1
|
Amaly N, Harrison S, Tumuluru JS, Sun G, Pandey PK. Development and application of a polycationic soybean protein-based flocculant for enhanced flocculation and dewatering of dairy manure. CHEMOSPHERE 2025; 371:144050. [PMID: 39755212 DOI: 10.1016/j.chemosphere.2024.144050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency. The polycationic protein chains of SPI+ were synthesized by grafting 2-(methacryloyloxy)ethyl trimethylammonium chloride (META) monomers onto soybean protein isolate (SPI) chains using an energy-efficient thiol-ene photografting method. This approach achieved a grafting ratio of 85%, endowing the SPI+ with a stable and strong positive zeta-potential (+30 mV) across a range of pH conditions. The SPI + exhibited exceptional flocculation performance, achieving a 96% flocculation efficiency, reducing sludge filtration resistance by 55%, and lowering filter cake moisture content by 10%. The SPI + flocculation and dewatering performance is comparable with synthetic-based commercial flocculant. This remarkable performance of SPI+ is attributed to its ability to effectively neutralize charges, form robust inter-particle bridges, and interact strongly with extracellular polymeric substances (EPS), particularly their protein components, within the sludge matrix. These properties significantly enhance both sludge aggregation and dewaterability. The underlying mechanisms of flocculation and dewatering were further elucidated using confocal imaging, surface morphology analysis of flocs, and quantification of EPS protein and polysaccharide content, providing valuable insights into its functional efficacy.
Collapse
Affiliation(s)
- Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, United States; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, United States.
| | | | - Jaya Shankar Tumuluru
- Southwestern Cotton Ginning Research Laboratory, United States Department of Agriculture-Agricultural Research Service, Las Cruces, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, United States.
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, United States.
| |
Collapse
|
2
|
Liu Q, Luo S, Peng J, Chang R. Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing. Int J Nanomedicine 2024; 19:13973-13990. [PMID: 39742091 PMCID: PMC11687314 DOI: 10.2147/ijn.s501970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025] Open
Abstract
Globally, wound care has become a significant burden on public health, with annual medical costs reaching billions of dollars, particularly for the long-term treatment of chronic wounds. Traditional treatments, such as gauze and bandages, often fail to provide an ideal healing environment due to their lack of effective biological activity. Consequently, researchers have increasingly focused on developing new dressings. Among these, electrospinning technology has garnered considerable attention for its ability to produce nano-scale fine fibers. This new type of dressing, with its unique physical and chemical properties-especially in enhancing breathability, increasing specific surface area, optimising porosity, and improving flexibility-demonstrates significant advantages in promoting wound healing, reducing the risk of infection, and improving overall healing outcomes. Additionally, the application of natural products from plants in electrospinning technology further enhances the effectiveness of dressings. These natural products not only exhibit good biocompatibility but are also rich in pharmacologically active ingredients, such as antibacterial, anti-inflammatory, and antioxidant compounds. They can serve as both the substrate for nanofibers and as bioactive components, effectively promoting cell proliferation and tissue regeneration, thereby accelerating wound healing and reducing the risk of complications. This article reviews the application of plant natural product nanofibers prepared by electrospinning technology in wound healing, focussing on the development and optimisation of these nanofibers, discussing the advantages and challenges of using plant natural products in this technology, and outlining future research directions and application prospects in this field.
