1
|
Altamirano JC, Yin S, Belova L, Poma G, Covaci A. Exploring the hidden chemical landscape: Non-target and suspect screening analysis for investigating solid waste-associated environments. ENVIRONMENTAL RESEARCH 2024; 245:118006. [PMID: 38154568 DOI: 10.1016/j.envres.2023.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Solid waste is an inevitable consequence of urbanization. It can be safely managed in municipal landfills and processing plants for volume reduction or material reuse, including organic solid waste. However, solid waste can also be discarded in (un-)authorized dumping sites or inadvertently released into the environment. Legacy and emerging contaminants have the potential to leach from solid waste, making it a significant pathway to the environment. Non-target screening (NTS) and suspect screening analysis (SSA) have become helpful tools in environmental science for the simultaneous analysis of a wide range of chemical compounds. However, the application of these analytical approaches to environmental samples related to Raw or Processed Solid Waste (RPSW) has been largely neglected so far. This perspective review examines the potential and policy relevance of NTS and SSA applied to waste-related samples (liquid, gaseous and solid). It addresses the hurdles associated with the chemical safety of solid waste accumulation, processing, and reuse, and the need for landfill traceability, as well as effectiveness of leachate treatments. We reviewed the current applications of NTS and SSA to environmental samples of RPSW, as well as the potential adaptation of NTS and SSA techniques from related fields, such as oilfield and metabolomics, to the solid waste domain. Despite the ongoing technical challenges, this review highlights the significant potential for the implementation of NTS and SSA approaches in solid waste management and related scientific fields and provides support and guidance to the regulatory authorities.
Collapse
Affiliation(s)
- Jorgelina Cecilia Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, 5500, Mendoza, Argentina; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
2
|
Ma JH, Zhong Y, Zhou Y, Zhang Y, Feng XS. Organosulfur in food samples: Recent updates on sampling, pretreatment and determination technologies. J Chromatogr A 2023; 1689:463769. [PMID: 36610185 DOI: 10.1016/j.chroma.2022.463769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Organosulfur compounds (OSCs), mainly found in garlic, are the main biologically active substances for their pharmacological effects, including lowering of blood pressure and cholesterol, anti-cancer effect, liver protection, and anti-inflammatory. Efficient and sensitive pretreatment and determination methods of OSCs in different food matrices are of great significance. This review provides a comprehensive summary about the pretreatment and determination methods for OSCs in different food samples since 2010. Commonly used pretreatment methods, such as liquid-liquid extraction, microwave-assisted extraction, pressurized liquid extraction, liquid-liquid microextraction, solid phase extraction, dispersive solid phase extraction, solid-phase microextraction, and so on, have been summarized and overviewed in this paper. In particular, we discussed and compared various analysis methods including high performance liquid chromatography coupled with different detectors, gas chromatography-based methods, and few other methods. Finally, we tried to highlight the applicability, advantages and disadvantages of different pretreatment and analysis methods, and identified future prospects in this field.
Collapse
Affiliation(s)
- Jia-Hui Ma
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yang Zhong
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Baky MH, Shamma SN, Khalifa MR, Farag MA. How Does Allium Leafy Parts Metabolome Differ in Context to Edible or Inedible Taxa? Case Study in Seven Allium Species as Analyzed Using MS-Based Metabolomics. Metabolites 2022; 13:metabo13010018. [PMID: 36676943 PMCID: PMC9866920 DOI: 10.3390/metabo13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Genus Allium (F. Amaryllidaceae) includes a wide variety of edible foods widely consumed for their nutritive as well as health benefits. Seven Allium species, viz., chives, Egyptian leek, French leek, red garlic, white garlic, red onion, and white onion aerial parts were assessed for metabolome heterogeneity targeting both aroma and nutrients phytochemicals. A headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) were employed. Results revealed extensive variation in volatiles and nutrients profile among the seven Allium species represented by a total of 77 nutrients and 148 volatiles. Among edible Allium species, French leek encompassed high levels of nutrients, viz., sugars, fatty acids/esters, organic acids, and amino acids, compared to Egyptian leek. Sulfur aroma compounds appeared as the most discriminatory among Allium, taxa accounting for its distinct flavor. Furthermore, chemometric analysis of both datasets showed clear discrimination of the seven Allium species according to several key novel markers. This study provides the first comparative approach between edible and inedible aerial leafy parts of Allium species providing novel insight into their use as functional foods based on such holistic profiling.
