1
|
Gao X, Huo H, Bao H, Wang J, Gao D. Changes of Active Substances in Ganoderma lucidum during Different Growth Periods and Analysis of Their Molecular Mechanism. Molecules 2024; 29:2591. [PMID: 38893471 PMCID: PMC11173900 DOI: 10.3390/molecules29112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Ganoderma lucidum, renowned as an essential edible and medicinal mushroom in China, remains shrouded in limited understanding concerning the intrinsic mechanisms governing the accumulation of active components and potential protein expression across its diverse developmental stages. Accordingly, this study employed a meticulous integration of metabolomics and proteomics techniques to scrutinize the dynamic alterations in metabolite accumulation and protein expression in G. lucidum throughout its growth phases. The metabolomics analysis unveiled elevated levels of triterpenoids, steroids, and polyphenolic compounds during the budding stage (BS) of mushroom growth, with prominent compounds including Diplazium and Ganoderenic acids E, H, and I, alongside key steroids such as cholesterol and 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol. Additionally, nutrients such as polysaccharides, flavonoids, and purines exhibited heightened presence during the maturation stage (FS) of ascospores. Proteomic scrutiny demonstrated the modulation of triterpenoid synthesis by the CYP450, HMGR, HMGS, and ERG protein families, all exhibiting a decline as G. lucidum progressed, except for the ARE family, which displayed an upward trajectory. Therefore, BS is recommended as the best harvesting period for G. lucidum. This investigation contributes novel insights into the holistic exploitation of G. lucidum.
Collapse
Affiliation(s)
- Xusheng Gao
- Key Laboratory of Edible Fungi Resources and Utilization, College of Traditional Chinese Medicine, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (X.G.); (H.H.)
| | - Huimin Huo
- Key Laboratory of Edible Fungi Resources and Utilization, College of Traditional Chinese Medicine, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (X.G.); (H.H.)
| | - Haiying Bao
- Key Laboratory of Edible Fungi Resources and Utilization, College of Traditional Chinese Medicine, Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun 130118, China; (X.G.); (H.H.)
| | - Jialu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| |
Collapse
|
2
|
Bondzie-Quaye P, Swallah MS, Acheampong A, Elsherbiny SM, Acheampong EO, Huang Q. Advances in the biosynthesis, diversification, and hyperproduction of ganoderic acids in Ganoderma lucidum. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Zhang Y, Cai H, Tao Z, Yuan C, Jiang Z, Liu J, Kurihara H, Xu W. Ganoderma lucidum spore oil (GLSO), a novel antioxidant, extends the average life span in Drosophila melanogaster. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Wang J, Zhou Z, Dan D, Hu G. Physicochemical properties and bioactivities of Lentinula edodes polysaccharides at different development stages. Int J Biol Macromol 2020; 150:573-577. [PMID: 32057877 DOI: 10.1016/j.ijbiomac.2020.02.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 11/26/2022]
Abstract
Lentinula edodes polysaccharides from at four different development stages (referred to L1, L2, L3 and L4, respectively) were extracted by hot water method, and graded ethanol precipitation to final concentration of 20%, 50% and 70%, then12 crude polysaccharide fractions (referred to L1P20, L2P20, L3P20; L4P20, L1P50, L2P50, L3P50, L4P50 and L1P70, L2P70, L3P70, L4P70, respectively) were obtained. Physicochemical properties and exoteric bioactivities of the crude polysaccharide fractions were measured. The results of physicochemical properties revealed that extraction yields of P20 fractions were significantly higher than those of P50 and P70 fractions, and the contents of polysaccharide and β-glucan in L3P50 fractions were higher, and the viscosity-average molecular weight reached a maximum at L2, and high molecular weight polysaccharides could be obtained at a low alcohol concentration in P20 fractions, and the glycosidic bonds were found to exist in all crude polysaccharide fractions. These crude polysaccharide fractions showed different bioactivities, wherein the polysaccharides of higher molecular weight in P20 fractions had greater bioactivity. These results showed that immature stage of Lentinula edodes was the optimal harvest time for obtaining higher bioactivity of crude polysaccharides.
