1
|
Mensah RA, Cook MT, Kirton SB, Hutter V, Chau DYS. A drug-incorporated-microparticle-eggshell-membrane-scaffold (DIMES) dressing: A novel biomaterial for localised wound regeneration. Eur J Pharm Biopharm 2023; 190:258-269. [PMID: 37463633 DOI: 10.1016/j.ejpb.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023]
Abstract
Chronic wounds affect millions of people annually and have emotional and financial implications in addition to health issues. The current treatment for chronic wounds involves the repeated use of bandages and drugs such as antibiotics over an extended period. A cost-effective and convenient solution for wound healing is the development of drug-incorporated bandages. This study aimed to develop a biocompatible bandage made of drug-incorporated poly (lactic-co-glycolic acid) (PLGA) microparticles (MPs) and eggshell membrane (ESM) for cornea wound healing. ESM has desirable properties for wound healing and can be isolated from eggshells using acetic acid or ethylenediaminetetraacetic acid (EDTA) protocols. Fluorescein isothiocyanate-labelled Bovine Serum Albumin (FITC-BSA) was used as a model drug, and the PLGA MPs were fabricated using a solvent extraction method. The MPs were successfully attached to the fibrous layer of the ESM using NaOH. The surface features of the ESM samples containing MPs were studied using a field emission scanning electron microscope (FESEM) and compared with blank ESM images. The findings indicated that the MPs were attached to the ESM fibres and had similar shapes and sizes as the control MPs. The fibre diameters of the MPs samples were assessed using Fiji-ImageJ software, and no significant changes were observed compared to the blank ESM. The surface roughness, Ra values, of the MPs incorporated ESM samples were evaluated and compared to the blank ESM, and no significant changes were found. Fourier transform infrared (FTIR) spectroscopy was used to analyse the chemical Composition of the bandage, and the spectra showed that the FBM were effectively incorporated into the ESM. The FTIR spectra identified the major peaks of the natural ESM and the PLGA polymer in the bandage. The bandage was transparent but had a reduced visibility in the waterproof test card method. The bandage achieved sustained drug release up to 10 days and was found to be biocompatible and non-toxic in a chorioallantoic membrane (CAM) assay. Overall, the drug-incorporated PLGA MPs-ESM bandage has great potential for treating chronic wounds.
Collapse
Affiliation(s)
- Rosemond A Mensah
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK
| | - Michael T Cook
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; School of Pharmacy, University College London, London, UK
| | - Stewart B Kirton
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Victoria Hutter
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - David Yi San Chau
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK; Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
2
|
Torres-Mansilla A, Hincke M, Voltes A, López-Ruiz E, Baldión PA, Marchal JA, Álvarez-Lloret P, Gómez-Morales J. Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers (Basel) 2023; 15:polym15061342. [PMID: 36987123 PMCID: PMC10057008 DOI: 10.3390/polym15061342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The physicochemical features of the avian eggshell membrane play an essential role in the process of calcium carbonate deposition during shell mineralization, giving rise to a porous mineralized tissue with remarkable mechanical properties and biological functions. The membrane could be useful by itself or as a bi-dimensional scaffold to build future bone-regenerative materials. This review focuses on the biological, physical, and mechanical properties of the eggshell membrane that could be useful for that purpose. Due to its low cost and wide availability as a waste byproduct of the egg processing industry, repurposing the eggshell membrane for bone bio-material manufacturing fulfills the principles of a circular economy. In addition, eggshell membrane particles have has the potential to be used as bio-ink for 3D printing of tailored implantable scaffolds. Herein, a literature review was conducted to ascertain the degree to which the properties of the eggshell membrane satisfy the requirements for the development of bone scaffolds. In principle, it is biocompatible and non-cytotoxic, and induces proliferation and differentiation of different cell types. Moreover, when implanted in animal models, it elicits a mild inflammatory response and displays characteristics of stability and biodegradability. Furthermore, the eggshell membrane possesses a mechanical viscoelastic behavior comparable to other collagen-based systems. Overall, the biological, physical, and mechanical features of the eggshell membrane, which can be further tuned and improved, make this natural polymer suitable as a basic component for developing new bone graft materials.
