1
|
Massa A, Santos É, Martins D, Azevedo J, Reimão M, Almeida A, Azevedo R, Pinto E, Vasconcelos V, Campos A, Freitas M. Toxic and non-toxic cyanobacterial biomass as a resource for sustainable agriculture: A lettuce cultivation experiment. ENVIRONMENTAL RESEARCH 2024; 262:119942. [PMID: 39243846 DOI: 10.1016/j.envres.2024.119942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Cyanobacteria represent a promising resource for sustainable agriculture, as they have demonstrated the ability to restore soil fertility even after death and decay. However, several cyanobacteria can also release secondary metabolites, such as cyanotoxins, which may compromise the quality of agricultural products and pose a potential risk to human health. Depending on the concentration of exposure, few studies reported deleterious effects on plant species when irrigated with cylindrospermopsin (CYN) contaminated water, impairing plant growth and leading to food product contamination, while other studies show promoting effects on plant yield. To evaluate the potential of cyanobacterial biomass (cyanotoxin-containing or not) as a sustainable resource for soil amendment, biostimulants or fertilizers for lettuce cultivation, a study was carried out that consisted of the culture of lettuce plants under controlled conditions, in soil: (1) with no extra nutrient addition (control) and supplemented with 0.6 g of freeze-dried Raphidiopsis raciborskii biomass of (2) a non-CYN-producing strain, (3) a CYN-producing strain, and (4) the same CYN-producing strain pasteurized. Results showed no significant differences in photosystem II efficiency with the amendment addition. On the contrary, shoot fresh weight significantly increased in lettuce plants grown with the cyanobacterial biomass addition, especially in condition (3). In addition, there were significant differences in mineral concentrations in lettuce leaves after the cyanobacterial biomass addition, such as K, Na, Ca, P, Mg, Mn, Zn, Cu, Mo, and Co. CYN accumulation was detected under conditions (3) and (4), with concentrations observed in descending order from roots > soil > shoot. Nevertheless, the CYN concentration in edible tissues did not exceed the WHO-proposed tolerable daily intake of 0.03 μg/kg/day. These findings suggest that incorporating cyanobacterial biomass as a soil amendment, biostimulant or fertilizer for lettuce cultivation, even with trace amounts of CYN (1-40 μg/g), may enhance plant yield without leading to cyanotoxin accumulation in edible tissues above the WHO-recommended tolerable daily intake.
Collapse
Affiliation(s)
- Anabella Massa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; School of Medicine and Biomedical Sciences, Porto University, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Universidad Del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena S/n, 48940, Leioa, Spain; Université de Pau et des Pays de L'Adour (UPPA), Av. de L'Université, 64000, Pau, France; Faculty of Sciences, Porto University (FCUP), Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal
| | - Érica Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; ESS, Polytechnic of Porto (ESS|P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Diogo Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; ESS, Polytechnic of Porto (ESS|P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Mariana Reimão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; ESS, Polytechnic of Porto (ESS|P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui Azevedo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Edgar Pinto
- REQUIMTE/LAQV, ESS, Polytechnic of Porto (ESS|P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Faculty of Sciences, Porto University (FCUP), Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal
| | - Marisa Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto University, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; ESS, Polytechnic of Porto (ESS|P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.
| |
Collapse
|
2
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
3
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
4
|
Casas Rodríguez A, Diez-Quijada L, Prieto AI, Jos A, Cameán AM. Effect of cold food storage techniques on the contents of Microcystins and Cylindrospermopsin in leaves of spinach (Spinacia oleracea) and lettuce (Lactuca sativa). Food Chem Toxicol 2022; 170:113507. [PMID: 36334728 DOI: 10.1016/j.fct.2022.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
The presence of Cylindrospermopsin (CYN) and Microcystins (MCs) in vegetables is considered as a significant worldwide toxicological risk. Thus, this work aims to assess for the first time the impact of refrigeration (4 °C) and freezing (-20 °C) on the levels of CYN, MCs and their mixtures (CYN + MCs) in lettuce and spinach. Samples were spiked with 750 μg cyanotoxins/g dry weight (d.w.). Several storage conditions were studied: refrigeration after 24, 48 h and 7 days, and freezing for 7 days, 1 and 3 months. Cyanotoxin concentrations were determined by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). For CYN, refrigeration at 48 h and 7 days was effective to decrease its concentrations up to 26% and 32%, respectively, in spinach. For MCs, refrigeration was only effective in lettuce compared to spinach, showing an important decrease of 80.3% MC-LR and 85.1% MC-YR. In spinach, CYN was stable after 3 months freezing, whereas MC contents were still reduced up to 44%. Overall, cyanotoxins were less stable in the mixture compared to individual toxins for both processes, and the effect of these storage techniques were toxin and food-specific. Further studies of cyanotoxins in foods are required for evaluating the risk for humans.
