1
|
Dong Y, Jiang T, Wu T, Wang W, Xie Z, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. Enzyme-responsive controlled-release materials for food preservation and crop protection - A review. Int J Biol Macromol 2024; 254:128051. [PMID: 37956811 DOI: 10.1016/j.ijbiomac.2023.128051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
The adoption of environmentally friendly and efficient methods to control food spoilage and crop diseases has become a new worldwide trend. In the medical field, various enzyme-responsive controlled-release drug formulations have been developed for precision therapy. Recently, these materials and techniques have also begun to be applied in the fields of food preservation and agricultural protection. This review of contemporary research focuses on applications of enzyme-responsive controlled-release materials in the field of food preservation and crop protection. It covers a variety of composite controlled-release materials triggered by different types of enzymes and describes in detail their composition and structure, controlled-release mechanisms, and practical application effects. The enzyme-responsive materials have been employed to control foodborne pathogens, fungi, and pests. These enzyme-responsive controlled-release materials exhibit excellent capabilities for targeted drug delivery. Upon contact with microorganisms or pests, the polymer shell of the material is degraded by secreted enzymes from these organisms, thereby releasing drugs that kill or inhibit the organisms. In addition, multi-enzyme sensitive carriers have been created to improve the effectiveness and broad spectrum of the delivery system. The increasing trend towards the use of enzyme-responsive controlled-release materials has opened up countless possibilities in food and agriculture.
Collapse
Affiliation(s)
- Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wenrui Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Zesen Xie
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
2
|
Wayllace NM, Martín M, Busi MV, Gomez-Casati DF. Microbial glucoamylases: structural and functional properties and biotechnological uses. World J Microbiol Biotechnol 2023; 39:293. [PMID: 37653355 DOI: 10.1007/s11274-023-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing β-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.
Collapse
Affiliation(s)
- Natael M Wayllace
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Mariana Martín
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - María V Busi
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| | - Diego F Gomez-Casati
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| |
Collapse
|
3
|
Mores S, de Souza Vandenberghe LP, Martinez-Burgos WJ, Rodrigues C, Soccol CR. Simultaneous reuse and treatment of sugar-sweetened beverage wastes for citric acid production. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2401-2407. [PMID: 37424583 PMCID: PMC10326170 DOI: 10.1007/s13197-023-05761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 07/11/2023]
Abstract
This study aimed to evaluate the feasibility of using sugar-sweetened beverages (SSB) for citric acid (CA) production and its impact on chemical oxygen demand (COD) of SSB. Five types of SSB were used as a carbon source for CA production by A. niger, and the COD of each SSB was measured before and after the bioprocess. Results showed that all tested SSB were suitable for CA production, with maximum yields ranging from 13.01 to 56.62 g L- 1. The COD was reduced from 53 to 75.64%, indicating that the bioprocess effectively treated SSB wastes. The use of SSB as a substrate for CA production provides an alternative to traditional feedstocks, such as sugarcane and beet molasses. The low-cost and high availability of SSB makes it an attractive option for CA production. Moreover, the study demonstrated the potential of the bioprocess to simultaneously treat and reuse SSB wastes, reducing the environmental impact of the beverage industry. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05761-9.