Collapse
Affiliation(s)
- Jiaming Wang
- School of Environmental Ecology and Bioengineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Zhou Zhou
- School of Environmental Ecology and Bioengineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Dongmei Dan
- Hubei Yuguo Gu Ye Co., Ltd., Suizhou 441300, China.
| | - Guoyuan Hu
- School of Environmental Ecology and Bioengineering, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
5
|
Satria D, Tamrakar S, Suhara H, Kaneko S, Shimizu K. Mass Spectrometry-Based Untargeted Metabolomics and α-Glucosidase Inhibitory Activity of Lingzhi ( Ganoderma lingzhi) During the Developmental Stages. Molecules 2019; 24:E2044. [PMID: 31146329 PMCID: PMC6600326 DOI: 10.3390/molecules24112044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022] Open
Abstract
Lingzhi is a Ganoderma mushroom species which has a wide range of bioactivities. Analysis of the changes in metabolites during the developmental stages of lingzhi is important to understand the underlying mechanism of its biosynthesis, as well as its bioactivity. It may also provide valuable information for the cultivation efficiency of lingzhi. In this study, mass spectrometry based untargeted metabolomics was carried out to analyze the alteration of metabolites during developmental stages of lingzhi. Eight developmental stages were categorized on the basis of morphological changes; starting from mycelium stage to post-mature stage. GC/MS and LC/MS analyses along with multivariate analysis of lingzhi developmental stages were performed. Amino acids, organic acids, sugars, polyols, fatty acids, fatty alcohols, and some small polar metabolites were extracted as marker metabolites from GC/MS analysis, while, lanostane-type triterpenoids were observed in LC/MS analysis of lingzhi. The marker metabolites from untargeted analysis of lingzhi developmental stages were correlated with the α-glucosidase inhibitory activity. Two metabolites, compounds 34 and 35, were identified as potential contributors of the α-glucosidase inhibitory activity. The current result shows that some metabolites are involved in the developmental process and α-glucosidase inhibitory activity of lingzhi.
Collapse
Affiliation(s)
- Dedi Satria
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
- Faculty of Health and Sciences, Muhammadiyah University of Sumatera Barat, Bukittinggi 26181, Indonesia.
| | - Sonam Tamrakar
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Hiroto Suhara
- Miyazaki Prefectural Wood Utilization Research Center, Miyazaki 885-0037, Japan.
| | - Shuhei Kaneko
- Fukuoka Prefecture Forest Research & Extension Center, Fukuoka 818-8549, Japan.
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
6
|
Chen R, Kang J. Quantitative Analysis of Components in Ganoderma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1181:135-155. [DOI: 10.1007/978-981-13-9867-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Changes in content of triterpenoids and polysaccharides in Ganoderma lingzhi at different growth stages. J Nat Med 2018; 72:734-744. [PMID: 29679266 DOI: 10.1007/s11418-018-1213-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Ganoderma lingzhi is a traditional medicinal mushroom, and its extract contains many bioactive compounds. Triterpenoids and polysaccharides are the primary bioactive components that contribute to its medicinal properties. In this study, we quantified 18 triterpenoids, total triterpenoid content and total polysaccharide content in the ethanol and water extracts of G. lingzhi at different growth stages. Triterpenoids were quantified by liquid chromatograph-tandem mass spectrometry in the multiple-reaction-monitoring mode. Total triterpenoid and total polysaccharide content were determined by colorimetric analysis. The results indicated that the fruit bodies at an early growth stage had a higher content of ganoderic acid A, C2, I and LM2, as well as of ganoderenic acid C and D, than those at a later growth stage. In contrast, ganoderic acid K, TN and T-Q contents were higher in mature fruit bodies (maturation stage). The highest total triterpenoid and total polysaccharide contents were found in fruit bodies before maturity (stipe elongation stage or early stage of pileus formation). Our results provide information which will contribute to the establishment of an efficient cultivation system for G. lingzhi with a higher content of triterpenoids.
Collapse
|
8
|
Wang J, Ke R, Zhang S. Breaking the sporoderm of Ganoderma lucidum spores by combining chemical reaction with physical actuation. Nat Prod Res 2017; 31:2428-2434. [PMID: 28385047 DOI: 10.1080/14786419.2017.1312394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The hard and indissolvable sporoderm of Ganoderma lucidum spore (GLS) hinders the release of bioactive components that are significant to disease treatment and vitality enhancement. In this paper, a strategy to break sporoderm was proposed, in which the chemical reaction was cooperated with physical actuation (ultrasonication and refrigeration). Dealing with this chemicophysical treatment, the porous sporoderm of GLS was formed, which was confirmed by scanning electron microscope (SEM). The effect factors and mechanism of breaking sporoderm were discussed, and the efficiency of breaking sporoderm was evaluated by detecting the dissolution behaviour of inner triterpenoids in GLS. In addition, aiming to improve the solubility and stability of GLS product, the β-cyclodextrin was used to seal the holes on sporoderm of GLS product. The results show that the developed method is effective and feasible in producing high-bioactive and stable GLS product.