Collapse
Affiliation(s)
- Qin Liu
- School of Government, Yunnan University, Kunming, 650504, People’s Republic of China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Shicui Luo
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Junjie Peng
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Renjie Chang
- Digestive Endoscopy Center, Department of Spleen and Gastroenterology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, People’s Republic of China
| |
Collapse
|
3
|
Hua N, Ren X, Yang F, Huang Y, Wei F, Yang L. The Effect of Hydrodynamic Cavitation on the Structural and Functional Properties of Soy Protein Isolate-Lignan/Stilbene Polyphenol Conjugates. Foods 2024; 13:3609. [PMID: 39594025 PMCID: PMC11594026 DOI: 10.3390/foods13223609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, hydrodynamic cavitation technology was utilized to prepare conjugates of soy protein isolate (SPI) with polyphenols, including resveratrol (RA) and polydatin (PD) from the stilbene category, as well as arctiin (AC) and magnolol (MN) from the lignan category. To investigate the effects of hydrodynamic cavitation treatment on the interactions between SPI and these polyphenols, the polyphenol binding capacity with SPI was measured and the changes in the exposed sulfhydryl and free amino contents were analyzed. Various methods, including ultraviolet-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy, were also used to characterize the structural properties of the SPI-polyphenol conjugates. The results showed that compared to untreated SPI, SPI treated with hydrodynamic cavitation exposed more active groups, facilitating a greater binding capacity with the polyphenols. After the hydrodynamic cavitation treatment, the ultraviolet-visible absorption of the SPI-polyphenol conjugates increased while the fluorescence intensity decreased. Additionally, the content of exposed sulfhydryl and free amino groups declined, and changes in the secondary structure were observed, characterized by an increase in the α-helix and random coil content accompanied by a decrease in the β-sheet and β-turn content. Furthermore, the SPI-polyphenol conjugates treated with hydrodynamic cavitation demonstrated improved emulsifying characteristics and antioxidant activity. As a result, hydrodynamic cavitation could be identified as an innovative technique for the preparation of protein-phenolic conjugates.
Collapse
Affiliation(s)
- Ning Hua
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (N.H.); (F.Y.); (Y.H.); (F.W.); (L.Y.)
| | - Xian’e Ren
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (N.H.); (F.Y.); (Y.H.); (F.W.); (L.Y.)
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Feng Yang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (N.H.); (F.Y.); (Y.H.); (F.W.); (L.Y.)
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Yongchun Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (N.H.); (F.Y.); (Y.H.); (F.W.); (L.Y.)
- Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Fengyan Wei
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (N.H.); (F.Y.); (Y.H.); (F.W.); (L.Y.)
| | - Lihui Yang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (N.H.); (F.Y.); (Y.H.); (F.W.); (L.Y.)
| |
Collapse
|
4
|
Jiang J, Qian S, Song T, Lu X, Zhan D, Zhang H, Liu J. Food-packaging applications and mechanism of polysaccharides and polyphenols in multicomponent protein complex system: A review. Int J Biol Macromol 2024; 270:132513. [PMID: 38777018 DOI: 10.1016/j.ijbiomac.2024.132513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
With the increasingly mature research on protein-based multi-component systems at home and abroad, the current research on protein-based functional systems has also become a hot spot and focus in recent years. In the functional system, the types of functional factors and their interactions with other components are usually considered to be the subjective factors of the functional strength of the system. Because this process is accompanied by the transfer of protons and electrons in the system, it has antioxidant, antibacterial and anti-inflammatory properties. Polyphenols and polysaccharides have the advantages of wide source, excellent functionality and good compatibility with proteins, and have become excellent and representative functional factors. However, polyphenols and polysaccharides are usually accompanied by poor stability, poor solubility and low bioavailability when used as functional factors. Therefore, the effect of separate release and delivery will inevitably lead to non-significant or direct degradation. After forming a multi-component composite system with the protein, the functional factor will form a stable system driven by hydrogen bonds, hydrophobic forces and electrostatic forces between the functional factor and the protein. When used as a delivery system, it will protect the functional factor, and when released, through the specific recognition of the cell membrane receptor signal, the effect of fixed-point delivery is achieved. In addition, this multi-component composite system can also form a functional composite film by other means, which has a long-term significance for prolonging the shelf life of food and carrying out specific antibacterial.
Collapse
Affiliation(s)
- Jing Jiang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Xiangning Lu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Dongling Zhan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Zhao J, Yuan H, Chen Y, Fang X, Li Y, Yao H, Li W. Soy protein isolate-catechin complexes conjugated by pre-heating treatment for enhancing emulsifying properties: Molecular structures and binding mechanisms. Int J Biol Macromol 2024; 267:131157. [PMID: 38552684 DOI: 10.1016/j.ijbiomac.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
This study aimed to investigate the impact of different pre-heating temperatures (ranging from 40 °C to 80 °C) on the interactions between soy protein isolate (SPI) and catechin to effectively control catechin encapsulation efficiency and optimize the emulsifying properties of soy protein isolate. Results showed that optimal heat treatment at 70 °C improved catechin encapsulation efficiency up to 93.71 ± 0.14 %, along with the highest solubility, enhanced emulsification activity index and improved thermal stability of the protein. Multiple spectroscopic techniques revealed that increasing pretreatment temperature (from 40 °C to 70 °C) altered the secondary structures of SPI, resulting in a more stable unfolded structure for the composite system with a significant increase in α-helical structures and a decrease in random coil and β-sheet structures. Moreover, optimal heat treatment also leads to an augmentation of free sulfhydryl groups within complex as well as exposure of more internal chromophore amino acids on molecular surface. Size-exclusion high-performance liquid chromatography and SDS-PAGE analysis indicated that the band intensity of newly formed high-molecular-weight soluble macromolecules (>180 kDa) increased as the pre-heating temperature rose. Furthermore, fluorescence spectroscopy and molecular docking analysis suggest that hydrophobic and covalent interactions were involved in complex formation, which intensified with increasing temperature.