Collapse
Affiliation(s)
- Sabrina Mores
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Luciana Porto de Souza Vandenberghe
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Walter José Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Cristine Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), P.O. Box 19011, Curitiba, Paraná 81531-990 Brazil
| |
Collapse
|
4
|
Liu D, Liu Q, Guo W, Liu Y, Wu M, Zhang Y, Li J, Sun W, Wang X, He Q, Tian C. Development of Genetic Tools in Glucoamylase-Hyperproducing Industrial Aspergillus niger Strains. BIOLOGY 2022; 11:biology11101396. [PMID: 36290301 PMCID: PMC9599018 DOI: 10.3390/biology11101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glucoamylase is one of the most needed industrial enzymes in the food and biofuel industries. Aspergillus niger is a commonly used cell factory for the production of commercial glucoamylase. For decades, genetic manipulation has promoted significant progress in industrial fungi for strain engineering and in obtaining deep insights into their genetic features. However, genetic engineering is more laborious in the glucoamylase-producing industrial strains A. niger N1 and O1 because their fungal features of having few conidia (N1) or of being aconidial (O1) make them difficult to perform transformation on. In this study, we targeted A. niger N1 and O1 and successfully developed high-efficiency transformation tools. We also constructed a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 editing marker-free system using an autonomously replicating plasmid to express Cas9 protein and to guide RNA and the selectable marker. By using the genetic tools developed here, we generated nine albino deletion mutants. After three rounds of sub-culturing under nonselective conditions, the albino deletions lost the autonomously replicating plasmid. Together, the tools and optimization process above provided a good reference to manipulate the tough working industrial strain, not only for the further engineering these two glucoamylase-hyperproducing strains, but also for other industrial strains. Abstract The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes, particularly glucoamylase. Although a variety of genetic techniques have been successfully used in wild-type A. niger, the transformation of industrially used strains with few conidia (e.g., A. niger N1) or that are even aconidial (e.g., A. niger O1) remains laborious. Herein, we developed genetic tools, including the protoplast-mediated transformation and Agrobacterium tumefaciens-mediated transformation of the A. niger strains N1 and O1 using green fluorescent protein as a reporter marker. Following the optimization of various factors for protoplast release from mycelium, the protoplast-mediated transformation efficiency reached 89.3% (25/28) for N1 and 82.1% (32/39) for O1. The A. tumefaciens-mediated transformation efficiency was 98.2% (55/56) for N1 and 43.8% (28/64) for O1. We also developed a marker-free CRISPR/Cas9 genome editing system using an AMA1-based plasmid to express the Cas9 protein and sgRNA. Out of 22 transformants, 9 albA deletion mutants were constructed in the A. niger N1 background using the protoplast-mediated transformation method and the marker-free CRISPR/Cas9 system developed here. The genome editing methods improved here will accelerate the elucidation of the mechanism of glucoamylase hyperproduction in these industrial fungi and will contribute to the use of efficient targeted mutation in other industrial strains of A. niger.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenzhu Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yin Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Min Wu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yongli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xingji Wang
- Longda Biotechnology Inc., Linyi 276400, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Q.H.); (C.T.); Tel.: +86-10-62731206 (Q.H.); +86-22-84861947 (C.T.)
| |
Collapse
|
5
|
Wayllace NM, Hedín N, Busi MV, Gomez-Casati DF. Identification, molecular and biochemical characterization of a novel thermoactive and thermostable glucoamylase from Thermoanaerobacter ethanolicus. Biotechnol Lett 2022; 44:1201-1216. [PMID: 35997915 DOI: 10.1007/s10529-022-03296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE We identified a new glucoamylase (TeGA) from Thermoanaerobacter ethanolicus, a thermophilic anaerobic bacterium. Structural studies suggest that TeGA belongs to the family 15 of glycosylhydrolases (GH15). METHODS The expression of this enzyme was optimized in E. coli (BL21) cells in order to have the highest amount of soluble protein (around 3 mg/l of culture medium). RESULTS TeGA showed a high optimum temperature of 75 °C. It also showed one of the highest specific activities reported for a bacterial glucoamylase (75.3 U/mg) and was also stable in a wide pH range (3.0-10.0). Although the enzyme was preferentially active with maltose, it was also able to hydrolyze different soluble starches such as those from potato, corn or rice. TeGA showed a high thermostability up to around 70 °C, which was increased in the presence of PEG8000, and also showed to be stable in the presence of moderate concentrations of ethanol. CONCLUSION We propose that TeGA could be suitable for use in different industrial processes such as biofuel production and food processing.
