1
|
Srivastava N, Khare SK. Advances in Microbial Alkaline Proteases: Addressing Industrial Bottlenecks Through Genetic and Enzyme Engineering. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05270-9. [PMID: 40372653 DOI: 10.1007/s12010-025-05270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Microbial alkaline proteases are versatile enzymes chiefly employed in various industrial sectors, viz., food processing, detergents, leather, textile, pharmaceutical industries. However, the existing bottlenecks, such as lower enzyme yields, stability, purification, specificity, and catalytic rates, bring resistance toward their industrial suitability. The robust microbes are prominent sources of stable enzymes. However, further challenges may exist, such as low yield, difficult purification, and lesser enzymatic efficiency. With the advent of advanced genomic and enzyme engineering approaches, such bottlenecks can be overcome. Initially, the microbial genomes can be used as novel repositories for stable enzyme sequences for further heterologous production with higher enzymatic yields and an easier purification process. Moreover, enzyme improvement through directed evolution and rational engineering could enhance enzyme stability and efficiency. Currently, conventional enzyme improvement methods are increasingly replaced by Artificial Intelligence-Machine Learning (AI-ML) and computational data-driven tools that provide precise information for tailoring enzymes for industrial endeavors. Hence, the current review encompasses a deliberate study of microbial alkaline proteases, their major industrial applications, and the bottlenecks in their commercial implementations. Further, it presents in-detailed solutions, including genetic and enzyme engineering, and insights toward incorporating advanced tools like AI-ML and de novo enzyme engineering to subside the existing challenges.
Collapse
Affiliation(s)
- Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
2
|
Zhang Y, Zhang P, Chen Q, Wang A, Dong L, Zhang L. Preliminary Study on the Functions of Peptides Obtained from White Mullet ( Ophiocephalus argus var. Kimnra) Meat. Foods 2025; 14:1322. [PMID: 40282724 PMCID: PMC12026662 DOI: 10.3390/foods14081322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
To explore the functions of peptides obtained from white mullet (Ophiocephalus argus var. Kimnra) meat, the meat was hydrolyzed via simulated digestion in vitro, and the functions (milk secretion ability, antioxidant activity, angiotensin-converting enzyme (ACE) inhibitory activity, and Fe2+ chelation) of the obtained peptide were evaluated. The results indicated that both low-dose and high-dose peptide promoted milk secretion in lactating rats in vivo; the peptides had scavenging effects on free radicals of 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH), 2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS), OH-, and O2-, and the EC50 concentrations were 55.94 mg/mL, 10.14 mg/mL, 52.92 mg/mL, and 28.53 mg/mL, respectively. The peptides had an inhibitory effect on ACE, and the IC50 concentration was 15.81 mg/mL. The peptides had a chelating ability to Fe2+, and the IC50 concentration was 69.05 mg/mL. These results indicate that peptides obtained from white mullet meat exhibit milk secretion-promoting ability, antioxidant activity, ACE-inhibitory activity, and Fe2+ chelation, making this an effective approach for isolating specific functional peptides and identifying their sequences from the digested solution of white mullet meat.
Collapse
Affiliation(s)
- Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | | | | | | | | | | |
Collapse
|
3
|
Akbarbaglu Z, Mazloomi N, Karimzadeh L, Sarabandi K, Jafari SM, Hesarinejad MA. Nutritional value, antibacterial activity, ACE and DPP IV inhibitory of red pomegranate seeds protein and peptides. Sci Rep 2025; 15:10802. [PMID: 40155752 PMCID: PMC11953263 DOI: 10.1038/s41598-025-95089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
One of the challenges related to food and agriculture industries is the production of waste and by-products. In this study, red pomegranate seeds (PS) was selected as a by-product (from oil extraction) for the production of bioactive hydrolysate (with Alcalase, pancreatin, trypsin and pepsin). The composition of essential (~ 23.3%), hydrophobic (~ 32.9%), antioxidant (~ 13.9%) amino acids, and PER index (~ 2.1) especially in hydrolysates by alcalase (H-Al) indicated the nutritional value, antioxidant activity and high digestibility of hydrolysate. Secondary structures and amide regions (I, II and III) were identified in PS-protein. Enzymolysis led to the improvement of solubility, emulsification and foaming capacity of PS-protein, especially in acidic conditions. The water and oil holding capacity were also affected by the type of proteases. The most biological activities (DPPH, ABTS, OH, NO radicals scavenging, reducing power, total antioxidant and metal-ions chelating activities), also, Angiotensin I-converting enzyme (ACE) (50.1%) and Dipeptidyl peptidase-4 (DPP-IV) (61.2%) inhibition were achieved through hydrolysis using Alcalase and pancreatin. While, the highest antibacterial effect (E. coli and S. aureus) was obtained after hydrolysis with Alcalase. PS- hydrolysate can be considered as a natural nutritious, functional, antioxidant, preservative, blood pressure lowering and antidiabetic compounds in food formulations and dietary supplements.
Collapse
Affiliation(s)
- Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, 5166616471, Iran
| | - Narges Mazloomi
- Department of Nutritional Sciences, School of Health, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Laleh Karimzadeh
- Department of Nutritional Sciences, School of Health, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
4
|
Guo X, Yu X, Hu X, Ren L. Improvement of egg yolk powder properties through ultrasound coupled sodium sulfite pretreatment assisted enzymatic hydrolysis and underlying mechanism. Food Chem 2025; 464:141585. [PMID: 39427618 DOI: 10.1016/j.foodchem.2024.141585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Egg yolk is an excellent protein source for the production of bioactive peptides. However, the recent method need to remove lipid first which involves wastage and pollution of organic reagents. Therefore, the process of directly using oily yolk powder to prepare egg yolk peptides has attracted much attention. This study developed a one-step process to simultaneously extract oil and hydrolyze proteins based on an ultrasound coupled sodium sulfite pretreatment (UCSSP) assisted enzymatic hydrolysis for egg yolk powder. Results showed that UCSSP increased the oil extraction rate from zero to 75 % with 59.35 g/L of soluble protein and 33.99 g/L of peptide. Further analysis of the underlying mechanism demonstrated that ultrasound pre-treatment could change the secondary structure of EYP while sodium sulfite pre-treatment softened the protein and induced more hydrophobic groups exposed, thus inducing more lipoprotein released for hydrolysis. In addition, the proportion of peptides ranging from 180 Da to 3000 Da in the UCSSP group increased from 31.19 % before to 79.74 %, which was 31.27 % and 6.16 % higher than that of UP and SP. Furthermore, the obtained peptides showed obvious activities in uric acid-lowering, anti-obesity and antioxidant with 56.24 % inhibition in XOD activity and close antioxidant activity to vitamin C, implying it a potential health product.
Collapse
Affiliation(s)
- Xun Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaolin Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu JanStar Biotechnology Co., Ltd., No. 6, Dongsheng West Road, Jiangsu, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
5
|
Zhang Y, Cui W, Zhou H, Zou L, Wang Z, Cai K, Xu B. Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine. Foods 2025; 14:192. [PMID: 39856859 PMCID: PMC11764818 DOI: 10.3390/foods14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Porcine blood is rich in protein and has always been the focus of research. Heme-peptides prepared from porcine hemoglobin are susceptible to oxidative degeneration during preparation and storage, thus affecting their function and stability. This study evaluated the enhancement effects of L-lysine (Lys) on recovery rate, antioxidant activity, stability, and structure. The results indicated that adding 1% Lys during enzymatic hydrolysis significantly increased the recovery rate of ferrous heme and peptide content by 93.88% and 15.30% (p < 0.05), respectively, and maximally enhanced antioxidant activity by 37.85% (p < 0.05). The contents of iron, ferrous ion, and ferrous heme in the heme-peptides were significantly increased by 97.52%, 121. 97%, and 74.45% (p < 0.05), respectively. Additionally, Lys improved the resistance to pH, temperature, metal ions, pepsin, and trypsin. Meanwhile, the effects of Lys resulted in heme-peptides with a smaller particle size, higher zeta potentials, and a smoother micromorphology. Fourier-transform infrared spectroscopy and fluorescence spectroscopy analysis showed that Lys enhanced the conformational stability of the heme-peptides. Molecular docking further suggested that hydrogen bonding was the main driver of the connections between Lys and the heme-peptides. This study provides theoretical guidance for the efficient utilization of heme-peptides in the food industry.
