1
|
Cedeño-Pinos C, Martínez-Tomé M, Mercatante D, Rodríguez-Estrada MT, Bañón S. Assessment of a Diterpene-Rich Rosemary (Rosmarinus officinalis L.) Extract as a Natural Antioxidant for Salmon Pâté Formulated with Linseed. Antioxidants (Basel) 2022; 11:antiox11061057. [PMID: 35739954 PMCID: PMC9219763 DOI: 10.3390/antiox11061057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
The use of natural plant extracts with standardised antioxidant properties is a growing strategy to stabilise food products. The use of a rosemary lipophilic extract (RLE), obtained from the by-product of high-yield selected plants and rich in polyphenols (334 mg/g, with diterpenes such as carnosic acid and carnosol as main compounds), is here proposed. Four RLE doses (0, 0.21, 0.42 and 0.63 g/kg) were tested in a salmon pâté formulated with sunflower oil and linseed, which was pasteurised (70 °C for 30 min) and subjected to storage at 4 °C and 600 lux for 42 days. Rosemary diterpenes resisted pasteurisation without degrading and showed antioxidant activities during the shelf-life of pasteurised pâté. RLE addition led to increased peroxide value (from 3.9 to 5.4 meq O2/kg), but inhibited formation of secondary oxidised lipids such as malondialdehyde (from 1.55 to 0.89 mg/g) and cholesterol oxidation products (from 286 to 102 µg/100 g) and avoided discolouration (slight brownness) in the refrigerated pâté. However, this did not entail relevant changes in fatty acid content or in the abundance of volatile organic compounds from oxidised lipids. Increasing the RLE dose only improved its antioxidant efficacy for some oxidation indexes. Thus, the oxidative deterioration of these types of fish emulsion can be naturally controlled with rosemary extracts rich in diterpenes.
Collapse
Affiliation(s)
- Cristina Cedeño-Pinos
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
| | - Magdalena Martínez-Tomé
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
- CIBER: CB12/03/30038 Pathophysiology of Obesity and Nutrition, CIBERobn, Carlos III Health Institute (ISCIII), 28013 Madrid, Spain
| | - Dario Mercatante
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - María Teresa Rodríguez-Estrada
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Sancho Bañón
- Department of Food Technology and Science and Nutrition, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (C.C.-P.); (M.M.-T.)
- Correspondence: ; Tel.: +34-868-888-265
| |
Collapse
|
2
|
Bai G, Ma CG, Chen XW, Hu YY, Guo SJ. Thermal degradation of stigmasterol under the deodorisation temperature exposure alone and in edible corn oil. Food Chem 2022; 370:131030. [PMID: 34507209 DOI: 10.1016/j.foodchem.2021.131030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/30/2021] [Indexed: 11/04/2022]
Abstract
Phytosterols are commonly found in vegetable oils and possess health benefits for humans. While investigating the chemical conversion of stigmasterol at deodorisation temperatures, gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) experiments led to the identification of 5-ethyl-6-methyl-3-heptene-2-one, 3-hydoxy-steroid, 3-ketostigmasterol, and 3,7-diketostigmasterol as by-products. The identification of these compounds assisted in the interpretation of the stigmasterol oligomers characterised by high-pressure size exclusion chromatography (HPSEC). A similar analysis was conducted in stripped corn oil at the deodorisation temperatures. As such, 5-ethyl-6-methyl-3-heptene-2-one, 3-hydoxy-steroid, 3-ketostigmasterol and 3,7-diketostigmasterol were also detected in stripped corn oil, while the contents of 3-hydoxy-steroid and 5-ethyl-6-methyl-3-heptene-2-one were higher than those of 3-ketostigmasterol, as revealed by quantum chemical simulations. In addition, stripped corn oil exhibited the characteristic of preventing stigmasterol degradation below 200 °C, whereas it enhanced the chemical conversion (such as esterification and degradation) of stigmasterol at higher temperatures.