Collapse
Affiliation(s)
- Natael M Wayllace
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Nicolas Hedín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
6
|
Kalia S, Bhattacharya A, Prajapati SK, Malik A. Utilization of starch effluent from a textile industry as a fungal growth supplement for enhanced α-amylase production for industrial application. CHEMOSPHERE 2021; 279:130554. [PMID: 33873067 DOI: 10.1016/j.chemosphere.2021.130554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Desizing process in textile industry produces large volume of starch effluent. This carbon-rich waste can be used for resource recovery, such as the production of industrially useful enzymes. The present work assesses the usability of starch effluent from textile industry as an additional carbon source for enhanced production of α-amylase during solid-state fermentation (SSF) of agro-wastes by Trichoderma reesei. A significant increase (p ≤ 0.05) in α-amylase activity (25.48 ± 1.12 U mL-1) was observed with supplementation of starch effluent in SSF. Partial purification of α-amylase by 80% ammonium sulphate precipitation produced a yield of 58.39% enzyme with purification fold of 1.89. The enzyme was thermally stable at 40 °C with 90% residual activity after 5 h and 70% residual activity at 50 °C after 3 h. Using Michaelis-Menten kinetics analysis, the estimated Km and Vmax values for the partially purified α-amylase were found to be 2.55 mg mL-1 and 53.47 U mg-1, respectively. For the rapid assessment of the industrial application, desizing of the fabric was attempted. The cotton fabric was efficiently desized using α-amylase (at a concentration of 1% on the weight of fabric basis) at 80 °C. The present work demonstrates starch effluent from desizing process as a resource for the production of amylase. The amylase can further be used in the desizing process. With in-depth research, the work may lead to the development of a closed-loop, waste-recycling process for the textile industry.
Collapse
Affiliation(s)
- Shweta Kalia
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| | - Arghya Bhattacharya
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India; Department of Biotechnology, Gandhi Institute of Engineering and Technology University, Gunupur, Odisha, 765022, India.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab, Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 110016, India.
| |
Collapse
|
7
|
Characterizing a thermostable amylopullulanase from Caldisericum exile with wide pH adaptation and broad substrate specificity. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Bernardos A, Božik M, Montero A, Pérez-Esteve É, García-Casado E, Lhotka M, Fraňková A, Marcos MD, Barat JM, Martínez-Máñez R, Klouček P. Secreted Enzyme-Responsive System for Controlled Antifungal Agent Release. NANOMATERIALS 2021; 11:nano11051280. [PMID: 34068155 PMCID: PMC8153022 DOI: 10.3390/nano11051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Essential oil components (EOCs) such as eugenol play a significant role in plant antimicrobial defense. Due to the volatility and general reactivity of these molecules, plants have evolved smart systems for their storage and release, which are key prerequisites for their efficient use. In this study, biomimetic systems for the controlled release of eugenol, inspired by natural plant defense mechanisms, were prepared and their antifungal activity is described. Delivery and antifungal studies of mesoporous silica nanoparticles (MSN) loaded with eugenol and capped with different saccharide gates—starch, maltodextrin, maltose and glucose—against fungus Aspergillus niger—were performed. The maltodextrin- and maltose-capped systems show very low eugenol release in the absence of the fungus Aspergillus niger but high cargo delivery in its presence. The anchored saccharides are degraded by exogenous enzymes, resulting in eugenol release and efficient inhibition of fungal growth.
Collapse
Affiliation(s)
- Andrea Bernardos
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic; (M.B.); (A.M.); (A.F.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.M.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
- Correspondence: (A.B.); (P.K.)
| | - Matěj Božik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic; (M.B.); (A.M.); (A.F.)
| | - Ana Montero
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic; (M.B.); (A.M.); (A.F.)
| | - Édgar Pérez-Esteve
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (É.P.-E.); (J.M.B.)
| | - Esther García-Casado
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16628 Prague, Czech Republic; (E.G.-C.); (M.L.)
| | - Miloslav Lhotka
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Praha 6, 16628 Prague, Czech Republic; (E.G.-C.); (M.L.)
| | - Adéla Fraňková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic; (M.B.); (A.M.); (A.F.)
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.M.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (É.P.-E.); (J.M.B.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.M.); (R.M.-M.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Av. Monforte de Lemos 3–5, Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Pavel Klouček
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic; (M.B.); (A.M.); (A.F.)