Collapse
Affiliation(s)
- Yinghui Zhang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China; (Y.Z.); (W.C.); (L.Z.); (Z.W.); (B.X.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Wei Cui
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China; (Y.Z.); (W.C.); (L.Z.); (Z.W.); (B.X.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Hui Zhou
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China; (Y.Z.); (W.C.); (L.Z.); (Z.W.); (B.X.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Lifang Zou
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China; (Y.Z.); (W.C.); (L.Z.); (Z.W.); (B.X.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Zhaoming Wang
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China; (Y.Z.); (W.C.); (L.Z.); (Z.W.); (B.X.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Kezhou Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Baocai Xu
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 230601, China; (Y.Z.); (W.C.); (L.Z.); (Z.W.); (B.X.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| |
Collapse
|
6
|
Ma Y, Hu C, Zhang J, Xu C, Ma L, Chang Y, Hussain MA, Ma J, Hou J, Jiang Z. Lactobacillus plantarum 69-2 combined with α-lactalbumin hydrolysate alleviates DSS-induced ulcerative colitis through the TLR4/NF-κB inflammatory pathway and the gut microbiota in mice. Food Funct 2024; 15:10987-11004. [PMID: 39400032 DOI: 10.1039/d4fo02975e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Ulcerative colitis (UC), an inflammatory bowel disease, seriously affects people's quality of life. Diet-derived active peptides and Lactobacillus plantarum have shown promise for mitigating symptoms of UC. This investigation explored the combined effects of α-lactalbumin (α-LA) hydrolysate, which boasts a high antioxidant capacity, and L. plantarum 69-2 (L69-2) on a colitis mouse model. The results showed that α-LA hydrolysate with a molecular weight <3 kDa obtained with neutral protease had excellent antioxidant activity and potential to enhance probiotic proliferation. Furthermore, the synergistic application of α-LA hydrolysate and L69-2 could alleviate the adverse impact of colon inflammation by reducing oxidative stress and regulating immune disorders. It maintains the intestinal epithelial barrier, thereby reducing immune system over-activation, promoting the colonization of beneficial bacteria, and regulating intestinal immune responses. Simultaneously, it remodels the structure of the disrupted intestinal flora. The increase in the richness and diversity of the flora leads to the production of beneficial metabolites, which in turn inhibits the activation of the TLR4/NF-κB inflammatory pathway. This study provides a novel perspective on milk-derived peptide synergism with probiotics in alleviating UC.
Collapse
Affiliation(s)
- Yue Ma
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chuanbing Hu
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jing Zhang
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lizhi Ma
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Yunhe Chang
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Muhammad Altaf Hussain
- Faculty of Veterinary and Animal Science Lasbela University of Agriculture Water and Marine Sciences, Balochistan, 90159, Pakistan
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang, 550005, China. houjuncai88@126com
- Engineering Technology Research Center for Processing and Comprehensive Utilization of Idesia polycarpa of National Forestry and Grassland Administration, Guiyang, 550005, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Zhao Q, McClements DJ, Li J, Chang C, Su Y, Gu L, Yang Y. Egg Yolk Selenopeptides: Preparation, Characterization, and Immunomodulatory Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5237-5246. [PMID: 38427027 DOI: 10.1021/acs.jafc.3c08900] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this study, egg yolk selenium peptides (Se-EYP) were prepared using double-enzyme hydrolysis combined with a shearing pretreatment. The properties of the selenopeptides formed were then characterized, including their yield, composition, molecular weight distribution, antioxidant activity, in vitro digestion, and immunomodulatory activity. The peptide yield obtained after enzymatic hydrolysis using a combination of alkaline protease and neutral protease was 74.5%, of which 82.6% had a molecular weight <1000 Da. The selenium content of the lyophilized solid product was 4.01 μg/g. Chromatography-mass spectrometry analysis showed that 88.6% of selenium in Se-EYP was in the organic form, of which SeMet accounted for 60.3%, SeCys2 for 21.8%, and MeSeCys for 17.9%. After being exposed to in vitro simulated digestion, Se-EYP still had 65.1% of oligopeptides present, and the in vitro antioxidant activity was enhanced. Moreover, Se-EYP exhibited superior immune detection indices, including immune organ index, level of immune factors in the serum, histopathological changes in the spleen, and selenium content in the liver. Our results suggest that Se-EYP may be used as selenium-enriched ingredients in functional food products.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi 415400, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi 415400, China
| |
Collapse
|
8
|
Gou F, Gao S, Li B. Lipid-Induced Oxidative Modifications Decrease the Bioactivities of Collagen Hydrolysates from Fish Skin: The Underlying Mechanism Based on the Proteomic Strategy. Foods 2024; 13:583. [PMID: 38397560 PMCID: PMC10888297 DOI: 10.3390/foods13040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Collagen peptides exhibit various bioactivities, including antioxidation and ACE inhibition. However, the bioactivities of collagen peptides decrease gradually due to oxidation deterioration during storage, and this degradation of bioactive peptides is rarely studied. In this study, the oxidative levels and the bioactivities of collagen peptides were investigated during an oxidative-induced storage accelerated by lipids. The results suggested that the oxidation of collagen peptides was divided into three stages. At the early stage, the carbonyl content of collagen peptides increased rapidly (from 2.32 to 3.72 μmol/g peptide), showing a close correlation with their bioactivities (for antioxidation, r = -0.947; for ACE inhibition, r = -0.911). The oxidation level in the middle stage continued but was stable, and the bioactivities decreased. At the later stage, the Schiff base and dityrosine content increased significantly and showed a strong correlation with the bioactivities (antioxidation, r = -0.820, -0.801; ACE inhibition, r = -0.779, -0.865). The amino acid and proteomic analyses showed that Met, Lys, and Arg were susceptible to oxidation and revealed their oxidative modification types. This study provided an insight into the dynamic oxidative modifications of collagen peptides, which were shown to correlate well with the change in bioactivities.
Collapse
Affiliation(s)
| | | | - Bo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (F.G.); (S.G.)
| |
Collapse
|
9
|
Li L, Liu S, Sun N, Cui W, Cheng L, Ren K, Wang M, Tong X, Jiang L, Wang H. Effects of sucrase enzymatic hydrolysis combined with Maillard reaction on soy protein hydrolysates: Bitterness and functional properties. Int J Biol Macromol 2024; 256:128344. [PMID: 38007016 DOI: 10.1016/j.ijbiomac.2023.128344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
In this study, sucrase was added to convert non-reducing sugars into reducing sugars in skim obtained by enzyme-assisted aqueous extraction processing (EAEP), then the variation of soy protein hydrolysates (SPH) from the skim under different Maillard reaction times were studied. We conducted one-factor experiment and selected 2 mg/mL sucrase for enzymatic hydrolysis for 2 h. The structure of SPH was investigated by Fourier transform infrared spectroscopy, intrinsic fluorescence spectroscopy, and amino acid composition. Results showed that the Maillard reaction loosened the SPH structure and produced new functional groups. Sensory evaluation, electronic tongue, electronic nose and GC-MS were used to study the sensory characteristics of SPH, we found that the bitterness value was significantly reduced to 1.71 from 4.63 after 2 h of the Maillard reaction. The change of bitterness was related to amino acid composition and the production of pyrazine. Additionally, the iron reduction ability, DPPH free radical scavenging ability, and emulsifying activity reached the highest at 2 h of reaction with 0.80, 73.94 %, and 56.09 %. The solubility, emulsifying stability, and foaming capacity increased and gradually stabilized with the increasing reaction time. Therefore, this paper presents an effective method for generating SPH with low bitterness and high functional properties.