Collapse
Affiliation(s)
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Ana Voltes
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Department of Health Sciences, Campus de las Lagunillas S/N, University of Jaén, 23071 Jaén, Spain
| | - Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada–University of Granada, 18071 Granada, Spain
- BioFab i3D Lab–Biofabrication and 3D (bio)Printing Singular Laboratory, Centre for Biomedical Research (CIBM), University of Granada, 180171 Granada, Spain
| | - Pedro Álvarez-Lloret
- Departamento de Geología, Universidad de Oviedo, 33005 Asturias, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos IACT–CSIC–UGR, Avda. Las Palmeras, No. 4, Armilla, 18100 Granada, Spain
- Correspondence: (P.Á.-L.); (J.G.-M.)
| |
Collapse
|
3
|
Cao Y, Li X, Yu G, Wang B. Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130025. [PMID: 36166908 DOI: 10.1016/j.jhazmat.2022.130025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient adsorbents with proper pore size for pharmaceutical removal is challenging. Water stable metal-organic frameworks (MOFs) are crystalline materials within the three-dimensional frameworks, which have already aroused increasing attention for their potential advantages with high surface area and abundant channels. However, whether or not the existing ones are performing their full capacities needs to be seriously considered. Herein, we precisely designed a series of fine-tuning hierarchically porous materials based on the water-stable Zr-based MOFs. The adsorption capacity and uptake rate of as-synthesized materials for pharmaceuticals are significantly improved. Fifteen isostructural frameworks with increasing finely tuned pore structures were successfully constructed with seven monocarboxylic modulators of increasing alkyl chain lengths. A strong correlated relationship between the mesoporous proportion and trapping kinetics can be found. Adsorption performance of 17 pharmaceuticals with various typical categories has been systematically studied over these as-synthesized materials. Competitors in natural wastewater were studied systematically. The competitive adsorption can selectively trap the target compounds in HA (humic acid), BSA (bovine serum albumin), and BHB (bovine hemoglobin) by an efficient size exclusion effect. Thus, this study offers helpful guidance for MOF modification to enhance the removal of micropollutants in natural wastewater and a fundamental understanding of the porosity-performance relationships.
Collapse
Affiliation(s)
- Yuhua Cao
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| | - Xiang Li
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100081, China
| | - Bo Wang
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| |
Collapse
|
4
|
Tanifuji N, Shimizu T, Yoshikawa H, Tanaka M, Nishio K, Ida K, Shimizu A, Hasebe Y. Assessment of Eggshell Membrane as a New Type of Proton-Conductive Membrane in Fuel Cells. ACS OMEGA 2022; 7:12637-12642. [PMID: 35474842 PMCID: PMC9025988 DOI: 10.1021/acsomega.1c06687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Polymer electrolyte membrane fuel cells have recently attracted considerable attention as sustainable and eco-friendly electricity generation devices from the viewpoint of carbon neutrality. This study focuses on new discoveries related to the application of eggshell membranes to polymer electrolytes in the development of cheaper, more eco-friendly fuel cells. We observed the electricity generation of the fuel cells using an eggshell membrane as a proton-conductive material and a general carbonic acid aqueous solution. This new fuel cell will contribute to the continued improvement of available fuel cells at lower costs.