Collapse
Affiliation(s)
- Mostafa H. Baky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| | - Samir N. Shamma
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| | - Mohamed R. Khalifa
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
4
|
Olaimat AN, Al-Holy MA, Abu Ghoush MH, Al-Nabulsi AA, Osaili TM, Ayyash M, Al-Degs YS, Holley RA. Use of citric acid and garlic extract to inhibit Salmonella enterica and Listeria monocytogenes in hummus. Int J Food Microbiol 2022; 362:109474. [PMID: 34781080 DOI: 10.1016/j.ijfoodmicro.2021.109474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Recently, the consumption of hummus has become popular in the United States, European countries, and Canada, and unfortunately, several foodborne outbreaks and recalls have been reported due to its contamination with Listeria monocytogenes and Salmonella enterica. The current study aimed to investigate the inhibitory activity of 0.5, 1.0, and 1.5% citric acid (CA) and 1.0, 2.0 and 3.0% garlic extract (GE) toward S. enterica and L. monocytogenes in hummus stored at 4, 10 and 24 °C. L. monocytogenes grew well in untreated (control) hummus samples at all tested temperatures, whereas S. enterica grew only at 10 and 24 °C. CA at 0.5 to 1.5% reduced L. monocytogenes numbers by 3.0-3.3 log CFU/g at 4 °C, 1.7-3.9 log CFU/g at 10 °C, and 0.9-1.4 log CFU/g at 24 °C. Numbers of S. enterica were reduced by 0.6-1.7, 4.1-4.9 and <1.5 log CFU/g, at 4, 10 and 24 °C, respectively, compared to the control during 10 d storage. GE at 1.0-3.0% also reduced numbers of L. monocytogenes at 10 d by 0.7-3.0, and 1.3-3.6 log CFU/g at 4 and 10 °C, respectively, and numbers of S. enterica by 0.7-1.2, 1.8-2.6 and 0.5-1.6 log CFU/g, at 4, 10 and 24 °C, respectively, compared to the control. Chromatographic analysis of GE revealed the presence of four organosulfur compounds including diallyl disulfide, diallyl trisulfide, 2-vinyl-(4H)-1,3-dithiin and 3-vinyl-(4H)-1,2-dithiin where the latter was the predominant compound with a level of 22.9 mg/g which significantly contributed to the inhibitory effect of GE. CA and GE are adequate natural antimicrobials in hummus to reduce L. monocytogenes and S. enterica numbers and enhance product safety.
Collapse
Affiliation(s)
- Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan.
| | - Murad A Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mahmoud H Abu Ghoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, P.O. Box 64141, Abu Dhabi, United Arab Emirates
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yahya S Al-Degs
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Richard A Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
5
|
Organosulfur volatile profiles in Italian red garlic (Allium Sativum L.) varieties investigated by HS-SPME/GC-MS and chemometrics. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108477] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
HS-SPME Gas Chromatography Approach for Underivatized Acrylamide Determination in Biscuits. Foods 2021; 10:foods10092183. [PMID: 34574293 PMCID: PMC8470632 DOI: 10.3390/foods10092183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023] Open
Abstract
Acrylamide (AA) is a food contaminant in thermally processed products that is object of tight control. A simple and easy-to-apply methodology for routine monitoring of AA levels in food products could allow producers to be players in the control of their own products. In this work, a simple methodology for AA quantification without derivatization was developed for biscuits, for which the benchmark levels recommended by EFSA are 350 µg/kg, and 150 µg/kg for biscuits for infants and young children. Headspace-solid phase microextraction (HS-SPME) was used in 120 mL screwed-cap vials with a carboxen/polydimetylsiloxane fiber, 4 g of biscuits, and 10 mL of water during 15 min at room temperature under stirring. The addition of 30 mL of propanol under stirring during 15 min at room temperature and 15 min at 60 °C was used to promote AA transfer to the headspace. The fiber exposure was 45 min. A gas chromatography-mass spectrometry analysis allowed to obtain an external calibration curve at m/z 71, with linearity R2 > 0.99 and precision RSD < 9%. The detection and quantification limits were 27.4 µg/kg and 91.5 µg/kg, respectively. The methodology was successfully used in biscuits with lower AA amount, where mitigation strategies (asparaginase or pectate) were applied.