Collapse
Affiliation(s)
- Lanxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Na Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenyu Cui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Lu H, Xie T, Wu Q, Hu Z, Luo Y, Luo F. Alpha-Glucosidase Inhibitory Peptides: Sources, Preparations, Identifications, and Action Mechanisms. Nutrients 2023; 15:4267. [PMID: 37836551 PMCID: PMC10574726 DOI: 10.3390/nu15194267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
With the change in people's lifestyle, diabetes has emerged as a chronic disease that poses a serious threat to human health, alongside tumor, cardiovascular, and cerebrovascular diseases. α-glucosidase inhibitors, which are oral drugs, have proven effective in preventing and managing this disease. Studies have suggested that bioactive peptides could serve as a potential source of α-glucosidase inhibitors. These peptides possess certain hypoglycemic activity and can effectively regulate postprandial blood glucose levels by inhibiting α-glucosidase activity, thus intervening and regulating diabetes. This paper provides a systematic summary of the sources, isolation, purification, bioavailability, and possible mechanisms of α-glucosidase inhibitory peptides. The sources of the α-glucosidase inhibitory peptides were introduced with emphasis on animals, plants, and microorganisms. This paper also points out the problems in the research process of α-glucosidase inhibitory peptide, with a view to providing certain theoretical support for the further study of this peptide.
Collapse
Affiliation(s)
- Han Lu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
| | - Yi Luo
- Department of Gastroenterology, Xiangya School of Medicine, Central South University, Changsha 410008, China;
| | - Feijun Luo
- Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Central South University of Forestry and Technology, Changsha 410004, China; (H.L.); (T.X.); (Q.W.); (Z.H.)
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
11
|
Sarabandi K, Akbarbaglu Z, Mazloomi N, Gharehbeglou P, Peighambardoust SH, Jafari SM. Structural modification of poppy-pollen protein as a natural antioxidant, emulsifier and carrier in spray-drying of O/W-emulsion: Physicochemical and oxidative stabilization. Int J Biol Macromol 2023; 250:126260. [PMID: 37567523 DOI: 10.1016/j.ijbiomac.2023.126260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
This study was aimed to investigate the efficiency of poppy-pollen (PP) protein and peptides as carrier for spray-drying encapsulation of grape-seed oil (GSO). The composition of amino acids, functional properties and bioactivity (scavenging of DPPH, ABTS, OH, and nitric-oxide radicals, reducing power, total antioxidant, TBARS levels in O/W-emulsion, and chelation of Fe2+ and Cu2+ ions) of PP-protein were affected by the enzymolysis time. Partial enzymolysis (30 min) led to improved solubility, protein surface activity and increased physical stability of GSO/W emulsion (relative to creaming, aggregation and flocculation) during storage. Also, spray-dried emulsions with this type of carrier (H-30) had the highest production yield (~67 %), solubility (~92 %), flowability, encapsulation efficiency (~96 %), reconstitution ability (least size and EE changes), physical and oxidative stability. The evaluation of the chemical structures (FTIR) indicated the formation of hydrogen bonds between the cis-alkene groups of fatty acids and the hydroxyl groups of the amide A and B regions, as well as the trapping of oil in the carrier matrix. SEM images illustrated the effect of native protein carriers (particles with smooth, dents, and hollow surfaces with surface pores), partially (wrinkled and reservoir-type), and strongly (irregular structures, sticky and amorphous agglomerates) hydrolyzed peptides on the morphology of oily-particles. The results of this research indicate the usability of partially hydrolyzed poppy-pollen protein as a source of natural antioxidant, emulsifier, and carrier in the production, stabilization, and encapsulation of oxidation-sensitive bioactive components and emulsions.
Collapse
Affiliation(s)
- Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Narges Mazloomi
- Department of Nutritional Sciences, School of Health, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Pouria Gharehbeglou
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences 19 and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
Senadheera TRL, Hossain A, Dave D, Shahidi F. Antioxidant and ACE-Inhibitory Activity of Protein Hydrolysates Produced from Atlantic Sea Cucumber ( Cucumaria frondosa). Molecules 2023; 28:5263. [PMID: 37446924 DOI: 10.3390/molecules28135263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Atlantic sea cucumber is a benthic marine echinoderm found in Northwest Atlantic waters and is harvested mainly for its body wall. The body wall, along with internal organs and aquaphyrangeal bulb/flower, is a rich source of proteins, where the latter parts are often considered as processing discards. The objective of this research was to produce protein hydrolysates from sea cucumber tissues (body wall, flower, and internal organs) with bioactive properties associated with antioxidants, DNA and LDL cholesterol oxidation inhibition, and angiotensin-I-converting enzyme (ACE) inhibitory effects. The protein hydrolysates were prepared using food-grade commercial enzymes, namely Alcalase, Corolase, and Flavourzyme, individually and in combination, and found that the combination of enzymes exhibited stronger antioxidant potential than the individual enzymes, as well as their untreated counterparts. Similar trends were also observed for the DNA and LDL cholesterol oxidation inhibition and ACE-inhibitory properties of sea cucumber protein hydrolysates, mainly those that were prepared from the flower. Thus, the findings of this study revealed potential applications of sea cucumber-derived protein hydrolysates in functional foods, nutraceuticals, and dietary supplements, as well as natural therapeutics.
Collapse
Affiliation(s)
- Tharindu R L Senadheera
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
13
|
Akbarbaglu Z, Tamjidi F, Sarabandi K, Ayaseh A. Physicochemical characteristics and antioxidant stability of spray-dried soy peptide fractions. Food Sci Nutr 2023; 11:3949-3958. [PMID: 37457162 PMCID: PMC10345720 DOI: 10.1002/fsn3.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 07/18/2023] Open
Abstract
The direct addition of health-promoting peptides to food products is limited due to their physicochemical instability and bitter taste as well as their bio-functionality may be influenced by MW. In this study, SPI hydrolysate (SPIH) was Alcalase-prepared, size-fractionated (<10, 10-30, and 30-100 kD), and the amino acid composition of peptide fractions determined. The physicochemical properties, morphology, and antioxidant stability of the fractions were also investigated after spray-drying encapsulation in maltodextrin-WPC carrier. The two low MW peptide fractions (especially, PF < 10) were more active than intact SPI, SPIH, and high MW peptide fraction in scavenging free radicals and chelating transition metal ions. As compared to the particles containing SPIH, those containing the smallest peptide fraction (PF < 10) had higher solubility and hygroscopicity, lower production yield and wettability, and more wrinkles, indentations and surface roughness. The highest antioxidant stability during spray-drying was observed for the two low MW peptide fractions, which examined by scavenging of free radicals of DPPH (88%), ABTS (97%), OH (93%) and NO (80%), chelating of iron (88%) and copper (87-90%) ions, reducing power (93%), and total antioxidant activity (90%). This finding reflects more structural and biological stability of the low MW fractions to shear stress and dehydration during spray-drying, as compared with SPIH. The spray-drying encapsulated soy peptide fractions may be used as nutraceuticals for the development of functional foods.
Collapse
Affiliation(s)
- Zahra Akbarbaglu
- Department of Food Science, College of AgricultureUniversity of TabrizTabrizIran
| | - Fardin Tamjidi
- Department of Food Science & Engineering, Faculty of AgricultureUniversity of KurdistanSanandajIran
| | - Khashayar Sarabandi
- Department of Food Science & Technology, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Ali Ayaseh
- Department of Food Science, College of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
14
|
Liu Y, Ahumada AL, Bayraktar E, Schwartz P, Chowdhury M, Shi S, Sebastian MM, Khant H, de Val N, Bayram NN, Zhang G, Vu TC, Jie Z, Jennings NB, Rodriguez-Aguayo C, Swain J, Stur E, Mangala LS, Wu Y, Nagaraju S, Ermias B, Li C, Lopez-Berestein G, Braam J, Sood AK. Enhancing oral delivery of plant-derived vesicles for colitis. J Control Release 2023; 357:472-483. [PMID: 37031740 PMCID: PMC10191613 DOI: 10.1016/j.jconrel.2023.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
Plant-derived vesicles (PDVs) are attractive for therapeutic applications, including as potential nanocarriers. However, a concern with oral delivery of PDVs is whether they would remain intact in the gastrointestinal tract. We found that 82% of cabbage PDVs were destroyed under conditions mimicking the upper digestive tract. To overcome this limitation, we developed a delivery method whereby lyophilized Eudragit S100-coated cabbage PDVs were packaged into a capsule (Cap-cPDVs). Lyophilization and suspension of PDVs did not have an appreciable impact on PDV structure, number, or therapeutic effect. Additionally, packaging the lyophilized Eudragit S100-coated PDVs into capsules allowed them to pass through the upper gastrointestinal tract for delivery into the colon better than did suspension of PDVs in phosphate-buffered saline. Cap-cPDVs showed robust therapeutic effect in a dextran sulfate sodium-induced colitis mouse model. These findings could have broad implications for the use of PDVs as orally delivered nanocarriers of natural therapeutic plant compounds or other therapeutics.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of BioSciences, Rice University, Houston, TX 77005, USA.