Collapse
Affiliation(s)
- Naoki Tanifuji
- National
Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan
| | - Takeshi Shimizu
- National
Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan
| | - Hirofumi Yoshikawa
- School
of Engineering, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Miki Tanaka
- National
Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan
| | - Kosuke Nishio
- National
Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan
| | - Kentaro Ida
- National
Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan
| | - Akihiro Shimizu
- National
Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan
| | - Yukio Hasebe
- ALMADO
Inc., 3-6-18 Kyobashi, Chuo-ku, Tokyo 104-0031, Japan
| |
Collapse
|
5
|
Beneficial effect on rapid skin wound healing through carboxylic acid-treated chicken eggshell membrane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112350. [PMID: 34474899 DOI: 10.1016/j.msec.2021.112350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023]
Abstract
At the initial stage of wound healing, growth factors stimulate tissue regeneration by interacting with the extracellular matrix (ECM), leading to rapid wound repair and structural support. Chicken eggshell membrane (ESM) is a low-cost and highly functional ECM biomaterial for tissue regeneration. However, natural ESM has limitations for tissue engineering purposes because it is difficult to control the size, shape, and biocompatibility of the surfaces. To overcome this, blends of synthetic materials and natural ESMs, such as soluble eggshell membrane protein, are combined for biomaterial applications. Unfortunately, it is difficult to pattern fibrous structure. Here, we modified the natural chicken ESM through weak acid treatment to promote wound healing and skin regeneration without loss of fibrous structure. Treatment of citric acid and acetic acid reacted the amine or amide group with carboxyl groups (R-COOH) and achieved hydrophilicity for adherence of proliferating regenerative cells. Our in vitro study revealed that the modified ESM scaffolds significantly promoted human dermal fibroblasts adhesion, viability, proliferation, and cytokine secretion, compared with natural ESM. In addition, the modified ESM accelerated skin regeneration and enhanced the wound healing process even at early stages in an in vivo rat wound model. Collectively, the modified ESM performed best for promoting skin regeneration, cytokine secretion, epidermal cell proliferation, and controlling the inflammatory response both in vitro and in vivo.
Collapse
|
6
|
Mensah RA, Jo SB, Kim H, Park SM, Patel KD, Cho KJ, Cook MT, Kirton SB, Hutter V, Sidney LE, Alves-Lima D, Lin H, Lee JH, Kim HW, Chau DY. The eggshell membrane: A potential biomaterial for corneal wound healing. J Biomater Appl 2021; 36:912-929. [PMID: 34139891 PMCID: PMC8606947 DOI: 10.1177/08853282211024040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The eggshell membrane (ESM) is an abundant resource with innate complex structure and composition provided by nature. With at least 60 million tonnes of hen eggs produced globally per annum, utilisation of this waste resource is highly attractive in positively impacting sustainability worldwide. Given the morphology and mechanical properties of this membrane, it has great potential as a biomaterials for wound dressing. However, to date, no studies have demonstrated nor reported this application. As such, the objective of this investigation was to identify and optimise a reproducible extraction protocol of the ESM and to assess the physical, chemical, mechanical and biological properties of the substrate with a view to use as a wound dressing. ESM samples were isolated by either manual peeling (ESM-strip) or via extraction using acetic acid [ESM-A0.5] or ethylenediaminetetraacetic acid, EDTA [ESM-E0.9]. Energy dispersive X-ray spectroscopy (EDS) confirmed that there were no traces of calcium residues from the extraction process. Fourier transform infrared (FTIR) spectroscopy revealed that the extraction method (acetic acid and EDTA) did not alter the chemical structures of the ESM and also clarified the composition of the fibrous proteins of the ESM. Scanning electron microscopy (SEM) analyses revealed a three-layer composite structure of the ESM: an inner layer as continuous, dense and non-fibrous (limiting membrane), a middle layer with a network of fibres (inner shell membrane) and the outer layer (outer shell membrane) of larger fibres. Material properties including optical transparency, porosity, fluid absorption/uptake, thermal stability, mechanical profiling of the ESM samples were performed and demonstrated suitable profiles for translational applications. Biological in vitro studies using SV40 immortalised corneal epithelial cells (ihCEC) and corneal mesenchymal stromal cells (C-MSC) demonstrated excellent biocompatibility. Taken together, these results document the development of a novel sustainable biomaterial that may be used for ophthalmic wounds and/or other biomedical therapies.