Collapse
|
7
|
De Santis D, Garzoli S, Vettraino AM. Effect of gaseous ozone treatment on the aroma and clove rot by Fusarium proliferatum during garlic postharvest storage. Heliyon 2021; 7:e06634. [PMID: 33889770 PMCID: PMC8047484 DOI: 10.1016/j.heliyon.2021.e06634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/20/2020] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
It is known that garlic bulbs preserved with traditional methods undergo considerable losses, ranging from 25 to 40%. A frequent cause of these losses is associated with the development of pathogenic fungi, such as those of the genus Fusarium. The effect of ozone on post-harvest garlic bulbs was evaluated. Garlic cloves inoculated with Fusarium proliferatum F21 and F22 strains, were exposed to a continuous gaseous ozone flow (2.14 μg m-3), during 4 days, 20 h a day. After ozone-treatment, the garlic samples were moved at 22 °C to mimic retail conditions (shelf life). The changes in several quality parameters such as fungal decay and aroma were evaluated on garlic samples, as whole bulbs, cloves with and without tunic, through a sensorial descriptive test, SPME analysis in GC/MS and microbiological approaches. The data collected showed that ozone treatment did not affect the aromatic profile of garlic. A significant detrimental effect of ozone treatment on garlic decay was observed. Our results encourage the use of gaseous ozone treatment for containing garlic fungal decay during its storage.
Collapse
Affiliation(s)
- Diana De Santis
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia, Via S. C. de Lellis 01100 Viterbo, Italy
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, Square Aldo Moro 5, 00185 Rome, Italy
| | - Anna Maria Vettraino
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia, Via S. C. de Lellis 01100 Viterbo, Italy
| |
Collapse
|
8
|
Multi-phytochemical determination of polar and non-polar garlic bioactive compounds in different food and nutraceutical preparations. Food Chem 2020; 337:127648. [PMID: 32777569 DOI: 10.1016/j.foodchem.2020.127648] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 11/21/2022]
Abstract
Amongst functional foods, garlic and its by-products stand out given their rich phytochemical profile. A comprehensive analytical approach becomes necessary to fully address garlic preparations health-promoting activities, considering the coexistence of several active ingredients from different chemical families. For this, we developed a multi-phytochemical protocol combining Ultrasound and Dispersive Liquid-Liquid Microextraction, coupled to Liquid Chromatography, for the determination of flavonols, organosulfur compounds, and inulin. Hydrophilic interaction chromatography showed an adequate resolution of flavonols and sugars in a shorter time. The protocol showed a suitable performance and acceptable quantitative yields for garlic powder, cooked garlic, black garlic, and liquid garlic flavouring samples. Additionally, the proposed methodology represented a useful tool to assess how the different garlic products related to functional properties, taking into account the various phytochemical families present in each sample. This is the first time a comprehensive and multi-phytochemical validated analysis of garlic preparations is proposed.