| | - Adrian Lankenau Ahumada
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of BioSciences, Rice University, Houston, TX 77005, USA.
| | - Emine Bayraktar
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Paul Schwartz
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Mamur Chowdhury
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Sixiang Shi
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manu M Sebastian
- Department of Veterinary Medicine and Surgery, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Htet Khant
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Inc., Frederick, MD 21702, USA.
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Inc., Frederick, MD 21702, USA.
| | - Nazende Nur Bayram
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Guodong Zhang
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Thanh Chung Vu
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Nicholas B Jennings
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jody Swain
- Department of Veterinary Medicine and Surgery, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Elaine Stur
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yutuan Wu
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Supriya Nagaraju
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Brooke Ermias
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Chun Li
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Janet Braam
- Department of BioSciences, Rice University, Houston, TX 77005, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Cheng J, Tang D, Yang H, Wang X, Lin Y, Liu X. The effects of mulberry polyphenols on the digestibility and absorption properties of pork myofibrillar protein in vitro. Meat Sci 2023; 202:109205. [PMID: 37172549 DOI: 10.1016/j.meatsci.2023.109205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The objective of the present study was to explore the effect of mulberry polyphenols on the digestibility and absorption properties of myofibrillar protein (MP) in vitro. MP was extracted from the Longissimus et thoracis muscle of 18 different pig carcasses and the MP-mulberry polyphenols complex was prepared. The antioxidant activity of digestive juice, degradation of both MP and polyphenols, and the metabolism of MP and the MP-polyphenols complex by intestinal microbial activity during digestion and fermentation in vitro were compared. The results showed that mulberry polyphenols significantly affect the digestibility of MP and the antioxidant activity of digestive juices during digestion (P < 0.05). After the modification of the polyphenols, the hydrolysis of MP increased from 55.4% to 64.0%, and the molecular weight of protein digestion product significantly decreased (P < 0.05). The scavenging rates of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl in the final digestive juice were 350.1 μmol Trolox/mg protein and 34.0%, respectively, which were 0.34 and 0.47-fold higher than those of the control (P < 0.05). Furthermore, the release and degradation of phenolic compounds mainly occurred during intestinal digestion, and polyphenols that reached the colon after digestion, through the fermentation of intestinal microorganisms in vitro, enriched Lactobacillus and promoted the production of short-chain fatty acids which has obvious potential to improve intestinal health.
Collapse
Affiliation(s)
- Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xuping Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Yaosheng Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
16
|
Ahmed SA, Taie HAA, Abdel Wahab WA. Antioxidant capacity and antitumor activity of the bioactive protein prepared from orange peel residues as a by-product using fungal protease. Int J Biol Macromol 2023; 234:123578. [PMID: 36764344 DOI: 10.1016/j.ijbiomac.2023.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Agricultural and industrial residues (AIR) are renewable biomass sources present in large quantities causing pollution. Converting AIR to eco-friendly products (bioactive materials) reduces their quantity and impact on the environment, in addition to reducing production costs. Therefore, orange peel (OP) protein degradation, antioxidant capacity, and antitumor activity were investigated using Aspergillus niger WA 2017 protease. The highest value of the protein hydrolysate with the highest antioxidant using the DPPH method was obtained after 24 h. The single-factor method boosted the protein hydrolysate and the DPPH antioxidant activity by 3.7 and 1.7-fold, respectively. Statistical optimized conditions (Central Composite Method) increased the hydrolysate value and the DPPH antioxidant activity by 1.6 and 1.1-fold, respectively. The central trial samples exhibited the highest DPPH antioxidant activity (62.37 %), while the control sample recorded 20 %. All antioxidant tests in vitro (DPPH, reducing power, ABTS, and FRAP) confirmed the superiority of the potent hydrolysate as a good antioxidant. In vitro antitumor activity, the potent hydrolysate exhibited the highest effect on the Ehrlich Ascites Carcinoma Cells viability as it recorded 60.62 % dead cells. In vivo antitumor activity, the volume of the untreated tumor mice was found to be 1.4-fold bigger than the volume obtained from the potent hydrolysate. The increase in life span (ILS %) for oral treatment and intraperitoneal injection treatment with the potent hydrolysate increased by 13.91 and 19.42 %, respectively, compared to the untreated tumor.
Collapse
Affiliation(s)
- Samia A Ahmed
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
17
|
Milling of wheat bran: Influence on digestibility, hydrolysis and nutritional properties of bran protein during in vitro digestion. Food Chem 2023; 404:134559. [DOI: 10.1016/j.foodchem.2022.134559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
|
18
|
Prediction and Evaluation of Bioactive Properties of Cowpea Protein Hydrolysates. J Food Biochem 2023. [DOI: 10.1155/2023/9095113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Cowpea protein hydrolysates were prepared using thermolysin, alcalase, and trypsin and analysed for bioactive properties, and then, the release of bioactive peptides was investigated in silico. It was found that the degree of hydrolysis reached 48% after 24 h hydrolysis with alcalase. The hydrolysate prepared using alcalase showed higher ACE inhibitory (62%) and DPPH scavenging activity (19%). SDS-PAGE analysis revealed that vignin was the major protein in cowpea protein isolate. In silico analysis indicated the presence of potential bioactive peptides with potent bioactivity in the primary structure of proteins. The 3D structure of proteins was built, upon which bioactive peptides were mapped using their location in the primary structure. The secondary structure and solvent accessible surface around each bioactive peptide were then calculated. On this basis, the higher degree of hydrolysis and bioactive properties of cowpea protein hydrolysate prepared by alcalase were explained, and structural factors influencing the release of bioactive peptides were investigated.
Collapse
|
19
|
Isolation of a Novel Anti-Diabetic α-Glucosidase Oligo-Peptide Inhibitor from Fermented Rice Bran. Foods 2023; 12:foods12010183. [PMID: 36613397 PMCID: PMC9818066 DOI: 10.3390/foods12010183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
At present, the incidence rate of diabetes is increasing gradually, and inhibiting α-glucosidase is one of the effective methods used to control blood sugar. This study identified new peptides from rice bran fermentation broth and evaluated their inhibitory activity and mechanism against α-glucosidase. Rice bran was fermented with Bacillus subtilis MK15 and the polypeptides of <3 kDa were isolated by ultrafiltration and chromatographic column, and were then subjected to LC-MS/MS mass spectrometry analysis. The results revealed that the oligopeptide GLLGY showed the greatest inhibitory activity in vitro. Docking studies with GLLGY on human α-glucosidase (PDB ID 5NN8) suggested a binding energy of −7.1 kcal/mol. GLLGY acts as a non-competitive inhibitor and forms five hydrogen bonds with Asp282, Ser523, Asp616, and His674 of α-glucosidase. Moreover, it retained its inhibitory activity even in a simulated digestion environment in vitro. The oligopeptide GLLGY could be developed into a potential anti-diabetic agent.