Collapse
Affiliation(s)
- Antonio Casas Rodríguez
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Profesor García González Nº2, Spain
| |
Collapse
|
5
|
Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon 2022; 211:21-35. [DOI: 10.1016/j.toxicon.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
6
|
Zhang Y, Vo Duy S, Munoz G, Sauvé S. Phytotoxic effects of microcystins, anatoxin-a and cylindrospermopsin to aquatic plants: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152104. [PMID: 34863769 DOI: 10.1016/j.scitotenv.2021.152104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Global warming and eutrophication may lead to increased incidence of harmful algal blooms and related production of cyanotoxins that can be toxic to aquatic plants. Previous studies have evaluated the phytotoxic effects of cyanotoxins on aquatic plants. However, most studies have evaluated only a limited number of plant species and cyanotoxins; there is also considerable variability between studies, which obscures general patterns and hinders understanding of the phytotoxic effects of cyanotoxins. Here, we conducted a comprehensive meta-analysis by compiling 41 published papers to estimate the phytotoxic effects of anatoxin-a, cylindrospermopsin, and microcystins in 34 species of aquatic plants, with the aim of 1) investigating the phytotoxicity of different cyanotoxins to aquatic plants; 2) determining the aquatic plant species most sensitive to the phytotoxic effects of cyanotoxins; and 3) evaluating the bioaccumulation potential of cyanotoxins in aquatic plants. Most aquatic plants were negatively affected by cyanotoxin exposure and their response was dose-dependent; however, morphological indicators and photosynthesis of certain aquatic plants were marginally stimulated under low concentrations of anatoxin-a and cylindrospermopsin. Anatoxin-a showed the greatest bioaccumulation capacity in aquatic plants compared to cylindrospermopsin and microcystin variants. Bioaccumulation factors of cyanotoxins in aquatic plants generally decreased with increasing water exposure concentrations. Our study supports the One Health goal to manage the risk of public exposure to toxic substances, and indicates that cyanotoxins warrant further investigations in aquatic plants. Environmental managers and public health authorities need to be alert to the long-term exposure and chronic toxicity of cyanotoxins, and the potential trophic transfer of cyanotoxins from aquatic plants to higher-order organisms.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada.
| |
Collapse
|
7
|
Bouaïcha N, Metcalf JS, Porzani SJ, Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. PHYTOCHEMISTRY 2021; 192:112959. [PMID: 34649057 DOI: 10.1016/j.phytochem.2021.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Plant-cyanobacteria interactions occur in different ways and at many different levels, both beneficial and harmful. Plant-cyanobacteria interactions, as a beneficial symbiosis, have long been demonstrated in rice-growing areas (Poaceae) where the most efficient nitrogen-fixing cyanobacteria are present in paddies. Moreover, cyanobacteria may in turn produce and/or secrete numerous bioactive compounds that have plant growth-promoting abilities or that may make the plant more resistant to abiotic or biotic stress. In recent years, there has been a growing worldwide interest in the use of cyanobacterial biomass as biofertilizers to replace chemical fertilizers, in part to overcome increasing organic-farming demands. However, the potential presence of harmful cyanotoxins has delayed the use of such cyanobacterial biomass, which can be found in large quantities in freshwater ecosystems around the world. In this review, we describe the existing evidence for the positive benefit of plant-cyanobacteria interactions and discuss the use of cyanobacterial biomass as biofertilizers and its growing worldwide interest. Although mass cyanobacterial blooms and scums are a current and emerging threat to the degradation of ecosystems and to animal and human health, they may serve as a source of numerous bioactive compounds with multiple positive effects that could be of use as an alternative to chemical fertilizers in the context of sustainable development.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Laboratory Ecology, Systematic and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91405, Orsay, France
| | | | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ozcan Konur
- Formerly, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
8
|
Ye S, Gao L, Zamyadi A, Glover CM, Ma N, Wu H, Li M. Multi-proxy approaches to investigate cyanobacteria invasion from a eutrophic lake into the circumjacent groundwater. WATER RESEARCH 2021; 204:117578. [PMID: 34455158 DOI: 10.1016/j.watres.2021.117578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
To verify whether cyanobacteria can travel from eutrophic lakes into the surrounding groundwater, a large-scale field investigation, laboratorial incubations, and quartz column penetration tests were carried out in Lake Taihu (China). High-throughput sequencing of 16S rRNA gene amplicons indicated that cyanobacteria operational taxonomic units (OTUs) were present at fifteen out of forty total wells in four cardinal directions at varying distances from the shore of Lake Taihu, up to a maximum of forty-three kilometers. Six cyanobacteria genera were detected including Microcystis, Dolichospermum, Phormidium, Leptolyngbya, Pseudanabaena and Synechococcus. The proportions of Phormidium, Microcystis and Synechococcus OTUs in the total cyanobacterial community were 45.2%, 32.2% and 19.4%, respectively. The qRT-PCR results showed that cyanobacterial abundance decreased with increasing distance from the shore of Lake Taihu. Based on the microscopic analysis of cultures inoculated with groundwater, we found Microcystis, Dolichospermum and Phormidium. Five cyanobacterial genera were able to penetrate columns filled with quartz particles ranging from 100∼200 μm. Finer layers of quartz sands were found to be impenetrable. The rating of infiltration capabilities was Microcystis > Synechococcus > Nostoc > Phormidium > Cylindrospermopsis. Deficient concentrations of microcystins were found (< 1 µg L-1) in the groundwater samples. Based on the consideration of different factors (cyanobacterial composition in Lake Taihu, peripheral groundwater, and algal soil crusts), it was deduced that Microcystis likely originated from the lake. Still, Phormidium was probably originated from the soil infiltration. These results suggest that cyanobacteria and their toxins could travel in the groundwater, but this is a size-dependent mechanism.