Collapse
Affiliation(s)
- Ge Bai
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Yu-Yuan Hu
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Shu-Jing Guo
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| |
Collapse
|
3
|
Bai G, Ma CG, Chen XW. Effect of unsaturation of free fatty acids and phytosterols on the formation of esterified phytosterols during deodorization of corn oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2736-2743. [PMID: 33124037 DOI: 10.1002/jsfa.10900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Phytosterols are partly removed during oil refining, and the magnitude of phytosterols loss largely depends on the refining conditions applied and the molecular conformation. The aim of this research was to study the effect of deodorization conditions and molecular unsaturation on the esterification of phytosterols during deodorization of corn oil. RESULTS In the chemical model, free fatty acids (FFAs) were the major provider of acyl groups during the formation of phytosteryl fatty acid esters (PEs) under deodorization conditions. Among the main parameters of the deodorization, temperature played a role in the formation of PEs with a time-dependent manner. In comparison, saturated palmitic acid had a higher capability of esterifying free phytosterols (FPs) to PEs than unsaturated oleic acid and linoleic acid. Moreover, the influence of FFA unsaturation on the degradation of FPs depended on temperature. Besides, the formation of stigmasteryl ester had a competitive advantage over that of sitosteryl ester by quantum chemistry simulation. CONCLUSION For laboratory-scale deodorization of corn oil, saturated fatty acids and deodorization process with steam as stripping gas could obviously esterify FPs to PEs. FPs were abundantly enriched in distillate during the deodorization process with nitrogen as stripping gas, whereas FPs and PEs were distilled simultaneously during the deodorization process with steam. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge Bai
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
- National Engineering Laboratory for Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, China
| | - Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Zmysłowski A, Sitkowski J, Bus K, Ofiara K, Szterk A. Synthesis and search for 3β,3'β-disteryl ethers after high-temperature treatment of sterol-rich samples. Food Chem 2020; 329:127132. [PMID: 32504917 DOI: 10.1016/j.foodchem.2020.127132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
It has been proven that at increased temperature, sterols can undergo various chemical reactions e.g., oxidation, dehydrogenation, dehydration and polymerisation. The objectives of this study are to prove the existence of dimers and to quantitatively analyse the dimers (3β,3'β-disteryl ethers). Sterol-rich samples were heated at 180 °C, 200 °C and 220 °C for 1 to 5 h. Quantitative analyses of the 3β,3'β-disteryl ethers were conducted using liquid extraction, solid-phase extraction and gas chromatography coupled with mass spectrometry. Additionally, for the analyses, suitable standards were synthetized from native sterols. To identify the mechanism of 3β,3'β-disteryl ether formation at high temperatures, an attempt was made to use the proposed synthesis method. Additionally, due to the association of sterols and sterol derivatives with atherosclerosis, preliminary studies with synthetized 3β,3'β-disteryl ethers on endothelial cells were conducted.
Collapse
Affiliation(s)
- Adam Zmysłowski
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland.
| | - Jerzy Sitkowski
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Katarzyna Bus
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Karol Ofiara
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| | - Arkadiusz Szterk
- National Medicines Institute, 30/34 Chełmska, 00-725 Warsaw, Poland
| |
Collapse
|
5
|
Massimo L, Laura D, Ginevra LB. Phytosterols and phytosterol oxides in Bronte’s Pistachio (Pistacia vera L.) and in processed pistachio products. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03343-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Zhao Y, Yang B, Xu T, Wang M, Lu B. Photooxidation of phytosterols in oil matrix: Effects of the light, photosensitizers and unsaturation degree of the lipids. Food Chem 2019; 288:162-169. [DOI: 10.1016/j.foodchem.2019.02.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/26/2023]
|
7
|
Barriuso B, Ansorena D, Astiasarán I. Oxysterols formation: A review of a multifactorial process. J Steroid Biochem Mol Biol 2017; 169:39-45. [PMID: 26921766 DOI: 10.1016/j.jsbmb.2016.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022]
Abstract
Dietary sterols are nutritionally interesting compounds which can suffer oxidation reactions. In the case of plant sterols, they are being widely used for food enrichment due to their hypocholesterolemic properties. Besides, cholesterol and plant sterols oxidation products are associated with the development of cardiovascular and neurodegenerative diseases, among others. Therefore, the evaluation of the particular factors affecting sterol degradation and oxysterols formation in foods is of major importance. The present work summarizes the main results obtained in experiments which aimed to study four aspects in this context: the effect of the heating treatment, the unsaturation degree of the surrounding lipids, the presence of antioxidants on sterols degradation, and at last, oxides formation. The use of model systems allowed the isolation of some of these effects resulting in more accurate data. Thus, these results could be applied in real conditions.