Collapse
Affiliation(s)
- Rosemond A Mensah
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK.,Eastman Dental Institute, University College London, London, UK
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hoon Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Department of Ophthalmology, Dankook University College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sung-Min Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Kapil D Patel
- Eastman Dental Institute, University College London, London, UK.,Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Kyong J Cho
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Department of Ophthalmology, Dankook University College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Michael T Cook
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Stewart B Kirton
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Victoria Hutter
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Hungyen Lin
- Department of Engineering, Lancaster University, Lancaster, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - David Ys Chau
- School of Clinical and Pharmaceutical Sciences, University of Hertfordshire, Hatfield, UK.,Eastman Dental Institute, University College London, London, UK.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
7
|
Been S, Choi J, Cho H, Jeon G, Song JE, Bucciarelli A, Khang G. Preparation and characterization of a soluble eggshell membrane/agarose composite scaffold with possible applications in cartilage regeneration. J Tissue Eng Regen Med 2021; 15:375-387. [PMID: 33533202 DOI: 10.1002/term.3178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
Articular hyaline cartilage is an extremely hydrated, not vascularized tissue with a low-cell density. The damage of this tissue can occur after injuries or gradual stress and tears (osteoarthritis), minor damages can be self-healed in several weeks, but major injuries may eventually require surgery. In fact, in this case, because of nature of the cartilage (the absence of cells and vascularization) it is difficult to expect its natural regeneration in a reasonable amount of time. In recent years, cell therapy, in which cells are directly transplanted, has attracted attention. In this study, a scaffold for implanting chondrocytes was prepared. The scaffold was made as a sponge using the eggshell membrane and agarose. The eggshell membrane is structurally similar to the extracellular matrix and nontoxic due to its many collagen components and has good biocompatibility and biodegradability. However, scaffolds made of collagen only has poor mechanical properties. For this reason, the disulfide bond of collagen extracted from the insoluble eggshell membrane was cut, converted into water-soluble, and then mixed with agarose to prepare a scaffold. Agarose is capable of controlling mechanical properties, has excellent biocompatibility, and is suitable for forming a hydrogel having a three-dimensional porosity. The scaffold was examined for Fourier-transform infrared, mechanical properties, biodegradability, and biocompatibility. In in vitro experiment, cytotoxicity, cell proliferation, and messenger RNA expression were investigated. The study demonstrated that the agarose/eggshell membrane scaffold can be used for chondrocyte transplantation.
Collapse
Affiliation(s)
- Suyoung Been
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeongmin Choi
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Hunhwi Cho
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Gayeong Jeon
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Jeong E Song
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Alessio Bucciarelli
- Microsystems Technology Group, Materials and Microsystems Center (CMM), Fondazione Bruno Kessler, Trento, Italy
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
8
|
Işık C, Saraç N, Teke M, Uğur A. A new bioremediation method for removal of wastewater containing oils with high oleic acid composition: Acinetobacter haemolyticus lipase immobilized on eggshell membrane with improved stabilities. NEW J CHEM 2021. [DOI: 10.1039/d0nj05175f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a result of the increasing demand for edible oils, which are an important part of human nutrition, in recent years, serious environmental problems may arise both during the production and after consumption of these oils.
Collapse
Affiliation(s)
- Ceyhun Işık
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- Muğla
- Turkey
| | - Nurdan Saraç
- Muğla Sıtkı Koçman University
- Faculty of Science
- Biology Department
- Muğla
- Turkey
| | - Mustafa Teke
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- Muğla
- Turkey
| | - Aysel Uğur
- Gazi University
- Faculty of Dentistry
- Basic Sciences Department
- Medical Microbiology Section
- Ankara
| |
Collapse
|
9
|
Mohammad SG, Ahmed SM, El-Sayed MMH. Removal of copper (II) ions by eco-friendly raw eggshells and nano-sized eggshells: a comparative study. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1835875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Somaia G. Mohammad
- Central Agricultural Pesticides Laboratory, Pesticide Residues and Environmental Pollution Department, Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Sahar M. Ahmed
- Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | | |
Collapse
|
10
|
Polycarboxylated Eggshell Membrane Scaffold as Template for Calcium Carbonate Mineralization. CRYSTALS 2020. [DOI: 10.3390/cryst10090797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Biomineralization is a process in which specialized cells secrete and deliver inorganic ions into confined spaces limited by organic matrices or scaffolds. Chicken eggshell is the fastest biomineralization system on earth, and therefore, it is a good experimental model for the study of biomineralization. Eggshell mineralization starts on specialized dispersed sites of the soft fibrillar eggshell membranes referred to as negatively charged keratan sulfate mammillae. However, the rest of the fibrillar eggshell membranes never mineralizes, although 21% of their amino acids are acidic. We hypothesized that, relative to the mammillae, the negatively charged amino acids of the fibrillar eggshell membranes are not competitive enough to promote calcite nucleation and growth. To test this hypothesis, we experimentally increased the number of negatively charged carboxylate groups on the eggshell membrane fibers and compared it with in vitro calcite deposition of isolated intact eggshell membranes. We conclude that the addition of poly-carboxylated groups onto eggshell membranes increases the number of surface nucleation sites but not the crystal size.