Collapse
Affiliation(s)
- Sisi Ye
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC, 3199, Australia
| | - Arash Zamyadi
- Water Research Australia (Water RA), Adelaide/Melbourne, South Australia/Victoria, 5001, Australia; Water Research Centre, School of Civil and Environment Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia; Infrastructure Engineering, Faculty of Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Caitlin M Glover
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Ning Ma
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Haiming Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, PR China.
| |
Collapse
|
9
|
Li B, Liu Y, Zhang H, Liu Y, Liu Y, Xie P. Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
11
|
Kucała M, Saładyga M, Kaminski A. Phytoremediation of CYN, MC-LR and ANTX-a from Water by the Submerged Macrophyte Lemna trisulca. Cells 2021; 10:699. [PMID: 33801135 PMCID: PMC8004190 DOI: 10.3390/cells10030699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cyanotoxins are harmful to aquatic and water-related organisms. In this study, Lemna trisulca was tested as a phytoremediation agent for three common cyanotoxins produced by bloom-forming cyanobacteria. Cocultivation of L. trisulca with Dolichospermum flos-aquae in BG11 medium caused a release of the intracellular pool of anatoxin-a into the medium and the adsorption of 92% of the toxin by the plant-after 14 days, the total amount of toxin decreased 3.17 times. Cocultivation with Raphidopsis raciborskii caused a 2.77-time reduction in the concentration of cylindrospermopsin (CYN) in comparison to the control (62% of the total pool of CYN was associated with the plant). The greatest toxin limitation was noted for cocultivation with Microcystis aeruginosa. After two weeks, the microcystin-LR (MC-LR) concentration decreased more than 310 times. The macrophyte also influenced the growth and development of cyanobacteria cells. Overall, 14 days of cocultivation reduced the biomass of D. flos-aquae, M. aeruginosa, and R. raciborskii by 8, 12, and 3 times, and chlorophyll a concentration in comparison to the control decreased by 17.5, 4.3, and 32.6 times, respectively. Additionally, the macrophyte stabilized the electrical conductivity (EC) and pH values of the water and affected the even uptake of cations and anions from the medium. The obtained results indicate the biotechnological potential of L. trisulca for limiting the development of harmful cyanobacterial blooms and their toxicity.
Collapse
Affiliation(s)
- Małgorzata Kucała
- Metabolomics Laboratory, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (M.K.); (M.S.)
| | - Michał Saładyga
- Metabolomics Laboratory, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (M.K.); (M.S.)
| | - Ariel Kaminski
- Metabolomics Laboratory, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (M.K.); (M.S.)
| |
Collapse
|
12
|
Pappas D, Panou M, Adamakis IDS, Gkelis S, Panteris E. Beyond Microcystins: Cyanobacterial Extracts Induce Cytoskeletal Alterations in Rice Root Cells. Int J Mol Sci 2020; 21:ijms21249649. [PMID: 33348912 PMCID: PMC7766381 DOI: 10.3390/ijms21249649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC−) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.