Collapse
Affiliation(s)
- Juyang Zhao
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China; College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| | - Huiping Yuan
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, Henan 450064, China
| | - Yiyu Chen
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xuwei Fang
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yuqi Li
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Hengzhe Yao
- Culinary Arts Department, Qingdao Vocational and Technical College of Hotel Management, Qingdao, Shandong 266100, China
| | - Wenlan Li
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
6
|
Guo X, Wei Y, Liu P, Deng X, Zhu X, Wang Z, Zhang J. Study of four polyphenol- Coregonus peled (C. peled) myofibrillar protein interactions on protein structure and gel properties. Food Chem X 2024; 21:101063. [PMID: 38162040 PMCID: PMC10757253 DOI: 10.1016/j.fochx.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
The effects of four polyphenols-chlorogenic acid (CA), gallic acid (GA), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG) on the structure, gel properties, and interaction mechanisms of myofibrillar protein (MP) were studied. The changes in MP structure with polyphenols were analyzed using circular dichroism. The ultraviolet and fluorescence spectra and thermodynamic analysis indicated that the type of binding between the four polyphenols with the MP was static quenching of complex formation. GA had a more pronounced effect on improving MP gel properties. Finally, molecular docking determined that the affinity of the protein with the four polyphenols was in the order EGCG > ECG > CA > GA, with the main interaction force being hydrophobic interactions and hydrogen bonding, but hydrogen bonding dominates the interaction between GA and the protein. The findings illuminate the mechanism of MP binding to different polyphenols and facilitate the study of polyphenol-protein properties.
Collapse
Affiliation(s)
- Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yabo Wei
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhouping Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
7
|
Yan S, Wang Q, Yu J, Li Y, Qi B. Ultrasound-assisted preparation of protein-polyphenol conjugates and their structural and functional characteristics. ULTRASONICS SONOCHEMISTRY 2023; 100:106645. [PMID: 37837709 PMCID: PMC10582743 DOI: 10.1016/j.ultsonch.2023.106645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Herein, ultrasound-assisted conventional covalent binding methods (alkali treatment, free radical mediation, and an enzymatic method) were used to prepare soybean protein isolate (SPI)-(-)-epigallocatechin gallate (EGCG) conjugates to investigate the enhancement effect of the ultrasound synergistic treatment. In addition, the influence of EGCG grafting on the structure and properties of SPI was evaluated via reactive group analysis, spectral analysis, surface hydrophobicity measurements, emulsification property assessment, and α-glucosidase inhibition analysis. The obtained results revealed that the enzymatic method produced the highest polyphenol grafting content among the conventional techniques. Meanwhile, ultrasound treatment increased the amount of grafted polyphenol species during the alkali treatment and free radical mediation procedure, decreased the grafting efficiency in the enzymatic method, and maximized the grafting efficiency during the alkali treatment. In addition, reactive group and spectral analyses demonstrated that EGCG formed C-N and C-S bonds with SPI and decreased the α-helix content in the protein structure, thereby increasing the molecular flexibility of SPI. It also produced hydrogen bonds and hydrophobic interactions, as demonstrated by the results of molecular docking. Furthermore, the EGCG grafting of SPI conducted under the ultrasound-assisted conditions endowed SPI with unique functional characteristics, including good emulsification and antioxidant properties and high α-glucosidase inhibitory activity, while the ultrasound-assisted alkali treatment resulted in the optimal functional properties. The results of this study provide new insights into the effective preparation of SPI-EGCG complexes with multiple functionalities, thereby expanding the scope of high-value SPI utilization.
Collapse
Affiliation(s)
- Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaye Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|