Collapse
Affiliation(s)
- Blanca Barriuso
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea s/n, IDISNA- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
8
|
Wocheslander S, Eisenreich W, Scholz B, Lander V, Engel KH. Identification of Acyl Chain Oxidation Products upon Thermal Treatment of a Mixture of Phytosteryl/-stanyl Linoleates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9214-9223. [PMID: 27933991 DOI: 10.1021/acs.jafc.6b04326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A mixture of phytosterols/-stanols, consisting of 75% β-sitosterol, 12% sitostanol, 10% campesterol, 2% campestanol, and 1% others, was esterified with linoleic acid. The resulting mixture of phytosteryl/-stanyl linoleates was subjected to thermal oxidation at 180 °C for 40 min. A silica solid-phase extraction was applied to separate a fraction containing the nonoxidized linoleates and nonpolar degradation products (heptanoates, octanoates) from polar oxidation products (oxo- and hydroxyalkanoates). In total, 15 sitosteryl, sitostanyl, and campesteryl esters, resulting from oxidation of the acyl chain, could be identified by GC-FID/MS. Synthetic routes were described for authentic reference compounds of phytosteryl/-stanyl 7-hydroxyheptanoates, 8-hydroxyoctanoates, 7-oxoheptanoates, 8-oxooctanoates, and 9-oxononanoates, which were characterized by GC-MS and two-dimensional NMR spectroscopy. The study provides data on the formation and identities of previously unreported classes of acyl chain oxidation products upon thermal treatment of phytosteryl/-stanyl fatty acid esters.
Collapse
Affiliation(s)
- Stefan Wocheslander
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München , Lichtenbergstrasse 4, D-85748 Garching, Germany
| | - Birgit Scholz
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| | - Vera Lander
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit , Veterinärstrasse 2, D-85764 Oberschleissheim, Germany
| | - Karl-Heinz Engel
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| |
Collapse
|
9
|
Scholz B, Menzel N, Lander V, Engel KH. Heating Two Types of Enriched Margarine: Complementary Analysis of Phytosteryl/Phytostanyl Fatty Acid Esters and Phytosterol/Phytostanol Oxidation Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2699-2708. [PMID: 26996218 DOI: 10.1021/acs.jafc.6b00617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Two phytosteryl and/or phytostanyl fatty acid ester-enriched margarines were subjected to common heating procedures. UHPLC-APCI-MS analysis resulted for the first time in comprehensive quantitative data on the decreases of individual phytosteryl/-stanyl fatty acid esters upon heating of enriched foods. These data were complemented by determining the concurrently formed phytosterol/-stanol oxidation products (POPs) via online LC-GC. Microwave-heating led to the least decreases of esters of approximately 5% in both margarines. Oven-heating of the margarine in a casserole caused the greatest decreases, with 68 and 86% esters remaining, respectively; the impact on individual esters was more pronounced with increasing degree of unsaturation of the esterified fatty acids. In the phytosteryl/-stanyl ester-enriched margarine, approximately 20% of the ester losses could be explained by the formation of POPs; in the phytostanyl ester-enriched margarine, the POPs accounted for <1% of the observed ester decreases.
Collapse
Affiliation(s)
- Birgit Scholz
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| | - Nicole Menzel
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| | - Vera Lander
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit , Veterinärstrasse 2, D-85764 Oberschleissheim, Germany
| | - Karl-Heinz Engel
- Lehrstuhl für Allgemeine Lebensmitteltechnologie, Technische Universität München , Maximus-von-Imhof-Forum 2, D-85354 Freising, Germany
| |
Collapse
|
10
|
Zhang Q, Qin W, Li M, Shen Q, Saleh AS. Application of Chromatographic Techniques in the Detection and Identification of Constituents Formed during Food Frying: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Wen Qin
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Meiliang Li
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Qun Shen
- Natl. Engineering and Technology Research Center for Fruits and Vegetables; College of Food Science and Nutritional Engineering, China Agricultural Univ.; Beijing 100083 China
| | - Ahmed S.M. Saleh
- Dept. of Food Science and Technology; Faculty of Agriculture, Assiut Univ.; Assiut 71526 Egypt
| |
Collapse
|
11
|
Leal-Castañeda EJ, Inchingolo R, Cardenia V, Hernandez-Becerra JA, Romani S, Rodriguez-Estrada MT, Galindo HSG. Effect of Microwave Heating on Phytosterol Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5539-5547. [PMID: 25973984 DOI: 10.1021/acs.jafc.5b00961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The oxidative stability of phytosterols during microwave heating was evaluated. Two different model systems (a solid film made with a phytosterol mixture (PSF) and a liquid mixture of phytosterols and triolein (1:100, PS + TAG (triacylglycerol))) were heated for 1.5, 3, 6, 12, 20, and 30 min at 1000 W. PS degraded faster when they were microwaved alone than in the presence of TAG, following a first-order kinetic model. Up to 6 min, no phytosterol oxidation products (POPs) were generated in both systems. At 12 min of heating, the POP content reached a higher level in PSF (90.96 μg/mg of phytosterols) than in PS + TAG (22.66 μg/mg of phytosterols), but after 30 min of treatment, the opposite trend was observed. 7-Keto derivates were the most abundant POPs in both systems. The extent of phytosterol degradation depends on both the heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking.