Collapse
|
11
|
Saqib QM, Khan MU, Bae J. Inner egg shell membrane based bio-compatible capacitive and piezoelectric function dominant self-powered pressure sensor array for smart electronic applications. RSC Adv 2020; 10:29214-29227. [PMID: 35521090 PMCID: PMC9055931 DOI: 10.1039/d0ra02949a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Flexible pressure sensors play a key role as an interface between the mechanical movements and electrical stimuli in smart skins, soft robotics, and health monitoring systems. However, conventional pressure sensors face several challenges in terms of their bio-compatibility, higher cost, and complicated fabrication process. This paper demonstrates a novel 5 × 5 bio-compatible capacitive and self-powered piezoelectric pressure sensor array using natural inner egg shell membrane (IESM). The proposed sensor array is supported by two different sensing modes, which are capacitive and piezoelectric function dominant self-powered mode. The capacitive mode can detect both static and dynamic pressures and the piezoelectric function dominant self-powered mode can be adopted to detect the dynamic pressure applied on the device. The fabricated device with a sensing area of 4 mm2 offered the sensitivity of 37.54 ± 1.488 MPa-1 in the capacitive pressure sensing range from 0 to 0.05 MPa. The device showed the response (T res) and recovery time (T rec) of 60 ms and 45 ms, respectively. The device achieves the sensitivity of 16.93 V MPa-1 from the sensing range of 0 to 0.098 MPa in the self-powered pressure sensing. These results depict that the proposed pressure sensor array will ensure a promising role in green, wearable, and soft electronic applications.
Collapse
Affiliation(s)
- Qazi Muhammad Saqib
- Department of Ocean System Engineering, Jeju National University 102 Jejudaehakro Jeju 63243 Republic of Korea
| | - Muhammad Umair Khan
- Department of Ocean System Engineering, Jeju National University 102 Jejudaehakro Jeju 63243 Republic of Korea
| | - Jinho Bae
- Department of Ocean System Engineering, Jeju National University 102 Jejudaehakro Jeju 63243 Republic of Korea
| |
Collapse
|
12
|
da Silva RJ, Lima RM, de Oliveira MCA, Alcaraz-Espinoza JJ, de Melo CP, de Oliveira HP. Supercapacitors based on (carbon nanostructure)/PEDOT/(eggshell membrane) electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Chen X, Zhu L, Wen W, Lu L, Luo B, Zhou C. Biomimetic mineralisation of eggshell membrane featuring natural nanofiber network structure for improving its osteogenic activity. Colloids Surf B Biointerfaces 2019; 179:299-308. [DOI: 10.1016/j.colsurfb.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
14
|
Santos LB, de Oliveira DM, de Souza AO, Lemos VA. A new method for the speciation of arsenic species in water, seafood and cigarette samples using an eggshell membrane. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01665-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Processed eggshell membrane powder: Bioinspiration for an innovative wound healing product. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:192-203. [DOI: 10.1016/j.msec.2018.10.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/05/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
|
16
|
Xin Y, Li C, Liu J, Liu J, Liu Y, He W, Gao Y. Adsorption of heavy metal with modified eggshell membrane and the in situ synthesis of Cu-Ag/modified eggshell membrane composites. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180532. [PMID: 30839757 PMCID: PMC6170592 DOI: 10.1098/rsos.180532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
The objectives of this study were to remove heavy metals from wastewater through the biosorption method with modified biomass as an effective sorbent and to prepare metal/biomass composites with the same modified biomass as a direct template. Eggshell membrane (ESM) was selected and modified to adsorb heavy metals. Adsorption of metal ions on the modified ESM (MESM) might be attributed to electrostatic interaction, ion exchange and coordination effect with chelating ligands containing N and S on the surface of the MESM. The pH of the solution was a key factor affecting the adsorption. The Cu-Ag/MESM composites with uniform Cu-Ag NPs were prepared with MESM as matrices, and with Cu2+ and Ag+ adsorbed as metal sources. The Cu-Ag/MESM showed excellent catalytic performance in the reduction of 4-nitrophenol to 4-aminophenol in the aqueous phase. Because of the high stability of the Cu-Ag NPs supported on the macro-dimension supporter, Cu-Ag/MESM can be easily separated after the catalytic reaction and recycled.