- Correspondence: (A.B.); (P.K.)
| |
Collapse
|
9
|
Characterization of SdGA, a cold-adapted glucoamylase from Saccharophagus degradans. ACTA ACUST UNITED AC 2021; 30:e00625. [PMID: 34041001 PMCID: PMC8141877 DOI: 10.1016/j.btre.2021.e00625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022]
Abstract
We investigated the structural and functional properties of SdGA, a glucoamylase (GA) from Saccharophagus degradans, a marine bacterium which degrades different complex polysaccharides at high rate. SdGA is composed mainly by a N-terminal GH15_N domain linked to a C-terminal catalytic domain (CD) found in the GH15 family of glycosylhydrolases with an overall structure similar to other bacterial GAs. The protein was expressed in Escherichia coli cells, purified and its biochemical properties were investigated. Although SdGA has a maximum activity at 39 °C and pH 6.0, it also shows high activity in a wide range, from low to mild temperatures, like cold-adapted enzymes. Furthermore, SdGA has a higher content of flexible residues and a larger CD due to various amino acid insertions compared to other thermostable GAs. We propose that this novel SdGA, is a cold-adapted enzyme that might be suitable for use in different industrial processes that require enzymes which act at low or medium temperatures.
Collapse
|
10
|
Wang C, Yang L, Luo L, Tang S, Wang Q. Purification and characterization of glucoamylase of Aspergillus oryzae from Luzhou-flavour Daqu. Biotechnol Lett 2020; 42:2345-2355. [PMID: 32623532 DOI: 10.1007/s10529-020-02956-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To obtain novel glucoamylase from Daqu microbe. RESULTS A dominant strain known as LZ2 with high activity of hydrolyzing starch was isolated from Luzhou Daqu, a Chinese traditional fermentation starter. The LZ2 was identified as Aspergillus oryzae by 18S rDNA sequence analysis. Glucoamylase from LZ2, named as GA-LZ2, was purified to homogeneity and showed a single band with expected molecular mass of 60 kD. The GA-LZ2 effectively degraded amylose, rice starch and wheat starch. Optimal temperature and pH value of enzyme were 60 °C and pH 4.0 respectively. The GA-LZ2 displayed significant thermal stability and pH stability at moderate temperature and low pH. Intriguingly, the thermostability was enhanced in the presence of starch. In addition, GA-LZ2 exhibited insensitivity to glucose, independence of metal ions and tolerance to organic solvents. The GA-LZ2 retained complete activity in the presence of 100 mM glucose and 5% ethanol and methanol. CONCLUSION Glucoamylase GA-LZ2 displayed broad substrate specificity, strong stability and tolerance, suggesting that GA-LZ2 carry potential for industrial application in bioethanol production.
Collapse
Affiliation(s)
- Chuan Wang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China.
| | - Lianli Yang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Lunan Luo
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Shichao Tang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| | - Qiang Wang
- College of Bioengineering, Sichuan University of Science & Engineering, No. 180, Xueyuan Street, Huixing Road, Zigong, 643000, Sichuan, People's Republic of China
| |
Collapse
|
11
|
Li F, Liu Q, Li X, Zhang C, Li J, Sun W, Liu D, Xiao D, Tian C. Construction of a new thermophilic fungus Myceliophthora thermophila platform for enzyme production using a versatile 2A peptide strategy combined with efficient CRISPR-Cas9 system. Biotechnol Lett 2020; 42:1181-1191. [PMID: 32253539 DOI: 10.1007/s10529-020-02882-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To construct a new thermophilic platform for glucoamylase production through 2A peptide strategy combined with CRISPR-Cas9 system using Myceliophthora thermophila as host, thermophilic filamentous fungus with industrial attractiveness to produce enzymes and chemicals from biomass. RESULTS We adapted the viral 2A peptide approach for M. thermophila and constructed a bicistronic vector for co-expressing two heterologous genes MhglaA and egfp. We obtained positive transformants OE-MhglaA-gfp overexpressing MhGlaA-9 ×His-2A-eGFP through convenient fluorescence screening, western blotting and RT-qPCR. We purified and characterized the recombinant MhGlaA, which exhibited stability in a broader pH range of 3.0-9.0 and thermostable stability at 65 °C, suggesting its potential industrial application. Furthermore, to improve glucoamylase secretion, we genetically engineered the obtained strain OE-MhglaA-gfp through our efficient CRISPR/Cas9 system and generated the quintuple mutant OE-MhglaA-gfpOE-amyRΔalp-1Δres-1Δcre-1, in which protein productivity and amylase activity were increased by approximately 12.0- and 8.2-fold compared with WT. CONCLUSIONS The 2A peptide approach worked well in M. thermophila and can be used to heterologously co-express two different proteins, and thus in combination with efficient CRISPR-Cas system will accelerate establishing hyper-secretion platforms for biotechnological applications.
