the host and the gut microbial community.IMPORTANCEIt is well known that the bacteria living inside the gut are important for human health. Indeed, the type of bacteria that are present and their metabolism are different in healthy people versus those with intestinal disease. However, less is known about how these gut bacteria are replicating, especially as someone begins to develop intestinal disease. This is particularly important as it is thought that metabolically active gut bacteria may be more relevant to health. Here, we begin to address this gap using several complementary approaches to characterize the replicating gut bacteria in a mouse model of intestinal inflammation. We reveal which gut bacteria are replicating, and how quickly, as mice develop and recover from inflammation. This work can serve as a model for future research to identify how actively growing gut bacteria may be impacting health, or why these particular bacteria tend to thrive during intestinal inflammation.
Collapse
Affiliation(s)
- Eve T Beauchemin
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Claire Hunter
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Corinne F Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Singarayar MS, Chandrasekaran A, Balasundaram D, Veerasamy V, Neethirajan V, Thilagar S. Prebiotics: Comprehensive analysis of sources, structural characteristics and mechanistic roles in disease regulation. Microb Pathog 2024; 197:107071. [PMID: 39447658 DOI: 10.1016/j.micpath.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Prebiotics are nondigestible components that comprise short-chain carbohydrates, primarily oligosaccharides, which are converted into beneficial compounds by probiotics. Various plant substances with prebiotic properties provide substantial health benefits and are used to prevent different diseases and for medical and clinical applications. Consuming prebiotics gives impeccable benefits since it aids in gut microbial balance. Prebiotic research is primarily concerned with the influence of intestinal disorders. The proposed review will describe recent data on the sources, structures, implementation of prebiotics and potential mechanisms in preventing and treating various disorders, with an emphasis on the gut microbiome. Prebiotics have a distinctive impact on the gastro intestine by explicitly encouraging the growth of probiotic organisms like Bifidobacteria and Lactobacilli. This in turn augments the body's inherent ability to fend off harmful pathogens. Prebiotic carbohydrates may also provide other non-specific advantages due to their fermentation in the large intestine. Additional in vivo research is needed to fully comprehend the interactions between prebiotics and probiotics ingested by hosts to improve their nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Magdalin Sylvia Singarayar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | | | - Veeramurugan Veerasamy
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Vivek Neethirajan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
3
|
Tang S, Ouyang Z, Tan X, Liu X, Bai J, Wang H, Huang L. Protective Effect of the Naringin-Chitooligosaccharide Complex on Lipopolysaccharide-Induced Systematic Inflammatory Response Syndrome Model in Mice. Foods 2024; 13:576. [PMID: 38397553 PMCID: PMC10887581 DOI: 10.3390/foods13040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Naringin is one of the common flavonoids in grapefruit, which has anti-cancer, antioxidant, and anti-inflammatory activities. However, its poor solubility limits its wide application. Therefore, the aim of this study is to investigate the anti-inflammatory effect of naringin combined with chitooligosaccharides with good biocompatibility by constructing a mouse model of systemic inflammatory response syndrome (SIRS). The results showed that the naringin-chitooligosaccharide (NG-COS) complex significantly inhibited lipopolysaccharide (LPS)-induced weight loss, reduced food intake, tissue inflammatory infiltration, and proinflammatory cytokines IL-6, TNF-α, INF-γ, and IL-1β levels. The complex also significantly affected the content of malondialdehyde and the activities of MPO, SOD, and GSH in the liver, spleen, lungs, and serum of mice with systemic inflammation. In addition, NG-COS significantly inhibited the mRNA expression of inflammatory factors in the TLR4/NF-κB signaling pathway. Principal component analysis showed that the complexes could inhibit LPS-induced systemic inflammation in mice, and the effect was significantly better than that of naringin and chitooligosaccharides alone. This study explored the synergistic effects of chitosan and naringin in reducing inflammation and could contribute to the development of novel biomedical interventions.
Collapse
Affiliation(s)
- Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Zhu Ouyang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Hua Wang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China
- National Citrus Engineering Research Center, Chongqing 400700, China
| |
Collapse
|
4
|
Bai J, Tan X, Tang S, Liu X, Shao L, Wang C, Huang L. Citrus p-Synephrine Improves Energy Homeostasis by Regulating Amino Acid Metabolism in HFD-Induced Mice. Nutrients 2024; 16:248. [PMID: 38257140 PMCID: PMC10818793 DOI: 10.3390/nu16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
p-Synephrine is a common alkaloid widely distributed in citrus fruits. However, the effects of p-synephrine on the metabolic profiles of individuals with energy abnormalities are still unclear. In the study, we investigated the effect of p-synephrine on energy homeostasis and metabolic profiles using a high fat diet (HFD)-induced mouse model. We found that p-synephrine inhibited the gain in body weight, liver weight and white adipose tissues weight induced by HFD. p-Synephrine supplementation also reduced levels of serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) but not to a statistically significant degree. Histological analysis showed that HFD induced excessive lipid accumulation and glycogen loss in the liver and adipocyte enlargement in perirenal fat tissue, while p-synephrine supplementation reversed the changes induced by HFD. Moreover, HFD feeding significantly increased mRNA expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and reduced the mRNA expression level of interleukin-10 (IL-10) compared to the control group, while p-synephrine supplementation significantly reversed these HFD-induced changes. Liver and serum metabolomic analysis showed that p-synephrine supplementation significantly altered small molecule metabolites in liver and serum in HFD mice and that the changes were closely associated with improvement of energy homeostasis. Notably, amino acid metabolism pathways, both in liver and serum samples, were significantly enriched. Our study suggests that p-synephrine improves energy homeostasis probably by regulating amino acid metabolism in HFD mice, which provides a novel insight into the action mechanism of p-synephrine modulating energy homeostasis.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linzi Shao
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Chen Wang
- National Citrus Engineering Research Center, Chongqing 400700, China
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| |
Collapse
|