Collapse
|
20
|
Hou CY, Hazeena SH, Shih MK, Hsieh SL, Hsieh CW, Liu TT, Chen MH, Huang YW. Structural characteristics of collagen from cuttlefish skin waste extracted at optimized conditions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Tsu Tung Liu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Min-Hung Chen
- Yuan Marketing & Processing Division, Agriculture & Food Agency Council of Agriculture Executive, Nantou, Taiwan
| | - Yu-Wen Huang
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Oquendo LA, Lewis G, Mahdinia E, Harte F. Effect of high-pressure jet processing on the structure and physicochemical properties of plant protein isolate aqueous dispersions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Sarabandi K, Tamjidi F, Akbarbaglu Z, Samborska K, Gharehbeglou P, Kharazmi MS, Jafari SM. Modification of Whey Proteins by Sonication and Hydrolysis for the Emulsification and Spray Drying Encapsulation of Grape Seed Oil. Pharmaceutics 2022; 14:2434. [PMID: 36365250 PMCID: PMC9693466 DOI: 10.3390/pharmaceutics14112434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 01/04/2024] Open
Abstract
In this study, whey protein concentrate (WPC) was sonicated or partially hydrolyzed by Alcalase, then examined as an emulsifier and carrier for the emulsification and spray drying of grape seed oil (GSO)-in-water emulsions. The modification treatments increased the free amino acid content and antioxidant activity (against DPPH and ABTS free radicals), as well as, the solubility, emulsifying, and foaming activities of WPC. The modified WPC-stabilized emulsions had smaller, more homogeneous droplets and a higher zeta potential as compared to intact WPC. The corresponding spray-dried powders also showed improved encapsulation efficiency, oxidative stability, reconstitution ability, flowability, solubility, and hygroscopicity. The morphology of particles obtained from the primary WPC (matrix type, irregular with surface pores) and modified WPC (reservoir type, wrinkled with surface indentations), as well as the oxidative stability of the GSO were influenced by the functional characteristics and antioxidant activity of the carriers. Changes in the secondary structures and amide regions of WPC, as well as the embedding of GSO in its matrix, were deduced from FTIR spectra after modifications. Partial enzymolysis had better results than ultrasonication; hence, the WPC hydrolysates are recommended as emulsifiers, carriers, and antioxidants for the delivery and protection of bioactive compounds.
Collapse
Affiliation(s)
- Khashayar Sarabandi
- Department of Food Science & Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 43463-98167, Iran
| | - Fardin Tamjidi
- Department of Food Science & Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Katarzyna Samborska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
| | - Pouria Gharehbeglou
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49138-15739, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
23
|
Liu C, Zhao M, Wen L, Zhao H. The chemical composition and toxic effects of aqueous extracts of Cyclocarya paliurus leaves. Front Nutr 2022; 9:994055. [PMID: 36245541 PMCID: PMC9557155 DOI: 10.3389/fnut.2022.994055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Cyclocarya paliurus leaves, which possess various bioactivities, have been widely used in dietary supplements or as ingredients in functional foods. However, limited information is available about the toxicity or safety concerns. In the present work, the maximum tolerated dose (MTD) and potential toxicity of the aqueous extracts of C. paliurus leaves (AECPL) were evaluated. Our results indicated that AECPL was rich in phenolics, flavonoids, and polysaccharides, which might be responsible for the health benefits of C. paliurus leaves. The MTD of AECPL was considered to be > 10,000 mg/kg BW in both male and female rats. The acute toxicity study was carried out by a 14-day repeat dose oral toxicity study. The results showed that the rats were all well-tolerated. No treatment-related mortality, abnormal clinical signs, body weight, or food consumption changes were reported during the study. Moreover, AECPL showed no adverse changes in the hematology, serum chemistry, urinalysis parameters, organ weights, gross finding, and histopathology. In this study, the non-observed-adverse-effect level of AECPL was 5,000 mg/kg BW/day, indicating AECPL was safe and can be used in the food industry.
Collapse
Affiliation(s)
- Cencen Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lingrong Wen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongwei Zhao
- Infinitus (China) Company Ltd., Guangzhou, China
- *Correspondence: Hongwei Zhao,
| |
Collapse
|
24
|
Shan J, Xiaoqian D, Xia L, Yu W, Zhilong Z, Zhihui S, Yanjie Q. Oxidative stress, autophagy, and apoptosis induced by doxycycline in loach fin cells in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156379. [PMID: 35654185 DOI: 10.1016/j.scitotenv.2022.156379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxicity, molecular function disorder, mitophagy, and apoptosis were studied in loach fin cells in vitro after exposure to doxycycline (DOX). The semi-lethal concentration of DOX in loach cells was calculated as 668.96 ± 2.83 mol/L. Loss of cell viability and increases in vacuoles and autolysosomes were evident in cells exposed to DOX at 200 and 400 μmol/L, and apoptotic bodies occurred at 600 μmol/L. In addition, Superoxide Dismutase (SOD), catalase (CAT), Na+-K+-ATPase, and Ca2+-ATPase activities increased significantly in cells exposed to 200 μmol/L DOX, and dose-dependent inhibitory effects on activities were observed in cells exposed to 400 and 600 μmol/L DOX. Quantitative gene expression showed that 400 and 600 μmol/L DOX could induce caspase-3- and caspase-8-mediated apoptosis as well as caspase-activated DNase in loach cells. Transcriptome sequencing in DOX vs. control groups found 16,288 differentially expressed genes, among which protein binding (2633, 31.91%) was the most significant in Gene Ontology terms. Furthermore, 11,930 genes were enriched in 298 Kyoto Encyclopedia of Genes and Genomes (KEGG)pathways. The top three upregulated pathways included "lysosome", "protein processing in endoplasmic reticulum", and "proteasome". FPKM analysis indicated that most genes associated with autophagy and in "protein processing in the endoplasmic reticulum", "TNF signaling pathway", and "NF-kappa B signaling pathway" were upregulated. This suggests that at lower concentrations, DOX induces reactive oxidative species (ROS) in loach fin cells to reduce cell proliferation. ROS in turn stimulate oxidant stress, ion excretion capability and mitophagy to maintain cell homeostasis. Apoptosis was induced in cells subjected to higher concentrations of DOX. The transcriptome data and pathways determined in this study will provide a foundation for the analysis of DOX toxicity in loach cells, which must be examined thoroughly to further understand the cytotoxic mechanism of antibiotics in fish cells.
Collapse
Affiliation(s)
- Jiang Shan
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Ding Xiaoqian
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Li Xia
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Wang Yu
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zheng Zhilong
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Shi Zhihui
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Qin Yanjie
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
25
|
Hu J, Wang H, Weng N, Wei T, Tian X, Lu J, Lyu M, Wang S. Novel angiotensin-converting enzyme and pancreatic lipase oligopeptide inhibitors from fermented rice bran. Front Nutr 2022; 9:1010005. [PMID: 36185652 PMCID: PMC9520749 DOI: 10.3389/fnut.2022.1010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
This study determined the inhibitory activity of oligopeptides against angiotensin-converting enzyme (ACE) and pancreatic lipase through in vitro tests, molecular docking, and enzyme inhibition. The results showed that the IC50 of GLLGY, HWP, and VYGF for ACE inhibition was 1 mg/mL, and the IC50 of HWP for pancreatic lipase was 3.95 mg/mL. Molecular docking revealed that the binding energies between GLLGY, HWP, and VYGF and ACE were –9.0, –8.4, and –9.2 kcal/mol, respectively. The binding free energy between HWP and pancreatic lipase was –7.3 kcal/mol. GLLGY, HWP, and VYGF inhibited ACE compentitively. HWP inhibited pancreatic lipase through non-competition. in vitro simulated gastrointestinal digestion, the three oligopeptides still had inhibitory activity and low toxicity. The results revealed that the peptides GLLGY, HWP, and VYGF may be suitable candidates for further research on ACE inhibition, and HWP may be a suitable candidate for studying pancreatic lipase inhibition.