Collapse
Affiliation(s)
- Jiajia Wang
- a Department of Chemistry , Anhui University , Hefei , China
| | - Rui Ke
- a Department of Chemistry , Anhui University , Hefei , China
| | - Shengyi Zhang
- a Department of Chemistry , Anhui University , Hefei , China
| |
Collapse
|
9
|
Sakamoto S, Kikkawa N, Kohno T, Shimizu K, Tanaka H, Morimoto S. Immunochromatographic strip assay for detection of bioactive Ganoderma triterpenoid, ganoderic acid A in Ganoderma lingzhi. Fitoterapia 2016; 114:51-55. [DOI: 10.1016/j.fitote.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
|
10
|
Kallifatidis G, Hoy JJ, Lokeshwar BL. Bioactive natural products for chemoprevention and treatment of castration-resistant prostate cancer. Semin Cancer Biol 2016; 40-41:160-169. [PMID: 27370570 DOI: 10.1016/j.semcancer.2016.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/27/2016] [Indexed: 01/30/2023]
Abstract
Prostate cancer (PCa), a hormonally-driven cancer, ranks first in incidence and second in cancer related mortality in men in most Western industrialized countries. Androgen and androgen receptor (AR) are the dominant modulators of PCa growth. Over the last two decades multiple advancements in screening, treatment, surveillance and palliative care of PCa have significantly increased quality of life and survival following diagnosis. However, over 20% of patients initially diagnosed with PCa still develop an aggressive and treatment-refractory disease. Prevention or treatment for hormone-refractory PCa using bioactive compounds from marine sponges, mushrooms, and edible plants either as single agents or as adjuvants to existing therapy, has not been clinically successful. Major advancements have been made in the identification, testing and modification of the existing molecular structures of natural products. Additionally, conjugation of these compounds to novel matrices has enhanced their bio-availability; a big step towards bringing natural products to clinical trials. Natural products derived from edible plants (nutraceuticals), and common folk-medicines might offer advantages over synthetic compounds due to their broader range of targets, as compared to mostly single target synthetic anticancer compounds; e.g. kinase inhibitors. The use of synthetic inhibitors or antibodies that target a single aberrant molecule in cancer cells might be in part responsible for emergence of treatment refractory cancers. Nutraceuticals that target AR signaling (epigallocatechin gallate [EGCG], curcumin, and 5α-reductase inhibitors), AR synthesis (ericifolin, capsaicin and others) or AR degradation (betulinic acid, di-indolyl diamine, sulphoraphane, silibinin and others) are prime candidates for use as adjuvant or mono-therapies. Nutraceuticals target multiple pathophysiological mechanisms involved during cancer development and progression and thus have potential to simultaneously inhibit both prostate cancer growth and metastatic progression (e.g., inhibition of angiogenesis, epithelial-mesenchymal transition (EMT) and proliferation). Given their multi-targeting properties along with relatively lower systemic toxicity, these compounds offer significant therapeutic advantages for prevention and treatment of PCa. This review emphasizes the potential application of some of the well-researched natural compounds that target AR for prevention and therapy of PCa.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- Department of Medicine, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - James J Hoy
- Department of Medicine, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bal L Lokeshwar
- Department of Medicine, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Biochemistry and Molecular Biology, Georgia Cancer Center and Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Research Service, Charlie Norwood VA Hospital and Medical Center, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Li QZ, Wu D, Zhou S, Liu YF, Li ZP, Feng J, Yang Y. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages. Carbohydr Polym 2016; 144:196-204. [PMID: 27083809 DOI: 10.1016/j.carbpol.2016.02.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
HPB-3, a heteropolysaccharide, with a mean molecular weight of 1.5×10(4)Da, was obtained from the maturating-stage IV, V and VI fruiting body of Hericium erinaceus, exhibited higher macrophages stimulation activities, was able to upregulate the functional events mediated by activated macrophages, such as production of nitric oxide (NO). Monosaccharide composition analysis showed that HPB-3 comprised l-fucose, d-galactose and d-glucose in the ratio of 5.2:23.9:1. Its chemical structure was characterized by sugar and methylation analysis, along with (1)H and (13)C NMR spectroscopy, including (1)H-(1)H COSY, TOCSY, NOESY, HMQC and HMBC experiments. The results indicated that HPB-3 contained a-(1/6)-linked galactopyranosyl backbone, partially with a side chain composed of α-l-fucopyranose at the O-2 position. The predicted primary structure of the polysaccharide was established as below.