Collapse
Affiliation(s)
- Yaqing Xin
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- Zhongtian Synergetic Energy Co. Ltd., Ordos 017317, People's Republic of China
| | - Caihong Li
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jianing Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jinrong Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Yuchen Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Weiyan He
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Yanfang Gao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| |
Collapse
|
17
|
Torres-Man A, Delgado-Me E. Influence of Separation Techniques with Acid Solutions on the Composition of Eggshell Membrane. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ijps.2017.451.456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification. Int J Biol Macromol 2017; 105:1328-1336. [PMID: 28768186 DOI: 10.1016/j.ijbiomac.2017.07.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 01/17/2023]
Abstract
Eggshell membrane (ESM) is an industrial waste that is available in abundance from food industry. Present study investigated the physicochemical properties of oxidized ESM and compared the efficiency of ESM and oxidized ESM as carrier for Burkholderia cepacia lipase (BCL) used in esters hydrolysis and transesterification. Following oxidation treatment, FTIR analysis and Ellman's assay showed amino acid cysteine in ESM was oxidized to form disulfide bond-containing cystine. In addition, AFM analysis showed ESM which exhibited a highly porous filamentous structure appeared to be coalesce following oxidation treatment. Oxidized ESM also showed reduced porosity (38.67%) in comparison to native ESM (51.65%). BCL were successfully immobilized on oxidized ESM through carrier activation method (enzyme loading of 5.01mg protein/g oxidized ESM). These immobilized lipase demonstrated significantly (P<0.05) enhanced catalytic stability with close to 100% of initial hydrolysis (12.03±0.29mmol/min/g) activity; and more than 85% of its initial transesterification (7.83±0.05) activity for at least 10 consecutive runs. Enhanced catalytic stability of BCL immobilized on oxidized ESM might be due to stabilization of the protein structure in oxidized ESM by disulfide bonds which helped formation of a stable bonding with BCL.
Collapse
|
19
|
Choi J, Pant B, Lee C, Park M, Park SJ, Kim HY. Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Li Y, Geng X, Leng W, Vikesland PJ, Grove TZ. Gold nanospheres and gold nanostars immobilized onto thiolated eggshell membranes as highly robust and recyclable catalysts. NEW J CHEM 2017. [DOI: 10.1039/c7nj01908d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study describes a facile method for immobilizing nanoparticles with different morphologies onto a biopolymeric fibrous network – eggshell membranes (ESM).
Collapse
Affiliation(s)
- Yunhua Li
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Xi Geng
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Weinan Leng
- Department of Civil and Environmental Engineering
- Virginia Tech
- Blacksburg
- USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN)
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering
- Virginia Tech
- Blacksburg
- USA
- Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN)
| | - Tijana Z. Grove
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
21
|
Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:807-821. [DOI: 10.1016/j.msec.2016.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023]
|
22
|
Baláž M. Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater 2014; 10:3827-43. [PMID: 24681370 DOI: 10.1016/j.actbio.2014.03.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 01/13/2023]
Abstract
Eggshell membrane (ESM) is a unique biomaterial, which is generally considered as waste. However, it has extraordinary properties which can be utilized in various fields and its potential applications are therefore now being widely studied. The first part of this review focuses on the chemical composition and morphology of ESM. The main areas of ESM application are discussed in the second part. These applications include its utilization as a biotemplate for the synthesis of nanoparticles; as a sorbent of heavy metals, organics, dyes, sulfonates and fluorides; as the main component of biosensors; in medicine; and various other applications. For each area of interest, a detailed literature survey is given.
Collapse
|
23
|
Lin PY, Hsieh CW, Tsai PC, Hsieh S. Porosity-Controlled Eggshell Membrane as 3D SERS-Active Substrate. Chemphyschem 2014; 15:1577-80. [DOI: 10.1002/cphc.201301222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Indexed: 11/09/2022]
|