Collapse
Affiliation(s)
- Everth Jimena Leal-Castañeda
- †Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Colonia Formando Hogar, Veracruz 91897, México
| | - Raffaella Inchingolo
- ‡Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | | | - Josafat Alberto Hernandez-Becerra
- ⊥División de Tecnología de Alimentos, Universidad Tecnológica de Tabasco, Kilómetro 14.6 Carretera Villahermosa-Teapa, Villahermosa, Tabasco 86280, México
| | | | - María Teresa Rodriguez-Estrada
- ‡Department of Agricultural and Food Sciences, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Hugo Sergio García Galindo
- †Unidad de Investigación y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Colonia Formando Hogar, Veracruz 91897, México
| |
Collapse
|
12
|
Scholz B, Guth S, Engel KH, Steinberg P. Phytosterol oxidation products in enriched foods: Occurrence, exposure, and biological effects. Mol Nutr Food Res 2015; 59:1339-52. [DOI: 10.1002/mnfr.201400922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Birgit Scholz
- Technische Universität München, Chair of General Food Technology; Freising-Weihenstephan Germany
| | - Sabine Guth
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover; Foundation Hannover Germany
| | - Karl-Heinz Engel
- Technische Universität München, Chair of General Food Technology; Freising-Weihenstephan Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover; Foundation Hannover Germany
| |
Collapse
|
13
|
Oxidation of β-sitosterol and campesterol in sunflower oil upon deep- and pan-frying of French fries. Journal of Food Science and Technology 2015; 52:6301-11. [PMID: 26396375 DOI: 10.1007/s13197-015-1738-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Fried foods, both deep-fried and pan-fried, are enjoyed by people worldwide. Frying is one of the main factors leading to formation of phytosterols (PS) oxidation products (POP) in vegetable oils. The aim of this study was to measure the oxidation of β-sitosterol (24α-ethyl-5-cholesten-3β-ol) and campesterol (24α-methyl-5-cholesten-3β-ol) in commercial sunflower oil (SFO) during deep- and pan-frying of French fries for different periods (30, 60, 120 and 240 min). The total amount of PS in SFO was 4732 μg/g, wherein the major PS were β-sitosterol and campesterol. The results of POP were confirmed by the GC-MS analysis that monitored the formation of oxides during frying. Upon frying, total PS content decreased whereas the highest decrease was measured after 240 min of frying. The oxidative stability (OS) of different sitosterol and campesterol during both frying methods was evaluated. In general, pan frying resulted in more PS oxidation than deep frying. β-Sitosterol oxides predominated while campesterol oxides were formed to a lesser extent. 7-Ketositosterol, followed by 7β-hydroxysitosterol, 5,6-epoxy derivatives and 7α-hydroxysitosterol were the main POP induced during frying. The proportion of 7-keto derivatives decreased during frying while the proportion of 7β-hydroxy derivatives increased. The formation of POP might be a limiting factor for frying in SFO for long periods.
Collapse
|
14
|
Hu Y, Yang G, Huang W, Lai S, Ren Y, Huang B, Zhang L, Li P, Lu B. Development and validation of a gas chromatography-mass spectrometry method for determination of sterol oxidation products in edible oils. RSC Adv 2015. [DOI: 10.1039/c5ra02795k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient GC-MS method for determination of sterol oxidation product profiles in edible oils was established by combination with optimized silylation, and validated using the standards of sitosterol oxidation products.