Collapse
Affiliation(s)
- Dimitris Pappas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | | | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| |
Collapse
|
13
|
Smith JE, Stocker MD, Wolny JL, Hill RL, Pachepsky YA. Intraseasonal variation of phycocyanin concentrations and environmental covariates in two agricultural irrigation ponds in Maryland, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:706. [PMID: 33064217 DOI: 10.1007/s10661-020-08664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Recently, cyanobacteria blooms have become a concern for agricultural irrigation water quality. Numerous studies have shown that cyanotoxins from these harmful algal blooms (HABs) can be transported to and assimilated into crops when present in irrigation waters. Phycocyanin is a pigment known only to occur in cyanobacteria and is often used to indicate cyanobacteria presence in waters. The objective of this work was to identify the most influential environmental covariates affecting the phycocyanin concentrations in agricultural irrigation ponds that experience cyanobacteria blooms of the potentially toxigenic species Microcystis and Aphanizomenon using machine learning methodology. The study was performed at two agricultural irrigation ponds over a 5-month period in the summer of 2018. Phycocyanin concentrations, along with sensor-based and fluorometer-based water quality parameters including turbidity (NTU), pH, dissolved oxygen (DO), fluorescent dissolved organic matter (fDOM), conductivity, chlorophyll, color dissolved organic matter (CDOM), and extracted chlorophyll were measured. Regression tree analyses were used to determine the most influential water quality parameters on phycocyanin concentrations. Nearshore sampling locations had higher phycocyanin concentrations than interior sampling locations and "zones" of consistently higher concentrations of phycocyanin were found in both ponds. The regression tree analyses indicated extracted chlorophyll, CDOM, and NTU were the three most influential parameters on phycocyanin concentrations. This study indicates that sensor-based and fluorometer-based water quality parameters could be useful to identify spatial patterns of phycocyanin concentrations and therefore, cyanobacteria blooms, in agricultural irrigation ponds and potentially other water bodies.
Collapse
Affiliation(s)
- J E Smith
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, ARS-USDA, Beltsville, MD, USA.
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - M D Stocker
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, ARS-USDA, Beltsville, MD, USA
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - J L Wolny
- Resource Assessment Service, Maryland Department of Natural Resources, Annapolis, MD, USA
| | - R L Hill
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | - Y A Pachepsky
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, ARS-USDA, Beltsville, MD, USA
| |
Collapse
|
14
|
Llana-Ruiz-Cabello M, Jos A, Cameán A, Oliveira F, Barreiro A, Machado J, Azevedo J, Pinto E, Almeida A, Campos A, Vasconcelos V, Freitas M. Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia oleracea and Lactuca sativa. Toxins (Basel) 2019; 11:E624. [PMID: 31661886 PMCID: PMC6891636 DOI: 10.3390/toxins11110624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cyanobacteria and cyanotoxins constitute a serious environmental and human health problem. Moreover, concerns are raised with the use of contaminated water in agriculture and vegetable production as this can lead to food contamination and human exposure to toxins as well as impairment in crop development and productivity. The objective of this work was to assess the susceptibility of two green vegetables, spinach and lettuce, to the cyanotoxins microcystin (MC) and cylindrospermopsin (CYN), individually and in mixture. The study consisted of growing both vegetables in hydroponics, under controlled conditions, for 21 days in nutrient medium doped with MC or CYN at 10 μg/L and 50 μg/L, or CYN/MC mixture at 5 + 5 μg/L and 25 + 25 μg/L. Extracts from M. aeruginosa and C. ovalisporum were used as sources of toxins. The study revealed growth inhibition of the aerial part (Leaves) in both species when treated with 50µg/L of MC, CYN and CYN/MC mixture. MC showed to be more harmful to plant growth than CYN. Moreover spinach leaves growth was inhibited by both 5 + 5 and 25 + 25 µg/L CYN/MC mixtures, whereas lettuce leaves growth was inhibited only by 25 + 25 µg/L CYN/MC mixture. Overall, growth data evidence increased sensitivity of spinach to cyanotoxins in comparison to lettuce. On the other hand, plants exposed to CYN/MC mixture showed differential accumulation of CYN and MC. In addition, CYN, but not MC, was translocated from the roots to the leaves. CYN and MC affected the levels of minerals particularly in plant roots. The elements most affected were Ca, K and Mg. However, in leaves K was the mineral that was affected by exposure to cyanotoxins.
Collapse
Affiliation(s)
- Maria Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Ana Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville, Spain.
| | - Flavio Oliveira
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Aldo Barreiro
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Joana Machado
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Joana Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Edgar Pinto
- LAQV/REQUIMTE, Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Polytechnic Institute of Porto, Department of Environmental Health, School of Health, CISA/Research Center in Environment and Health, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal.
| | - Agostinho Almeida
- LAQV/REQUIMTE, Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Alexandre Campos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Marisa Freitas
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
- Polytechnic Institute of Porto, Department of Environmental Health, School of Health, CISA/Research Center in Environment and Health, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal.