Collapse
|
9
|
Development of the Method for Determination of Volatile Sulfur Compounds (VSCs) in Fruit Brandy with the Use of HS-SPME/GC-MS. Molecules 2020; 25:molecules25051232. [PMID: 32182852 PMCID: PMC7179427 DOI: 10.3390/molecules25051232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/17/2022] Open
Abstract
Volatile sulfur compounds (VSCs) play an important role in the aroma profile of fermented beverages. However, because of their low concentration in samples, their analysis is difficult. The headspace solid-phase microextraction (HS–SPME) technique coupled with gas chromatography and mass spectrometry (GC–MS) is one of the methods successfully used to identify VSCs in wine and beer samples. However, this method encounters more obstacles when spirit beverages are analyzed, as the ethanol content of the matrix decreases the method sensitivity. In this work, different conditions applied during HS–SPME/GC–MS analysis, namely: ethanol concentration, salt addition, time and temperature of extraction, as well as fiber coating, were evaluated in regard to 19 sulfur compounds. The best results were obtained when 50/30 μm Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) was used to preconcentrate the analytes from the sample at 35 °C for 30 min. The dilution of samples to 2.5% v/v ethanol and the addition of 20% w/v NaCl along with 1% EDTA significantly improves the sensitivity of extraction. The optimized method was applied to three fruit brandy samples (plum, pear, and apple) and quantification of VSCs was performed. A total of 10 compounds were identified in brandy samples and their concentration varied greatly depending on the raw material used from production. The highest concentration of identified VSCs was found in apple brandy (82 µg/L).
Collapse
|
10
|
Quesada I, de Paola M, Torres-Palazzolo C, Camargo A, Ferder L, Manucha W, Castro C. Effect of Garlic’s Active Constituents in Inflammation, Obesity and Cardiovascular Disease. Curr Hypertens Rep 2020; 22:6. [DOI: 10.1007/s11906-019-1009-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Raab A, Feldmann J. Biological sulphur-containing compounds – Analytical challenges. Anal Chim Acta 2019; 1079:20-29. [DOI: 10.1016/j.aca.2019.05.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/19/2023]
|
12
|
Liaqat A, Zahoor T, Atif Randhawa M, Shahid M. Characterization and antimicrobial potential of bioactive components of sonicated extract from garlic (
Allium sativum
) against foodborne pathogens. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13936] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atif Liaqat
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Tahir Zahoor
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Muhammad Atif Randhawa
- National Institute of Food Science and Technology, University of Agriculture Faisalabad Pakistan
| | - Muhammad Shahid
- Department of Biochemistry University of Agriculture Faisalabad Pakistan
| |
Collapse
|
13
|
|
14
|
Analytical methods for bioactive sulfur compounds in Allium: An integrated review and future directions. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Visani V, Netto JMS, Honorato RS, de Araújo MCU, Honorato FA. Screening analysis of garlic-oil capsules by infrared spectroscopy and chemometrics. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Tocmo R, Wu Y, Liang D, Fogliano V, Huang D. Boiling enriches the linear polysulfides and the hydrogen sulfide-releasing activity of garlic. Food Chem 2017; 221:1867-1873. [DOI: 10.1016/j.foodchem.2016.10.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/06/2016] [Accepted: 10/18/2016] [Indexed: 01/27/2023]
|
17
|
Ramirez DA, Locatelli DA, Torres-Palazzolo CA, Altamirano JC, Camargo AB. Development of garlic bioactive compounds analytical methodology based on liquid phase microextraction using response surface design. Implications for dual analysis: Cooked and biological fluids samples. Food Chem 2017; 215:493-500. [DOI: 10.1016/j.foodchem.2016.07.170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/16/2023]
|
18
|
Locatelli DA, Nazareno MA, Fusari CM, Camargo AB. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chem 2016; 220:219-224. [PMID: 27855892 DOI: 10.1016/j.foodchem.2016.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/31/2016] [Accepted: 10/03/2016] [Indexed: 01/25/2023]
Abstract
The antioxidant properties and the main beneficial organosulphur compounds of home-cooked garlic samples were studied in order to establish relationships between them. Antioxidant activity was tested by free radical scavenging against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS+), Fe(III) reducing ability (FRAP) and linoleic acid co-oxidation initiated by soybean lipoxygenase in a micelle system. DPPH, ABTS and FRAP assays showed the highest activity for raw garlic samples, while β-carotene bleaching assay yielded the highest activity for stir-fried garlic. Pure organosulphur compounds tested by DPPH, FRAP and β-carotene bleaching assays showed that allicin had an antiradical action mechanism, as well as iron reducing capacity; while antioxidant activity was the main mechanism for ajoenes and 2-VD. To our knowledge, this study is the first demonstration that home-cooked garlic retains its antioxidant activity, and, at the same time, elucidates the mechanisms involved in this activity.