Collapse
Affiliation(s)
- Fangya Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xiaolin Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chenyang Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenliang Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dandan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongguang Xiao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
12
|
Yasin MZ, Rashid MH. Purification and extreme thermostabilization of glucoamylase by zinc produce of novel fungus Gymnoascella citrina. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Mendes Da Silva T, Peano C, Giuggioli NR. A novel statistical approach to assess the quality and commercial viability of a retail branded perishable fruit. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1621389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Thais Mendes Da Silva
- Department of Agricultural, Forest and Food Sciences (DISAFA), University, of Turin, Piedmont, Italy
| | - Cristiana Peano
- Department of Agricultural, Forest and Food Sciences (DISAFA), University, of Turin, Piedmont, Italy
| | - Nicole Roberta Giuggioli
- Department of Agricultural, Forest and Food Sciences (DISAFA), University, of Turin, Piedmont, Italy
| |
Collapse
|
14
|
Lincoln L, More VS, More SS. Purification and biochemical characterization of extracellular glucoamylase from Paenibacillus amylolyticus strain. J Basic Microbiol 2019; 59:375-384. [PMID: 30681161 DOI: 10.1002/jobm.201800540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 11/06/2022]
Abstract
In the present study, glucoamylase produced from a soil bacterium Paenibacillus amylolyticus NEO03 was cultured under submerged fermentation conditions. The extracellular enzyme was purified by starch adsorption chromatography and further by gel filtration, with 2.73-fold and recovery of 40.02%. The protein exhibited molecular mass of ∼66,000 Da as estimated by SDS-PAGE and depicted to be a monomer. The enzyme demonstrated optimum activity at pH range 6.0-7.0 and temperature range 30-40 °C. Glucoamylase was mostly activated by Mn2+ metal ions and depicted no dependency on Ca2+ ions. The enzyme preferentially hydrolyzed all the starch substrates. High substrate specificity was demonstrated towards soluble starch and kinetic values Km and Vmax were 2.84 mg/ml and 239.2 U/ml, respectively. The products of hydrolysis of soluble starch were detected by thin layer chromatography which showed only D -glucose, indicating a true glucoamylase. The secreted glucoamylase from P. amylolyticus strain possesses properties suitable for saccharification processes such as biofuel production.