| |
Collapse
|
15
|
Chia MA, Auta ZZ, Esson AE, Yisa AG, Abolude DS. Assessment of microcystin contamination of Amaranthus hybridus, Brassica oleracea, and Lactuca sativa sold in markets: a case study of Zaria, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:569. [PMID: 31418103 DOI: 10.1007/s10661-019-7725-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs) are toxic secondary metabolites produced by several cyanobacteria genera that have been implicated in human cancer cases and deaths. Human exposure routes include direct contact with contaminated water and the consumption of contaminated food. The present study investigated the presence of MCs in three commonly consumed vegetables at the point of sale in market places as a means of assessing the direct human health risk of buying vegetables. Overall, 53% of the vegetables obtained from different markets had levels of MCs that were higher than 1.00 μg/g. Amaranthus hybridus L. (smooth amaranth) had the highest MC concentration (4.79 μg/g) in samples obtained from Sabon Gari Market, while Lactuca sativa L. (garden lettuce) had the lowest concentration (0.17 μg/g) in samples obtained from Dan-Magaji Market. The highest total daily intake (TDI) of MCs by an adult weighing 60 kg was 3.19 μg/kg for A. hybridus, 1.41 μg/kg for Brassica oleracea L. (cabbage), and 2.94 μg/kg for L. sativa. The highest TDI of MCs for a child weighing 25 kg was highest in A. hybridus (1.91 μg/kg), followed by L. sativa (1.77 μg/kg). These results revealed that the consumption of vegetables sold in markets in Zaria, Nigeria, during the dry season represents a major exposure route to MCs. There is, therefore, an urgent need to develop policies and monitoring strategies to tackle this problem in developing countries.
Collapse
Affiliation(s)
| | | | | | - Abraham G Yisa
- Department of Zoology, Ahmadu Bello University, Zaria, Nigeria
| | - David S Abolude
- Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
16
|
|
17
|
Díez-Quijada L, Guzmán-Guillén R, Prieto Ortega AI, Llana-Ruíz-Cabello M, Campos A, Vasconcelos V, Jos Á, Cameán AM. New Method for Simultaneous Determination of Microcystins and Cylindrospermopsin in Vegetable Matrices by SPE-UPLC-MS/MS. Toxins (Basel) 2018; 10:E406. [PMID: 30297653 PMCID: PMC6215191 DOI: 10.3390/toxins10100406] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanotoxins are a large group of noxious metabolites with different chemical structure and mechanisms of action, with a worldwide distribution, producing effects in animals, humans, and crop plants. When cyanotoxin-contaminated waters are used for the irrigation of edible vegetables, humans can be in contact with these toxins through the food chain. In this work, a method for the simultaneous detection of Microcystin-LR (MC-LR), Microcystin-RR (MC-RR), Microcystin-YR (MC-YR), and Cylindrospermopsin (CYN) in lettuce has been optimized and validated, using a dual solid phase extraction (SPE) system for toxin extraction and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for analysis. Results showed linear ranges (5⁻50 ng g-1 f.w.), low values for limit of detection (LOD) (0.06⁻0.42 ng g-1 f.w.), and limit of quantification (LOQ) (0.16⁻0.91 ng g-1 f.w.), acceptable recoveries (41⁻93%), and %RSDIP values for the four toxins. The method proved to be robust for the three variables tested. Finally, it was successfully applied to detect these cyanotoxins in edible vegetables exposed to cyanobacterial extracts under laboratory conditions, and it could be useful for monitoring these toxins in edible vegetables for better exposure estimation in terms of risk assessment.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana I Prieto Ortega
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - María Llana-Ruíz-Cabello
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Alexandre Campos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de leixões, Av General Norton de Matos, 4450-208 Matosinhos, Portugal.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de leixões, Av General Norton de Matos, 4450-208 Matosinhos, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
18
|
Maisanaba S, Guzmán-Guillén R, Valderrama R, Meca G, Font G, Jos Á, Cameán AM. Bioaccessibility and decomposition of cylindrospermopsin in vegetables matrices after the application of an in vitro digestion model. Food Chem Toxicol 2018; 120:164-171. [PMID: 29981788 DOI: 10.1016/j.fct.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 01/19/2023]
Abstract
Research on the human exposure to Cylindrospermopsin (CYN) via consumption of contaminated food is of great interest for risk assessment purposes. The aim of this work is to evaluate for the first time the CYN bioaccessibility in contaminated vegetables (uncooked lettuce and spinach, and boiled spinach) after an in vitro digestion model, including the salivar, gastric and duodenal phases and, colonic fermentation under lactic acid bacteria. The results obtained showed that the digestion processes are able to diminish CYN levels, mainly in the colonic phase, especially in combination with the boiling treatment, decreasing CYN levels in a significant way. Moreover, the potential decomposition products in a pure CYN solution and in CYN-contaminated vegetables were evaluated using UHPLC-MS/MS Orbitrap. Under the conditions assayed, only two diastereoisomers of the same fragment with m/z 292.09617 have been detected in all the analysed samples, with the exception of digested vegetables. Therefore, in terms of risk assessment, the digestion seems to play an important role in reducing the final bioaccesibility of CYN, and the consumption of cooked vegetables (spinach) would be safer in comparison to raw vegetables.