Collapse
Affiliation(s)
- Qiao-Zhen Li
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Di Wu
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Shuai Zhou
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Yan-Fang Liu
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Zheng-Peng Li
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Jie Feng
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Yan Yang
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China.
| |
Collapse
|
12
|
Peng X, Liu J, Xia J, Wang C, Li X, Deng Y, Bao N, Zhang Z, Qiu M. Lanostane triterpenoids from Ganoderma hainanense J. D. Zhao. PHYTOCHEMISTRY 2015; 114:137-145. [PMID: 25457485 DOI: 10.1016/j.phytochem.2014.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 06/04/2023]
Abstract
Chemical investigation of the fruiting bodies of Ganoderma hainanense resulted in isolation of fourteen lanostane triterpenoids, including nine ganoderma acids and five ganoderma alcohols, together with five known compounds. Structural elucidation was determined using extensive spectroscopic technologies, Mosher's method and X-ray single crystal diffraction. Three of the compounds showed inhibitory activities against HL-60, SMMC-7721, A-549 and MCF-7 cells with IC50 values of 15.0-40.0 μM.
Collapse
Affiliation(s)
- XingRong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic China
| | - JieQing Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - JianJun Xia
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - CuiFang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - XuYang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic China
| | - YuanYuan Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic China
| | - NiMan Bao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic China
| | - ZhiRun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - MingHua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
13
|
Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RRM, Ferguson LR. From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. PHYTOCHEMISTRY 2015; 114:56-65. [PMID: 25794896 DOI: 10.1016/j.phytochem.2015.02.015] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 05/21/2023]
Abstract
Medicinal mushrooms have been used for centuries as nutraceuticals to improve health and to treat numerous chronic and infectious diseases. One such mushroom is Ganoderma lucidum, commonly known as Lingzhi, a species revered as a medicinal mushroom for treating assorted diseases and prolonging life. The fungus is found in diverse locations, and this may have contributed to confusion regarding the correct taxonomic classification of the genus Ganoderma. G. lucidum was first used to name a specimen found in England and thereafter was naively applied to a different Ganoderma species found in Asia, commonly known as Chinese Lingzhi. Despite the taxonomic confusion, which has largely been uncorrected, the popularity of Lingzhi has escalated across the globe. The current taxonomic situation is now discussed accurately in this Special Issue on Ganoderma. Today it is a multi-billion dollar industry wherein Lingzhi is cultivated or collected from the wild and consumed as a tea, in alcoholic beverages, and as a nutraceutical to confer numerous health benefits. Consumption of nutraceuticals has grown in popularity, and it is becoming increasingly important that active ingredients be identified and that suppliers make substantiated health claims about their products. The objective of this article is to present a review of G. lucidum over the past 2000 years from prized ancient "herbal" remedy to its use in nutraceuticals and to the establishment of a 2.5 billion $ (US) industry.
Collapse
Affiliation(s)
- Karen S Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Chi H J Kao
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - R Russell M Paterson
- IBB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
14
|
Grienke U, Kaserer T, Pfluger F, Mair CE, Langer T, Schuster D, Rollinger JM. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling. PHYTOCHEMISTRY 2015; 114:114-24. [PMID: 25457486 PMCID: PMC4948669 DOI: 10.1016/j.phytochem.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 05/14/2023]
Abstract
The species complex around the medicinal fungus Ganoderma lucidum Karst. (Ganodermataceae) is widely known in traditional medicines, as well as in modern applications such as functional food or nutraceuticals. A considerable number of publications reflects its abundance and variety in biological actions either provoked by primary metabolites, such as polysaccharides, or secondary metabolites, such as lanostane-type triterpenes. However, due to this remarkable amount of information, a rationalization of the individual Ganoderma constituents to biological actions on a molecular level is quite challenging. To overcome this issue, a database was generated containing meta-information, i.e., chemical structures and biological actions of hitherto identified Ganoderma constituents (279). This was followed by a computational approach subjecting this 3D multi-conformational molecular dataset to in silico parallel screening against an in-house collection of validated structure- and ligand-based 3D pharmacophore models. The predictive power of the evaluated in silico tools and hints from traditional application fields served as criteria for the model selection. Thus, the focus was laid on representative druggable targets in the field of viral infections (5) and diseases related to the metabolic syndrome (22). The results obtained from this in silico approach were compared to bioactivity data available from the literature. 89 and 197 Ganoderma compounds were predicted as ligands of at least one of the selected pharmacological targets in the antiviral and the metabolic syndrome screening, respectively. Among them only a minority of individual compounds (around 10%) has ever been investigated on these targets or for the associated biological activity. Accordingly, this study discloses putative ligand target interactions for a plethora of Ganoderma constituents in the empirically manifested field of viral diseases and metabolic syndrome which serve as a basis for future applications to access yet undiscovered biological actions of Ganoderma secondary metabolites on a molecular level.