Collapse
Affiliation(s)
- Lynette Lincoln
- Department of Biochemistry, School of Sciences, Jain University, Bangalore, Karnataka, India
| | - Veena S More
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, Karnataka, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
15
|
Bayraktaroğlu M, Orhan H, Evli S, Akgöl S, Aktaş Uygun D, Uygun M. Lectin attached affinity cryogels for amyloglucosidase adsorption. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1487972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Melis Bayraktaroğlu
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
| | - Hande Orhan
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
| | - Sinem Evli
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
| | - Sinan Akgöl
- Faculty of Science, Biochemistry Division, Ege University, İzmir, Turkey
| | - Deniz Aktaş Uygun
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
- Nanotechnology Application and Research Center, Adnan Menderes University, Aydın, Turkey
| | - Murat Uygun
- Faculty of Science and Arts, Chemistry Division, Adnan Menderes University, Aydın, Turkey
- Nanotechnology Application and Research Center, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
16
|
Optimization, kinetic and bioprocess parameters of amylases production from Coprinus comatus under submerged culture using starch-based simple medium: Partial enzyme characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Jain D, Katyal P. Optimization of gluco-amylase production from Aspergillus spp. for its use in saccharification of liquefied corn starch. 3 Biotech 2018; 8:101. [PMID: 29430363 DOI: 10.1007/s13205-018-1131-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/20/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal gluco-amylase is required for the production of sugars from starchy substrates. Commercially available fungal gluco-amylase is quite costly which makes the process uneconomical. This study was undertaken to standardize physico-chemical parameters for optimum production of gluco-amylases from Aspergillus spp. Two fungal cultures, i.e., Aspergillus niger and Aspergillus terreus, were compared for gluco-amylase activity both under stationary and shake flask conditions. Among two fungal cultures, maximum gluco-amylase activity was shown by A. niger (243.09 U/ml) under stationary conditions as compared to A. terreus (126.34 U/ml). Gluco-amylase activity of A. niger increases by 42.48% from 243.09 to 346.35 U/ml after optimization using response surface methodology, whereby a substrate concentration of 7%, yeast extract 0.25%, temperature 32.5 °C and pH 5.5 were found to be optimum for gluco-amylase production. Crude enzyme was compared with commercial enzyme and it was found that when 500 U of Glucoamylase ex. Rhizopus were inoculated into starch-supplemented minimal media (SSMM) liquefied using 2 g of fungal diastase, it increases the reducing sugar concentration from 2.19 to 21.15 mg/ml and a saccharification efficiency of 77.7% was achieved, whereas 1.5 ml of crude enzyme (extracted from A. niger) was able to produce 14.46 mg/ml of reducing sugars with a saccharification efficiency of 53.2%.
Collapse
Affiliation(s)
- Deepali Jain
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Priya Katyal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
18
|
Xian L, Feng JX. Purification and biochemical characterization of a novel mesophilic glucoamylase from Aspergillus tritici WZ99. Int J Biol Macromol 2017; 107:1122-1130. [PMID: 28951303 DOI: 10.1016/j.ijbiomac.2017.09.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022]
Abstract
Glucoamylase, cleaving the nonreducing end of starch releasing glucose, is an important enzyme in starch processing. The optimal temperature for industrial glucoamylase activity is 60-70°C, which is not compatible with the optimal growth temperature for Saccharomyces cerevisiae. In this study, 26 fungal strains producing amylolytic activities that were more active at 30°C than at 60°C were isolated from 151 environmental samples. Fungal strain WZ99, producing extracellular amylolytic activities with the lowest optimal temperature at 40°C, was identified as Aspergillus tritici by analysis of morphological and molecular data. An extracellular glucoamylase was purified from A. tritici WZ99. The optimal pH of the enzyme was 4.0-5.0 and optimal temperature was 45°C. The glucoamylase was stable at pH 4.5-10.0 and below 40°C. Metal ions at four concentrations did not inhibit the enzyme activity. The glucoamylase contained a catalytic domain belonging to glycosyl hydrolase family 15 and thus was named as AtriGA15A. The enzyme shared the highest identity of 54% with a glucoamylase from Rasamsonia emersonii. This glucoamylase showing excellent comprehensive enzymatic characteristics might have potential applications in starch-based bioethanol production and starch processing.
Collapse
Affiliation(s)
- Liang Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China.
| |
Collapse
|
19
|
Ohta J, Ohmura M. Reducing of salivary α-amylase inhibition by using bovine serum albumin and calcium chloride for forensic saliva screening. Leg Med (Tokyo) 2017; 28:54-58. [PMID: 28802982 DOI: 10.1016/j.legalmed.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
Abstract
Inhibiting salivary α-amylase is a critical issue of forensic saliva identification using the catalytic method. This study aims to identify human α-amylase inhibitors in forensic saliva screening by using a blue starch amylase test and to measure the extent of enzyme inhibition. Thus, in order to demonstrate the presence of inhibitors, we prepared positively charged metal ion sources or chelators that were mixed into the saliva stains. The results of this study show that ferric chloride (FeCl3), magnesium chloride, ethylenediaminetetraacetic acid, and citric acid significantly decrease the α-amylase activity of saliva stains. We also verified this approach using blood, a magnesium-containing liquid supplement, and two citric acid-containing soft drinks that were contaminated with saliva stains as forensic mock samples; these samples also showed a significant reduction in salivary α-amylase activity. To establish an inhibitor-resistant blue starch amylase test, we applied bovine serum albumin (BSA) and calcium chloride (CaCl2) to the reaction system. The results show that salivary α-amylase inhibition of the forensic mock samples occurred under normal test conditions (i.e., 300ng/µL BSA, 0mM CaCl2), and that inhibition was significantly relieved under the BSA+CaCl2 conditions (i.e., 1000ng/µL BSA, 5mM CaCl2). Therefore, the results of this study demonstrate that both BSA and CaCl2 can be utilized as reaction stabilizers in forensic saliva screening.