Collapse
Affiliation(s)
- Jingfei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Huanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Nanhai Weng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tong Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xueqing Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Jing Lu,
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Shujun Wang,
| |
Collapse
|
26
|
Ding X, Jiang S, Li X, Wang Y, Zheng Z, Qin Y. Cytotoxicity and apoptosis induced by enrofloxacin in loach fin cells in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109398. [PMID: 35753648 DOI: 10.1016/j.cbpc.2022.109398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
The cytotoxic effect and cell death were studied in loach fin cells in vitro after enrofloxacin (ENR) exposure. The semi-lethal concentration of ENR for loach cells was calculated as 1296.2 ± 3.11 mol/L (about 512.5 mg/L). Loss of cell viability, increase in vacuoles, disappearance of microvilli, and apoptotic bodies were evident in cells exposed to 400, 800, and 1200 μmol/L ENR. Besides, dose-dependent inhibitory effects on SOD, CAT, Na+-K+-ATPase, and Ca2+-ATPase activities were also observed in loach cells exposed to ENR. Quantitative gene expression results showed that ENR induced caspase-3- and caspase-8-mediated apoptosis as well as caspase-activated DNase in loach cells. The findings also indicated a role of JNK pathway in ENR-induced apoptosis in loach cells. Transcriptome sequencing results showed 10,016 differentially expressed genes in ENR vs. control groups, which were all enriched in "Molecular Function" process in GO term. Furthermore, 6763 genes were enriched in 291 KEEG pathways, with most of them belonging to immune and material metabolic pathways. The large number of transcriptome data and pathways determined in this study provide a database foundation for the toxicity analysis of ENR in loach cells, which must be thoroughly examined to further investigate the cytotoxic mechanism of antibiotics in fish cells.
Collapse
Affiliation(s)
- Xiaoqian Ding
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Shan Jiang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xia Li
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yu Wang
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zhilong Zheng
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yanjie Qin
- Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning Province, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
27
|
Wheat gluten hydrolysates prepared by sequential treatment with different combinations of commercial proteases. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Harlina PW, Ma M, Shahzad R, Khalifa I. Effect of Rosemary Extract on Lipid Oxidation, Fatty Acid Composition, Antioxidant Capacity, and Volatile Compounds of Salted Duck Eggs. Food Sci Anim Resour 2022; 42:689-711. [PMID: 35855274 PMCID: PMC9289808 DOI: 10.5851/kosfa.2022.e30] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022] Open
Abstract
The purpose of our study was to determine the impact of rosemary extract in duck eggs, as determined by in vitro antioxidant capacity, lipid oxidation, fatty acid profiles, and flavor analyses. Three groups of salted duck eggs were compared: A control group and group enriched with 0.1% and 0.5% (w/v) rosemary extracts for 28 days of salting. In a time-dependent manner, the radical scavenging activity and reduction power of eggs with 0.5% (w/v) rosemary extract were significantly higher those of the control at 28 days after salting. The fatty acid profiles of salted egg were significantly affected by rosemary extract and salting time. Palmitic acid was the most abundant fatty acid in salted egg treated with rosemary extract, followed by linoleic acid and arachidonic acid. Furthermore, the treated eggs contained more docosahexaenoic acid than the control ones. And the treated eggs also have a considerable impact on the lipid oxidation process (primary and secondary oxidation). As a result, rosemary extract can be used as a natural antioxidant spice to prevent oxidation and extend the shelf life of eggs during storage. Furthermore, flavor research using solid phase microextraction - gas chromatography - mass spectrometry and an electronic nose demonstrated that adding rosemary extract to salted eggs could give them a distinct flavor.
Collapse
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
29
|
Urbizo-Reyes U, Kim KH, Reddivari L, Anderson JM, Liceaga AM. Oxidative Stress Protection by Canary Seed ( Phalaris canariensis L.) Peptides in Caco-2 Cells and Caenorhabditis elegans. Nutrients 2022; 14:nu14122415. [PMID: 35745145 PMCID: PMC9227596 DOI: 10.3390/nu14122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
During oxidative stress, degenerative diseases such as atherosclerosis, Alzheimer’s, and certain cancers are likely to develop. Recent research on canary seed (Phalaris canariensis) peptides has demonstrated the high in vitro antioxidant potential. Thus, this study aimed to assess the cellular and in vivo antioxidant capacity of a low-molecular-weight (<3 kDa) canary seed peptide fraction (CSPF) using Caco-2 cells and the Caenorhabditis elegans model. The results show that the CSPF had no cytotoxicity effect on Caco-2 cells at any tested concentration (0.3−2.5 mg/mL). Additionally, the cellular antioxidant activity (CAA) of the CSPF was concentration-dependent, and the highest activity achieved was 80% by the CSPF at 2.5 mg/mL. Similarly, incubation with the CSPF significantly mitigated the acute and chronic oxidative damage, extending the lifespan of the nematodes by 88 and 61%, respectively. Furthermore, it was demonstrated that the CSPF reduced the accumulation of reactive oxygen species (ROS) to safe levels after sub-lethal doses of pro-oxidant paraquat. Quantitative real-time PCR revealed that the CSPF increased the expression of oxidative-stress-response-related gene GST-4. Overall, these results show that the CSPFs relied on GST-4 upregulation and scavenging of free radicals to confer oxidative stress protection and suggest that a CSPF can be used as a natural antioxidant in foods for health applications.
Collapse
Affiliation(s)
- Uriel Urbizo-Reyes
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
| | - Joseph M. Anderson
- Department of Agronomy, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA;
| | - Andrea M. Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA;
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA; (K.-H.K.); (L.R.)
- Correspondence:
| |
Collapse
|
30
|
Liu Y, Li S, Liu H, Li B. Osteogenic peptides in collagen hydrolysates: Stimulate differentiation of MC3T3-E1 cells via β1 integrin-FAK-ERK1/2 signaling pathway and Smad1 protein. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Nai X, Chen Y, Zhang Q, Hao S, Xuan H, Liu J. Interaction between Caffeic Acid Phenethyl Ester (CAPE) and Protease: Monitoring by Spectroscopic and Molecular Docking Approaches. LUMINESCENCE 2022; 37:1025-1036. [PMID: 35445518 DOI: 10.1002/bio.4262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/09/2022]
Abstract
The interaction of one anticancer drug (caffeic acid phenethyl ester, CAPE) with three proteases (trypsin, pepsin and α-chymotrypsin) has been investigated with multispectral methods and molecular docking. As an active components in propolis, the findings are of great benefit to metabolism, design and stuctural modification of drugs. The results show that CAPE has an obvious ability to quench the trypsin, pepsin, or α-chymotrypsin fluorescence mainly through a static quenching procedure. Trypsin has the largest binding affinity to CAPE, and α-chymotrypsin has the smallest binding affinity to CAPE. The data obtained from thermodynamic parameters and molecular docking prove that the spontaneously interaction between CAPE and each protease is mainly due to a combination of Van der Waals (vdW) force and hydrogen bond (H-bond), controlled by enthalpy-driven process. The binding force, strength, position, and the number of H-bond are further obtained from the results of molecular docking. Through ultraviolet spectroscopy, dynamic light scattering (DLS) and circular dichroism (CD) experiments, the change in the protease secondary structure induced by CAPE was observed. Additionally, the addition of protease had a positive impact on the antioxidative activity of CAPE, and α-chymotrypsin has the greatest impact on the removal of DPPH free radicals by CAPE.
Collapse
Affiliation(s)
- Xiao Nai
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Yanrong Chen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Shengyu Hao
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| |
Collapse
|
32
|
Fermentation of black soybean with Bacillus spp. for the production of kinema: changes in antioxidant potential on fermentation and gastrointestinal digestion. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1353-1361. [PMID: 35250060 PMCID: PMC8882489 DOI: 10.1007/s13197-021-05144-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Black soybean was fermented with four different potential Bacillus spp., including Bacillus licheniformis K1G, Bacillus subtilis K2B, Bacillus amyloliquefaciens K2G and Bacillus subtilis K2M, isolated from kinema, a traditionally fermented soybean product of Sikkim. Enhancement of antioxidant activity was observed with DPPH radical scavenging activity, reducing power potential and total antioxidant activity in methanolic as well as water extracts. Overall antioxidant activities were found to be higher in fermented black soybean in comparison to yellow soybean, showing its potential for production of kinema. Further, black soybean fermented using different starter was subjected to gastrointestinal digestion using pepsin and pancreatin. Upon gastrointestinal digestion of fermented black soybean changes in antioxidant activity was observed that was found to be reliant on the species and strains applied for fermentation as starter culture. Among different starters used for fermentation, black soybean fermented using B. subtilis K2M had higher DPPH radical scavenging and reducing power activity on gastrointestinal digestion. This study concludes that B. subtilis K2M can be applied for fermentation of black soybean for production of kinema as well as bioactive protein hydrolysates. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05144-y.