Collapse
Affiliation(s)
- Yinzhou Hu
- Zhejiang University
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
| | - Guoliang Yang
- Beingmate Baby & Child Food Co., Ltd
- Hangzhou 311188
- China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic
- Department of Applied Technology
- Hangzhou 310018
- China
| | - Shiyun Lai
- Beingmate Baby & Child Food Co., Ltd
- Hangzhou 311188
- China
| | - Yiping Ren
- Zhejiang Provincial Centre for Disease Prevention and Control
- Hangzhou 310051
- China
| | - Baifen Huang
- Zhejiang Provincial Centre for Disease Prevention and Control
- Hangzhou 310051
- China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences
- Wuhan 430062
- China
| | - Baiyi Lu
- Zhejiang University
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
| |
Collapse
|
15
|
Derewiaka D, Molińska née Sosińska E. Cholesterol transformations during heat treatment. Food Chem 2014; 171:233-40. [PMID: 25308664 DOI: 10.1016/j.foodchem.2014.08.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
Abstract
The aim of the study was to characterise products of cholesterol standard changes during thermal processing. Cholesterol was heated at 120°C, 150°C, 180°C and 220°C from 30 to 180 min. The highest losses of cholesterol content were found during thermal processing at 220°C, whereas the highest content of cholesterol oxidation products was observed at temperature of 150°C. The production of volatile compounds was stimulated by the increase of temperature. Treatment of cholesterol at higher temperatures i.e. 180°C and 220°C led to the formation of polymers and other products e.g. cholestadienes and fragmented cholesterol molecules. Further studies are required to identify the structure of cholesterol oligomers and to establish volatile compounds, which are markers of cholesterol transformations, mainly oxidation.
Collapse
Affiliation(s)
- D Derewiaka
- Warsaw University of Life Science, Faculty of Food Sciences, Nowoursynowska Str. 159, 02-776 Warsaw, Poland.
| | - E Molińska née Sosińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Lipid Biochemistry, Pawińskiego 5a, 02-106 Warszawa, Poland
| |
Collapse
|
16
|
Škorňa P, Lengyel J, Rimarčík J, Klein E. Investigation of oxidation attack sites in sterols: Thermodynamics of hydrogen atom transfer. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Characterisation of non-polar dimers formed during thermo-oxidative degradation of β-sitosterol. Food Chem 2013; 139:464-74. [DOI: 10.1016/j.foodchem.2013.01.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/05/2012] [Accepted: 01/17/2013] [Indexed: 11/20/2022]
|
18
|
A review of analytical methods measuring lipid oxidation status in foods: a challenging task. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1866-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
|
20
|
Current and new insights on phytosterol oxides in plant sterol-enriched food. Chem Phys Lipids 2011; 164:607-24. [PMID: 21699886 DOI: 10.1016/j.chemphyslip.2011.06.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/05/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
Over the past 15 years, plant sterol-enriched foods have faced a great increase in the market, due to the asserted cholesterol-lowering effect of plant sterols. However, owing to their chemical structures, plant sterols can oxidize and produce a wide variety of oxidation products with controversial biological effects. Although oxyphytosterols can derive from dietary sources and endogenous formation, their single contribution should be better defined. The following review provides an overall and critical picture on the current knowledge and future perspectives of plant sterols-enriched food, particularly focused on occurrence of plant sterol oxidation products and their biological effects. The final objective of this overview is to evince the different aspects of plant sterols-enriched food that require further research, for a better understanding of the influence of plant sterols and their oxides on consumers' health.
Collapse
|
21
|
Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: A world to explore. Food Chem Toxicol 2010; 48:3289-303. [PMID: 20870006 DOI: 10.1016/j.fct.2010.09.023] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
Abstract
Oxysterols (oxidized derivatives of cholesterol and phytosterols) can be generated in the human organism through different oxidation processes, some requiring enzymes. Furthermore, oxysterols are also present in food due to lipid oxidation reactions caused by heating treatments, contact with oxygen, exposure to sunlight, etc., and they could be absorbed from the diet, at different rates depending on their side chain length. In the organism, oxysterols can follow different routes: secreted into the intestinal lumen, esterified and distributed by lipoproteins to different tissues or degraded, mainly in the liver. Cholesterol oxidation products (COPs) have shown cytotoxicity, apoptotic and pro-inflammatory effects and they have also been linked with chronic diseases including atherosclerotic and neurodegenerative processess. In the case of phytosterol oxidation products (POPs), more research is needed on toxic effects. Nevertheless, current knowledge suggests they may also cause cytotoxic and pro-apoptotic effects, although at higher concentrations than COPs. Recently, new beneficial biological activities of oxysterols are being investigated. Whereas COPs are associated with cholesterol homeostasis mediated by different mechanisms, the implication of POPs is not clear yet. Available literature on sources of oxysterols in the organism, metabolism, toxicity and potential beneficial effects of these compounds are reviewed in this paper.
Collapse
Affiliation(s)
- A Otaegui-Arrazola
- Department of Food Science and Nutrition, Physiology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
22
|
Struijs K, Lampi AM, Ollilainen V, Piironen V. Dimer formation during the thermo-oxidation of stigmasterol. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1335-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|