Collapse
Affiliation(s)
- Ulrike Grienke
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Florian Pfluger
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christina E Mair
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, Computer-Aided Molecular Design Group, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
15
|
Zhao J, Liu W, Chen D, Zhou C, Song Y, Zhang Y, Ni Y, Li Q. Microbiological and physicochemical analysis of pumpkin juice fermentation by the basidiomycetous fungus Ganoderma lucidum. J Food Sci 2015; 80:C241-51. [PMID: 25586306 DOI: 10.1111/1750-3841.12741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022]
Abstract
A new protocol for processing of pumpkin juice was set up which included fermentation by the basidiomycete Ganoderma lucidum at 28 °C for 7 d. The growth curve of G. lucidum in pumpkin juice was successfully (R(2) = 0.99) fitted by a 4-parameter logistic model and the ideal highest biomass was estimated to be 4.79 g/L. G. lucidum was found to have a significant acidification effect on pumpkin juice. The lowest pH (4.05 ± 0.05) and highest total titratable acidity (14.31 ± 0.16 mL 0.1 M NaOH/100 mL) were found on the 4th day during fermentation. Sugars in pumpkin juice fermented with G. lucidum showed a significant decrease, especially glucose and fructose. On the contrary, the release of exo-polysaccharides and free amino acids greatly enriched the pumpkin juice. The variation of color index and viscosity also mirrored the above behavior. Based on headspace solid phase microextraction and gas chromatography-mass spectrometry, 68 volatile compounds were identified, including 17 esters, 14 alcohols, 13 phenyl compounds, 11 aldehydes, 8 ketones, 3 acids, 1 furan, and 1 benzothiazole. The pumpkin juices fermented for different days were markedly differentiated with principal component analysis and the fermentation process was tentatively divided into 3 periods: the booming (from the 1st to 4th day), steady (from the 5th to 6th day), and decline (the 7th day) period.
Collapse
Affiliation(s)
- Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural Univ, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cui F, Li Y, Yang Y, Sun W, Wu D, Ping L. Changes in chemical components and cytotoxicity at different maturity stages of Pleurotus eryngii fruiting body. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12631-12640. [PMID: 25483207 DOI: 10.1021/jf5048354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study investigated the changes of the chemical components and cytotoxicity potency at 5 developmental stages of Pleurotus eryngii fruiting body. The carbohydrate and protein contents increased along the maturity of fruiting body while fat content decreased. By comparison, the polysaccharide-protein fractions had the highest antiproliferative effect on SGC-7901 and HepG-2 cells in vitro and increasing activity with growing maturity of P. eryngii fruiting body.The maturation process increased the protein content and acid property through the enhanced relative abundance of Asp, Thr, and Glu in polysaccharide-protein fractions. Further purification and electrophoresis identified that the polysaccharide-protein PEG-1with three subunits possibly was the target cytotoxical component. Our findings proved that mature fruiting body of P. eryngii containing these polysaccharide-proteins possessed highly nutritional values and therapeutical benefits.
Collapse
Affiliation(s)
- Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University , Zhenjiang 212013, P. R. China
| | | | | | | | | | | |
Collapse
|
17
|
The simultaneous quantification of Ganoderma acids and alcohols using ultra high-performance liquid chromatography–mass spectrometry in dynamic selected reaction monitoring mode. J Pharm Biomed Anal 2013; 74:246-9. [DOI: 10.1016/j.jpba.2012.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 11/21/2022]
|