Collapse
|
33
|
Liu H, Yang Y, Liu Y, Cui L, Fu L, Li B. Various bioactive peptides in collagen hydrolysate from Salmo salar skin and the combined inhibitory effects on atherosclerosis in vitro and in vivo. Food Res Int 2022; 157:111281. [DOI: 10.1016/j.foodres.2022.111281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
|
34
|
Liu H, Li B. Separation and identification of collagen peptides derived from enzymatic hydrolysate of Salmo salar skin and their anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW264.7 inflammatory model. J Food Biochem 2022; 46:e14122. [PMID: 35332533 DOI: 10.1111/jfbc.14122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is considered as a major risk for the pathogenesis of chronic diseases. Due to the adverse events caused by the long-term use of anti-inflammatory drugs, it is necessary to develop alternative and safe dietary supplements from natural products against inflammation. In this study, flavourzyme hydrolysate (for 0.5 hr) presented the strongest anti-inflammatory activity, which was further separated by ultrafiltration and column chromatography, followed by LC-MS/MS identification. Peptide APD, QA, KA, and WG were identified as anti-inflammatory peptides, which significantly reduced secretion of NO, IL-6, IL-1β, and TNF-α in inflammatory macrophages. Among them, peptide QA showed the best overall anti-inflammatory effect, with the IC50 value against NO production of 849.3 μM. Most of the identified anti-inflammatory peptides were stably against digestion, and they had abundant frequencies in the α (I/II) chain of Salmo salar collagen. Our findings indicated the potential of S. salar skin hydrolysates as functional food to prevent inflammation. PRACTICAL APPLICATIONS: Long-term use of anti-inflammatory drugs causes adverse events like gastrorrhagia, and it is necessary to develop alternative and safe dietary supplements from natural products against inflammation. Salmo salar skin, as a major byproduct of total fish, has not been effectively utilized during processing. In this study, novel anti-inflammatory oligopeptides with high activities were separated and identified from S. salar skin gelatin hydrolysate, which were stably against digestion, and presented a high bioavailability and abundant frequencies in collagen. Our study highlighted the added value of aquatic by-products and suggested that S. salar skin collagen hydrolysate could be used as a promising dietary supplement against inflammatory diseases.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Wang Z, Shu G, Chen L, Dai C, Yao C, Zhang M, Dong X. ACE inhibitory and antioxidant peptides from Alcalase‐assisted
Lactiplantibacillus plantarum
L60 and
Lacticaseibacillus rhamnosus
LR22 fermentation of goat milk:optimization and identification. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zifei Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’ an 710021 China
| | - Guowei Shu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’ an 710021 China
| | - Li Chen
- College of Food Engineering and Nutritional Science Shaanxi Normal University Xi’an 710119 PR China
| | - Chunji Dai
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’ an 710021 China
| | - Chunxu Yao
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi’ an 710021 China
| | - Meng Zhang
- Department of Research and Development Shaanxi Yatai Dairy Co., Ltd Xianyang 713701 China
| | - Xu Dong
- Department of Research and Development Shaanxi Yatai Dairy Co., Ltd Xianyang 713701 China
| |
Collapse
|
36
|
Molecular Structures and In Vitro Bioactivities of Enzymatically Produced Porcine Placenta Peptides Fractionated by Ultrafiltration. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02781-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Quaisie J, Ma H, Guo Y, Tuly JA, Igbokwe CJ, Ekumah JN, Akpabli-Tsigbe NDK, Yanhua D, Liu D. Highly stable, antihypertensive, and antioxidative peptide production from Apostichopus japonicus by integrated enzymatic membrane reactor and nanofilter-purification mechanism. Food Funct 2022; 13:2306-2322. [PMID: 35142318 DOI: 10.1039/d1fo02779d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzymatic hydrolysis-offline and membrane separation (EH-offline MS), enzymatic membrane reactor (EMR) (various operational modes), and conjoined nanofilter-purification (desalination) were used to produce highly stable antihypertensive and antioxidative peptides from ultrasonic-slurry viscosity reduced sea cucumber (A. japonicus) protein. The adoption of the optimum batch parameters by EMR-gradient diafiltration feeding (GDF), water feeding, and substrate feeding ensured a significant (p < 0.05) enhancement in protein conversion degree (PCD) by 60.39, 46.69, and 23.33%, respectively, over the conventional EH-offline MS. Also, the antihypertensive activity (ACE-inhibitory potency) of the peptides produced was in the order EMR-GDF > substrate feeding > water feeding > batch process > EH-offline MS. The EMR-GDF and nanofilter-purification produced highly digestible peptides with ACE-inhibition activities of 79.44% and 77.57% for gastric and gastrointestinal digests, respectively. Peptides with molecular weights of 1000-500 Da and 500 Da significantly contributed to the antihypertensive potency of desalinated peptides. In vitro simulated peptides showed a significant increase in the hydroxyl radical scavenging activity for gastric (77.27%) and gastrointestinal (85.32%) digests. The antioxidative stability of the produced peptides was least affected by high-temperature storage. The high arginine (Arg) and hydrophobic amino acid (HAA) content of the peptides resulted in their improved digestibility. Therefore, conjoined EMR-GDF and nanofilter-purification in the production of highly stable desalinated bioactive peptides for industrial applications could be a viable alternative.
Collapse
Affiliation(s)
- Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China. .,Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, Zhenjiang, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China. .,Department of food science and technology, University of Nigeria Nsukka, Enugu State, Nigeria
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | | | - Ding Yanhua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, People's Republic of China.
| |
Collapse
|
38
|
Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals (Basel) 2022; 12:245. [PMID: 35158569 PMCID: PMC8833589 DOI: 10.3390/ani12030245] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to present a review of literature data on the antioxidant potential of raw milk and dairy products (milk, fermented products, and cheese) and the possibility to modify its level at the milk production and processing stage. Based on the available reports, it can be concluded that the consumption of products that are a rich source of bioactive components improves the antioxidant status of the organism and reduces the risk of development of many civilization diseases. Milk and dairy products are undoubtedly rich sources of antioxidant compounds. Various methods, in particular, ABTS, FRAP, and DPPH assays, are used for the measurement of the overall antioxidant activity of milk and dairy products. Research indicates differences in the total antioxidant capacity of milk between animal species, which result from the differences in the chemical compositions of their milk. The content of antioxidant components in milk and the antioxidant potential can be modified through animal nutrition (e.g., supplementation of animal diets with various natural additives (herbal mixtures, waste from fruit and vegetable processing)). The antioxidant potential of dairy products is associated with the quality of the raw material as well as the bacterial cultures and natural plant additives used. Antioxidant peptides released during milk fermentation increase the antioxidant capacity of dairy products, and the use of probiotic strains contributes its enhancement. Investigations have shown that the antioxidant activity of dairy products can be enhanced by the addition of plant raw materials or their extracts in the production process. Natural plant additives should therefore be widely used in animal nutrition or as functional additives to dairy products.
Collapse
Affiliation(s)
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (M.S.); (A.B.)
| | | |
Collapse
|
39
|
Moaveni S, Salami M, Khodadadi M, McDougall M, Emam-Djomeh Z. Investigation of S.limacinum microalgae digestibility and production of antioxidant bioactive peptides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112468] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Kęska P, Stadnik J. Effect of
in vitro
gastro‐pancreatic digestion on antioxidant activity of low‐molecular‐weight (<3.5 kDa) peptides from dry‐cured pork loins with probiotic strains of LAB. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
| | - Joanna Stadnik
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
| |
Collapse
|
41
|
Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of camellia seed meals. Food Chem X 2021; 11:100127. [PMID: 34485895 PMCID: PMC8405971 DOI: 10.1016/j.fochx.2021.100127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
MRPs were obtained by heating camellia seed meal hydrolysates, and different sugars. The ratio of essential amino acids in R-MRPs was increased and the antioxidant activity was the highest. MR could improve the flavor and antioxidant activity of camellia seed meal.