Collapse
Affiliation(s)
- D A Locatelli
- Instituto de Biología Agrícola de Mendoza (IBAM) - CONICET, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, 5505, Chacras de Coria, Mendoza, Argentina
| | - M A Nazareno
- Laboratorio de Antioxidantes y Procesos Oxidativos (CIDSE-CONICET-UNSE), Santiago del Estero, Argentina
| | - C M Fusari
- Instituto de Biología Agrícola de Mendoza (IBAM) - CONICET, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, 5505, Chacras de Coria, Mendoza, Argentina
| | - A B Camargo
- Instituto de Biología Agrícola de Mendoza (IBAM) - CONICET, Mendoza, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, 5505, Chacras de Coria, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
19
|
An improved multiple flame photometric detector for gas chromatography. J Chromatogr A 2015; 1421:154-61. [DOI: 10.1016/j.chroma.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/20/2022]
|
20
|
|
21
|
Zhang Y, Wang Y, Zhang F, Wang K, Liu G, Yang M, Luan Y, Zhao Z, Zhang J, Cao X, Zhang D. Allyl methyl disulfide inhibits IL-8 and IP-10 secretion in intestinal epithelial cells via the NF-кB signaling pathway. Int Immunopharmacol 2015; 27:156-63. [PMID: 26003845 DOI: 10.1016/j.intimp.2015.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/12/2015] [Accepted: 05/05/2015] [Indexed: 02/07/2023]
Abstract
Garlic and its active constituents have shown versatile medicinal activities in the prevention and treatment of various disorders. Allyl methyl disulfide (AMDS) was identified as one of the major bioactive components in an effective inhalation fork remedy using fresh garlic paste in our previous study. In this work, we investigated the immunological properties of AMDS to elucidate the underlying mechanisms of the fork inhalation treatment using fresh garlic. The inhibition effect of AMDS on TNF-α-induced IL-8 and IP-10 production in intestinal epithelial cell lines HT-29 and Caco-2 was first evaluated. Pretreatment of the cells with AMDS attenuated IL-8 and IP-10 secretion induced by TNF-α in a dose-dependent manner in the non-cytotoxic concentration range of 20 to 150 μM. Mechanistic studies revealed that AMDS suppressed the accumulation of IL-8 mRNA and inhibited IкBα degradation and NF-кB p65 translocation into the nucleus at both the transcriptional and translational levels, suggesting that the attenuation effort of AMDS on cytokine IL-8 secretion might at least be partially related to the NF-κB signaling pathway. These results suggest that AMDS may be a promising phytochemical agent in the treatment of immunological disorders, such as ulcerative colitis, Crohn's disease, intestinal inflammatory diseases and others. In addition, the mechanistic study data indicated that immune modulation could be one of the therapeutic mechanisms of the effective fork treatment containing AMDS as one of the major components.
Collapse
Affiliation(s)
- Yongchun Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Daxue Road, Western University Science Park, Jinan, Shandong 250353, PR China
| | - Ying Wang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Fang Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Kaiming Wang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Guangpu Liu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Min Yang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yuxia Luan
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, PR China.
| | - Jianqiang Zhang
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, PR China
| | - Xinke Cao
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, PR China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan, Shandong 250101, PR China
| |
Collapse
|