Collapse
Affiliation(s)
- Jun Ohta
- Forensic Biology Unit, Scientific Crime Laboratory, Kanagawa Prefectural Police, Japan.
| | - Masako Ohmura
- Forensic Biology Unit, Scientific Crime Laboratory, Kanagawa Prefectural Police, Japan
| |
Collapse
|
20
|
Engineering a chimeric acid-stable α-amylase-glucoamylase (Amy-Glu) for one step starch saccharification. Int J Biol Macromol 2017; 99:274-281. [DOI: 10.1016/j.ijbiomac.2017.02.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/23/2017] [Accepted: 02/22/2017] [Indexed: 11/18/2022]
|
21
|
Shetty P. Glucoamylase from the Predacious Fungus Arthrobotrys conoides: a Cationic Enzyme with High Debranching Activity and Raw Starch Digestibility. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Jang SW, Kim JS, Park JB, Jung JH, Park CS, Shin WC, Ha SJ. Characterization of the starch degradation activity from newly isolated Rhizopus oryzae WCS-1 and mixed cultures with Saccharomyces cerevisiae for efficient ethanol production from starch. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Optimization of Fermentation Medium for Extracellular Lipase Production from Aspergillus niger Using Response Surface Methodology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:497462. [PMID: 26366414 PMCID: PMC4558457 DOI: 10.1155/2015/497462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 11/27/2022]
Abstract
Lipase produced by Aspergillus niger is widely used in various industries. In this study, extracellular lipase production from an industrial producing strain of A. niger was improved by medium optimization. The secondary carbon source, nitrogen source, and lipid were found to be the three most influential factors for lipase production by single-factor experiments. According to the statistical approach, the optimum values of three most influential parameters were determined: 10.5 g/L corn starch, 35.4 g/L soybean meal, and 10.9 g/L soybean oil. Using this optimum medium, the best lipase activity was obtained at 2,171 U/mL, which was 16.4% higher than using the initial medium. All these results confirmed the validity of the model. Furthermore, results of the Box-Behnken Design and quadratic models analysis indicated that the carbon to nitrogen (C/N) ratio significantly influenced the enzyme production, which also suggested that more attention should be paid to the C/N ratio for the optimization of enzyme production.
Collapse
|
24
|
Xian L, Wang F, Luo X, Feng YL, Feng JX. Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS One 2015; 10:e0121531. [PMID: 25811759 PMCID: PMC4374950 DOI: 10.1371/journal.pone.0121531] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/02/2015] [Indexed: 12/03/2022] Open
Abstract
Alpha-amylase is a very important enzyme in the starch conversion process. Most of the α-amylases are calcium-dependent and exhibit poor performance in the simultaneous saccharification and fermentation process of industrial bioethanol production that uses starch as feedstock. In this study, an extracellular amylolytic enzyme was purified from the culture broth of newly isolated Talaromyces pinophilus strain 1-95. The purified amylolytic enzyme, with an apparent molecular weight of 58 kDa on SDS-PAGE, hydrolyzed maltopentaose, maltohexaose, and maltoheptaose into mainly maltose and maltotriose and minor amount of glucose, confirming the endo-acting mode of the enzyme, and hence, was named Talaromyces pinophilus α-amylase (TpAA). TpAA was most active at pH 4.0-5.0 (with the temperature held at 37°C) and 55°C (at pH 5.0), and stable within the pH range of 5.0-9.5 (at 4°C) and below 45°C (at pH 5.0). Interestingly, the Ca2+ did not improve its enzymatic activity, optimal temperature, or thermostability of the enzyme, indicating that the TpAA was Ca2+-independent. TpAA displayed higher enzyme activity toward malto-oligosaccharides and dextrin than other previously reported α-amylases. This highly active Ca2+-independent α-amylase may have potential applications in starch-to-ethanol conversion process.