In the present study, camellia seed meal Maillard reaction products (MRPs) were prepared using camellia seed meal protein as a raw material. The effects of MR on protein structure and volatile components of camellia seed meal were investigated by fluorescence, UV absorption, infrared spectroscopy, and gas chromatography-mass spectrometry. Not only the change of amino acid content in MRPs, but also the antioxidant capacity of MRPs and the antioxidant capacity after in vitro digestion were determined. Our result showed that the ratio of essential amino acids in R-MRPs was increased and the antioxidant activity was the highest. For the potential of MRPs as flavoring, our sensory evaluation results showed improved flavor and antioxidant activity of camellia seed meal after MR which can be used as flavoring agents at industrial level.
Collapse
|
42
|
Proteome composition and profiling of bioactive peptides of edible Antheraea assamensis pupae by sequential enzymatic digestion and kinetic modeling of in vitro gastrointestinal digestion. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03882-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Laosam P, Panpipat W, Yusakul G, Cheong LZ, Chaijan M. Porcine placenta hydrolysate as an alternate functional food ingredient: In vitro antioxidant and antibacterial assessments. PLoS One 2021; 16:e0258445. [PMID: 34695136 PMCID: PMC8544860 DOI: 10.1371/journal.pone.0258445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
The production of bioactive peptides from animal-based raw materials highly depends on enzymatic hydrolysis. Porcine placenta is an underutilized biomass in Thailand's pig farms, yet it is still a source of proteins and beneficial compounds. Porcine placenta could be used as a protein substrate for the production of enzymatic hydrolysate, which could be employed as a functional food ingredient in the future. The goal of this study was to enzymatically produce porcine placenta hydrolysates (PPH) using three commercial enzymes (Alcalase, Flavouzyme, and papain) and evaluate their in vitro antioxidant and antibacterial activity. The degree of hydrolysis (DH) increased as the enzyme load and hydrolysis time increased, but the DH was governed by the enzyme class. The maximum DH was found after using 10% enzyme for 20 min of hydrolysis (36.60%, 31.40%, and 29.81% for Alcalase, Flavouzyme, and papain). Depending on the enzyme type and DH, peptides of various sizes (0.40-323.56 kDa) were detected in all PPH. PPH created with Alcalase had an excellent reducing capacity and metal chelating ability (p < 0.05), whereas PPH made with Flavourzyme and Papain had higher DPPH• and ABTS•+ inhibitory activities (p < 0.05). Papain-derived PPH also had a strong antibacterial effect against Staphylococcus aureus and Escherichia coli, with clear zone values of 17.20 mm and 14.00 mm, respectively (p < 0.05). When PPH was transported via a gastrointestinal tract model system, its antioxidative characteristics were altered. PPH's properties and bioactivities were thus influenced by the enzyme type, enzyme concentration, and hydrolysis time used. Therefore, PPH produced from porcine placenta can be categorized as an antioxidant and antibacterial alternative.
Collapse
Affiliation(s)
- Phanthipha Laosam
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Worawan Panpipat
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, China
| | - Manat Chaijan
- Department of Food Science and Innovation, Food Technology and Innovation Research Centre of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
44
|
Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed Pharmacother 2021; 144:112275. [PMID: 34628165 DOI: 10.1016/j.biopha.2021.112275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Food proteins are a source of hydrolysates with potentially useful biological attributes. Bioactive peptides from food-derived proteins are released from hydrolysates using exogenous industrial processes or endogenous intestinal enzymes. Current in vitro permeability assays have limitations in predicting the oral bioavailability (BA) of bioactive peptides in humans. There are also difficulties in relating the low blood levels of food-derived bioactive peptides detected in preclinical in vivo models to pharmacodynamic read-outs relevant for humans. SCOPE AND APPROACH In this review, we describe in vitro assays of digestion, permeation, and metabolism as indirect predictors of the potential oral BA of hydrolysates and their constituent bioactive peptides. We discuss the relationship between industrial hydrolysis processes and the oral BA of hydrolysates and their peptide by-products. KEY FINDINGS Hydrolysates are challenging for analytical detection methods due to capacity for enzymatic generation of peptides with novel sequences and also new modifications of these peptides during digestion. Mass spectrometry and peptidomics can improve the capacity to detect individual peptides released from complex hydrolysates in biological milieu.
Collapse
|
45
|
Sun C, Shan Y, Tang X, Han D, Wu X, Wu H, Hosseininezhad M. Effects of enzymatic hydrolysis on physicochemical property and antioxidant activity of mulberry ( Morus atropurpurea Roxb.) leaf protein. Food Sci Nutr 2021; 9:5379-5390. [PMID: 34646509 PMCID: PMC8498073 DOI: 10.1002/fsn3.2474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
To improve the antioxidant efficiency of mulberry leaf protein (MLP), alcalase, protamex, papain, flavourzyme, neutrase, and trypsin were used to hydrolyze MLP. The yield of soluble peptides, secondary structures, molecular weight distributions, and antioxidant activities of MLP hydrolysates (MLPHs) were investigated. Results showed that the native MLP was rich in the fraction above 6.5 kDa and was mainly composed of β-sheets, while MLPHs were abundant in the fractions of 0.3-0.6 kDa and 0.6-6.5 kDa and were mainly composed of disordered coils and β-folds. Limited hydrolysis of MLP could lead to better antioxidant activity than extensive hydrolysis. After enzymatic hydrolysis, the content of total sugar and total phenol in MLP increased significantly. MLP hydrolysates prepared with neutrase, alcalase, and protamex were preferable to other enzymes. Meanwhile, an enzyme to substrate level of 1% and a hydrolysis time of 2 hr were the optimum conditions to obtain higher antioxidant hydrolysates using neutrase.
Collapse
Affiliation(s)
- Chongzhen Sun
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Yangwei Shan
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Xin Tang
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Duo Han
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Xiyang Wu
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Hui Wu
- College of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Marzieh Hosseininezhad
- Department of Food BiotechnologyResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
46
|
Unnikrishnan P, Puthenveetil Kizhakkethil B, Chalil George J, Sivam V, Panda SK, Ninan G, Zynudheen AA. Characterization of Health Beverage Fortified with Peptides from Yellowfin Tuna. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1974631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Parvathy Unnikrishnan
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Kochi-29, India
| | | | - Joshy Chalil George
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Kochi-29, India
| | - Visnuvinayagam Sivam
- Microbiology, Fermentation and Biotechnology, ICAR-CentralInstitute of Fisheries Technology, Kochi-29, India
| | - Satyen Kumar Panda
- Quality Assurance and Management, ICAR-Central Institute of Fisheries Technology, Kochi-29, India
| | - George Ninan
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Kochi-29, India
| | | |
Collapse
|
47
|
Korczek KR, Tkaczewska J, Duda I, Migdał W. Effect of Heat Treatment on the Antioxidant Activity as Well as In vitro Digestion Stability of Herring ( Clupea harengus) Protein Hydrolysates. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1946630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Klaudia Róża Korczek
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Iwona Duda
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| | - Władysław Migdał
- Department of Animal Product Technology, Food Technology, University of Agriculture in Kraków, Kraków, Poland
| |
Collapse
|
48
|
Sepúlveda CT, Alemán A, Zapata JE, Montero MP, Gómez-Guillén MC. Characterization and storage stability of spray dried soy-rapeseed lecithin/trehalose liposomes loaded with a tilapia viscera hydrolysate. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Zhan Q, Wang Q, Liu Q, Guo Y, Gong F, Hao L, Wu H, Dong Z. The antioxidant activity of protein fractions from Sacha inchi seeds after a simulated gastrointestinal digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Bustamante SZ, González JG, Sforza S, Tedeschi T. Bioactivity and peptide profile of whey protein hydrolysates obtained from Colombian double-cream cheese production and their products after gastrointestinal digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|