Collapse
Affiliation(s)
- Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | - Rocío Valderrama
- Mass Spectrometry Facility, Centro de Investigacion Tecnologica e Investigacion (CITIUS), University of Sevilla, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
19
|
Prieto AI, Guzmán-Guillén R, Díez-Quijada L, Campos A, Vasconcelos V, Jos Á, Cameán AM. Validation of a Method for Cylindrospermopsin Determination in Vegetables: Application to Real Samples Such as Lettuce (Lactuca sativa L.). Toxins (Basel) 2018; 10:E63. [PMID: 29389882 PMCID: PMC5848164 DOI: 10.3390/toxins10020063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
Reports on the occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) have increased worldwide because of CYN toxic effects in humans and animals. If contaminated waters are used for plant irrigation, these could represent a possible CYN exposure route for humans. For the first time, a method employing solid phase extraction and quantification by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) of CYN was optimized in vegetables matrices such as lettuce (Lactuca sativa). The validated method showed a linear range, from 5 to 500 ng CYN g-1 of fresh weight (f.w.), and detection and quantitation limits (LOD and LOQ) of 0.22 and 0.42 ng CYN g-1 f.w., respectively. The mean recoveries ranged between 85 and 104%, and the intermediate precision from 12.7 to 14.7%. The method showed to be robust for the three different variables tested. Moreover, it was successfully applied to quantify CYN in edible lettuce leaves exposed to CYN-contaminated water (10 µg L-1), showing that the tolerable daily intake (TDI) in the case of CYN could be exceeded in elderly high consumers. The validated method showed good results in terms of sensitivity, precision, accuracy, and robustness for CYN determination in leaf vegetables such as lettuce. More studies are needed in order to prevent the risks associated with the consumption of CYN-contaminated vegetables.
Collapse
Affiliation(s)
- Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
20
|
Cordeiro-Araújo MK, Chia MA, Bittencourt-Oliveira MDC. Potential human health risk assessment of cylindrospermopsin accumulation and depuration in lettuce and arugula. HARMFUL ALGAE 2017; 68:217-223. [PMID: 28962982 DOI: 10.1016/j.hal.2017.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The cyanobacterial toxin cylindrospermopsin (CYN) has become a globally important secondary metabolite due to the negative effect it has on human and animal health. As a means of evaluating the risk of human exposure to CYN, the bioaccumulation and depuration of the toxin in lettuce (Lactuca sativa L.) and arugula (Eruca sativa Mill.) were investigated, after irrigation with contaminated water. The vegetables were irrigated for 7days with CYN (3, 5 and 10μg/L) contaminated water (bioaccumulation phase), and subsequently, irrigated for 7days with uncontaminated distilled water (depuration phase). In general, the bioaccumulation of CYN in both vegetables decreased with increasing exposure concentration. Bioconcentration factor (BCF) of CYN increased with the progression of the experiment at 3.0μg/L CYN, while the reverse occurred at 5 and 10μg/L CYN. In arugula, BCF increased at all CYN exposure concentrations throughout the study. The depuration of CYN decreased with increasing exposure concentration but was highest in the plants of both species with the highest bioaccumulation of CYN. Specifically, in plants previously irrigated with water contaminated with 3, 5 and 10μg/L CYN, the depuration of the toxin was 60.68, 27.67 and 18.52% for lettuce, and 47, 46.21 and 27.67% for arugula, respectively. Human health risks assessment revealed that the consumption of approximately 10 to 40g of vegetables per meal will expose children and adults to 1.00-6.00ng CYN/kg body mass for lettuce and 2.22-7.70ng CYN/kg body mass for arugula. The irrigation of lettuce and arugula with contaminated water containing low CYN concentrations constitutes a potential human exposure route.