Collapse
Affiliation(s)
- Liang Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu-Liang Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
25
|
Xia X, Li G, Zheng J, Wu J, Kan J. Immune activity of sweet potato (Ipomoea batatas L.) glycoprotein after enzymatic and chemical modifications. Food Funct 2015; 6:2026-32. [DOI: 10.1039/c5fo00314h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immune activity of SPG-1 after its protein or carbohydrate portions modified by enzymatic or chemical treatments. Note: a and b: P < 0.01 and 0.05 compared with NC group, respectivily; c and d: P < 0.01 and 0.05 compared with untreated group, respectivily.
Collapse
Affiliation(s)
- Xuejuan Xia
- College of Food Science
- Southwest University
- Chongqing 400715
- China
| | - Guannan Li
- College of Biotechnology
- Southwest University
- Chongqing 400715
- China
| | - Jiong Zheng
- College of Food Science
- Southwest University
- Chongqing 400715
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing)
| | - Jinsong Wu
- College of Food Science
- Southwest University
- Chongqing 400715
- China
| | - Jianquan Kan
- College of Food Science
- Southwest University
- Chongqing 400715
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing)
| |
Collapse
|
26
|
Hua H, Luo H, Bai Y, Wang K, Niu C, Huang H, Shi P, Wang C, Yang P, Yao B. A thermostable glucoamylase from Bispora sp. MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity. PLoS One 2014; 9:e113581. [PMID: 25415468 PMCID: PMC4240638 DOI: 10.1371/journal.pone.0113581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/25/2014] [Indexed: 11/23/2022] Open
Abstract
Background Glucoamylase is an exo-type enzyme that converts starch completely into glucose from the non-reducing ends. To meet the industrial requirements for starch processing, a glucoamylase with excellent thermostability, raw-starch degradation ability and high glucose yield is much needed. In the present study we selected the excellent Carbohydrate-Activity Enzyme (CAZyme) producer, Bispora sp. MEY-1, as the microbial source for glucoamylase gene exploitation. Methodology/Principal Findings A glucoamylase gene (gla15) was cloned from Bispora sp. MEY-1 and successfully expressed in Pichia pastoris with a high yield of 34.1 U/ml. Deduced GLA15 exhibits the highest identity of 64.2% to the glucoamylase from Talaromyces (Rasamsonia) emersonii. Purified recombinant GLA15 was thermophilic and showed the maximum activity at 70°C. The enzyme was stable over a broad pH range (2.2–11.0) and at high temperature up to 70°C. It hydrolyzed the breakages of both α-1,4- and α-1,6-glycosidic linkages in amylopectin, soluble starch, amylose, and maltooligosaccharides, and had capacity to degrade raw starch. TLC and H1-NMR analysis showed that GLA15 is a typical glucoamylase of GH family 15 that releases glucose units from the non-reducing ends of α-glucans. The combination of Bacillus licheniformis amylase and GLA15 hydrolyzed 96.14% of gelatinized maize starch after 6 h incubation, which was about 9% higher than that of the combination with a commercial glucoamylase from Aspergillus niger. Conclusion/Significance GLA15 has a broad pH stability range, high-temperature thermostability, high starch hydrolysis capacity and high expression yield. In comparison with the commercial glucoamylase from A. niger, GLA15 represents a better candidate for application in the food industry including production of glucose, glucose syrups, and high-fructose corn syrups.
Collapse
Affiliation(s)
- Huifang Hua
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Kun Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Canfang Niu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Caihong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry, Beijing, 100193, P. R. China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- * E-mail:
| |
Collapse
|