Collapse
Affiliation(s)
- Micheline Kézia Cordeiro-Araújo
- Botany Graduate Program, Rural and Federal University of Pernambuco, R. Dom Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171-030 Recife, PE, Brazil; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil
| | - Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil; Department of Botany, Ahmadu Bello University, 810001, Zaria, Nigeria
| | - Maria do Carmo Bittencourt-Oliveira
- Botany Graduate Program, Rural and Federal University of Pernambuco, R. Dom Manoel de Medeiros, S/N, Dois Irmãos, CEP 52171-030 Recife, PE, Brazil; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
21
|
Chia MA, Cordeiro-Araújo MK, Lorenzi AS, Bittencourt-Oliveira MDC. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:189-199. [PMID: 28411514 DOI: 10.1016/j.ecoenv.2017.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/25/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Growing evidence suggests that some bioactive metabolites (e.g. cyanotoxins) produced by cyanobacteria have allelopathic potential, due to their inhibitory or stimulatory effects on competing species. Although a number of studies have shown that the cyanotoxin cylindrospermopsin (CYN) has variable effects on phytoplankton species, the impact of changing physicochemical conditions on its allelopathic potential is yet to be investigated. We investigated the physiological response of Microcystis aeruginosa (Cyanobacteria) and Acutodesmus acuminatus (Chlorophyta) to CYN under varying nitrogen and light conditions. At 24h, higher microcystins content of M. aeruginosa was recorded under limited light in the presence of CYN, while at 120h the lower levels of the toxins were observed in the presence of CYN under optimum light. Total MCs concentration was significantly (p<0.05) lowered by CYN after 120h of exposure under limited and optimum nitrogen conditions. On the other hand, there were no significant (p>0.05) changes in total MCs concentrations after exposure to CYN under high nitrogen conditions. As expected, limited light and limited nitrogen conditions resulted in lower cell density of both species, while CYN only significantly (p<0.05) inhibited the growth of M. aeruginosa. Regardless of the light or nitrogen condition, the presence of CYN increased internal H2O2 content of both species, which resulted in significant (p<0.05) changes in antioxidant enzyme (catalase, peroxidase, superoxide dismutase and glutathione S-transferase) activities. The oxidative stress caused by CYN was higher under limited light and limited nitrogen. These results showed that M. aeruginosa and A. acuminatus have variable response to CYN under changing light and nitrogen conditions, and demonstrate that need to consider changes in physicochemical conditions during ecotoxicological and ecophysiological investigations.
Collapse
Affiliation(s)
- Mathias Ahii Chia
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900, Piracicaba, SP, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900, Piracicaba, SP, Brazil
| | - Adriana Sturion Lorenzi
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900, Piracicaba, SP, Brazil
| | - Maria do Carmo Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, CEP 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
22
|
Intestinal transport of Cylindrospermopsin using the Caco-2 cell line. Toxicol In Vitro 2017; 38:142-149. [DOI: 10.1016/j.tiv.2016.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/14/2016] [Accepted: 09/25/2016] [Indexed: 11/22/2022]
|
23
|
Machado J, Campos A, Vasconcelos V, Freitas M. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. ENVIRONMENTAL RESEARCH 2017; 153:191-204. [PMID: 27702441 DOI: 10.1016/j.envres.2016.09.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is also evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health.
Collapse
Affiliation(s)
- J Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - A Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - V Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal
| | - M Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal; Polytechnic Institute of Porto, Department of Environmental Health, School of Allied Health Technologies, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, P 440-330 Gaia, Portugal.
| |
Collapse
|
24
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
25
|
Mohamed Z. Cyanobacterial Toxins in Water Sources and Their Impacts on Human Health. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cyanobacteria are a group of phytoplankton of marine and freshwaters. The accelerated eutrophication of water sources by agricultural and industrial run-off has increased the occurrence and intensity of cyanobacterial blooms. They are of particular concern because of their production for potent hepato-, neuro-, and dermatoxins, being hazardous to human health. Dissemination of knowledge about cyanobacteria and their cyanotoxins assists water supply authorities in developing monitoring and management plans, and provides the public with appropriate information to avoid exposure to these toxins. This chapter provides a broad overview and up-to-date information on cyanobacteria and their toxins in terms of their occurrence, chemical and toxicological characteristics, fate in the environment, guideline limits, and effective treatment techniques to remove these toxins from drinking water. Future research directions were also suggested to fill knowledge and research gaps, and advance the abilities of utilities and water treatment plant designers to deal with these toxins.
Collapse
|
26
|
Guzmán-Guillén R, Campos A, Machado J, Freitas M, Azevedo J, Pinto E, Almeida A, Cameán AM, Vasconcelos V. Effects of Chrysosporum (Aphanizomenon) ovalisporum extracts containing cylindrospermopsin on growth, photosynthetic capacity, and mineral content of carrots (Daucus carota). ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:22-31. [PMID: 27770233 DOI: 10.1007/s10646-016-1737-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Natural toxins produced by freshwater cyanobacteria, such as cylindrospermopsin, have been regarded as an emergent environmental threat. Despite the risks for food safety, the impact of these water contaminants in agriculture is not yet fully understood. Carrots (Daucus carota) are root vegetables, extensively consumed worldwide with great importance for human nourishment and economy. It is, therefore, important to evaluate the possible effects of using water contaminated with cyanotoxins on carrot cultivation. The aim of this work was to investigate cylindrospermopsin effects on D. carota grown in soil and irrigated for 30 days, with a Chrysosporum ovalisporum extract containing environmentally relevant concentrations of cylindrospermopsin (10 and 50 μg/L). The parameters evaluated were plant growth, photosynthetic capacity, and nutritional value (mineral content) in roots of carrots, as these are the edible parts of this plant crop. The results show that, exposure to cylindrospermopsin did not have a clear negative effect on growth or photosynthesis of D. carota, even leading to an increase of both parameters. However, alterations in mineral contents were detected after exposure to crude extracts of C. ovalisporum containing cylindrospermopsin. A general decline was observed for most minerals (Ca, Mg, Na, Fe, Mn, Zn, Mo, and P), although an increase was shown in the case of K and Cu, pointing to a possible interference of the cyanobacterial extract in mineral uptake. This study is the first to evaluate the effects of C. ovalisporum extracts on a root vegetable, however, more research is necessary to understand the effects of this toxin in environmentally relevant scenarios.
Collapse
Affiliation(s)
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal.
| | - Joana Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
| | - Marisa Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Environmental Health, Escola Superior de Tecnologia da Saúde do Porto, Polytechnic Institute of Porto, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, Gaia, 4400-330, Portugal
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
| | - Edgar Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Department of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- Department of Environmental Health, Escola Superior de Tecnologia da Saúde do Porto, Polytechnic Institute of Porto, CISA/Research Center in Environment and Health, Rua de Valente Perfeito, 322, Gaia, 4400-330, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Department of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana M Cameán
- Area of Toxicology, Department of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Porto, 4050-123, Portugal
- Department of Biology, Department of Sciences of the University of Porto, Porto, 4169-007, Portugal
| |
Collapse
|
27
|
Quantitative determination by screening ELISA and HPLC-MS/MS of microcystins LR, LY, LA, YR, RR, LF, LW, and nodularin in the water of Occhito lake and crops. Anal Bioanal Chem 2016; 408:7699-7708. [DOI: 10.1007/s00216-016-9867-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
28
|
Biosynthesis of 15N-labeled cylindrospermopsin and its application as internal standard in stable isotope dilution analysis. Anal Bioanal Chem 2014; 406:5765-74. [DOI: 10.1007/s00216-014-8026-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
29
|
Corbel S, Mougin C, Bouaïcha N. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. CHEMOSPHERE 2014; 96:1-15. [PMID: 24012139 DOI: 10.1016/j.chemosphere.2013.07.056] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 05/26/2023]
Abstract
The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins.
Collapse
|
30
|
de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O'Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1979-2003. [PMID: 24056894 DOI: 10.1039/c3em00353a] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.
Collapse
Affiliation(s)
- Armah A de la Cruz
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Máthé C, M-Hamvas M, Vasas G. Microcystin-LR and cylindrospermopsin induced alterations in chromatin organization of plant cells. Mar Drugs 2013; 11:3689-717. [PMID: 24084787 PMCID: PMC3826130 DOI: 10.3390/md11103689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen H-4010, Egyetem tér 1, Hungary.
| | | | | |
Collapse
|
32
|
Gutiérrez-Praena D, Jos Á, Pichardo S, Moreno IM, Cameán AM. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Food Chem Toxicol 2012. [PMID: 23200893 DOI: 10.1016/j.fct.2012.10.062] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microcystins (MCs) and cylindrospermopsin (CYN) are among the cyanotoxins which occur naturally, produced by different cyanobacteria species when they grow or proliferate under favorable environmental conditions. From a toxicological point of view, their relevance is due to the deleterious effects that they have been reported to induce in a wide range of organisms, including humans. Cyanotoxins intake from contaminated water and food is an important source of human exposure. Various edible aquatic organisms, plants, and food supplements based on algae, can bioaccumulate these toxins. A thorough review of the scientific data available on this topic is provided, the studies on MCs being much more numerous than those focused on CYN. The scientific literature suggests that these cyanotoxins can be accumulated at concentrations higher than their respective recommended tolerable daily intake (TDI). Finally, the influence of different cooking procedures on their levels in food has been considered. In this regard, again studies on the matter dealing with CYN have been not yet raised. MCs contents have been reported to be reduced in muscle of fish after boiling, or cooking in a microwave-oven, although the effect of other traditional cooking processes such as frying, roasting or grilling have not been demonstrated.
Collapse
Affiliation(s)
- Daniel Gutiérrez-Praena
- Nutrición y Bromatología, Toxicología y Medicina Legal Department, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|