1
|
Cui Y, Peng S, Deng D, Yu M, Tian Z, Song M, Luo J, Ma X, Ma X. Solid-state fermentation improves the quality of chrysanthemum waste as an alternative feed ingredient. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117060. [PMID: 36587550 DOI: 10.1016/j.jenvman.2022.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Chrysanthemum waste (CW) is an agricultural and industrial by-product produced during chrysanthemum harvesting, drying, preservation, and deep processing. Although it is nutritious, most CW is discarded, wasting resources and contributing to serious environmental problems. This work explored a solid-state fermentation (SSF) strategy to improve CW quality for use as an alternative feed ingredient. Orthogonal experiment showed that the optimal conditions for fermented chrysanthemum waste (FCW) were: CW to cornmeal mass ratio of 9:1, Pediococcus cellaris + Candida tropicalis + Bacillus amyloliquefaciens proportions of 2:2:1, inoculation amount of 6%, and fermentation time of 10 d. Compared with the control group, FCW significantly increased the contents of crude protein, ether extract, crude fiber, acid detergent fiber, neutral detergent fiber, ash, calcium, phosphorus, and total flavonoids (p < 0.01), and significantly decreased pH and saponin content (p < 0.01). SSF improved the free and hydrolyzed amino acid profiles of FCW, increased the content of flavor amino acids, and improved the amino acid composition of FCW protein. Overall, SSF improved CW nutritional quality. FCW shows potential use as a feed ingredient, and SSF helps reduce the waste of chrysanthemum processing.
Collapse
Affiliation(s)
- Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Su Peng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Min Song
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China
| | - Jingjing Luo
- Guangzhou Pastoral Agriculture and Forestry Co., Ltd, Guangzhou, 511300, China
| | - Xinyan Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China.
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China; The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China; Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
4
|
Shahzad R, Shehzad A, Bilal S, Lee IJ. Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean. Molecules 2020; 25:E2346. [PMID: 32443519 PMCID: PMC7288071 DOI: 10.3390/molecules25102346] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022] Open
Abstract
Soybean (Glycine max L.) is a good source of natural antioxidants and commonly consumed as fermented products such as cheonggukjang, miso, tempeh, and sufu in Asian countries. The aim of the current study was to examine the influence of novel endophytic bacterial strain, Bacillus amyloliquefaciens RWL-1 as a starter for soybean fermentation. During fermentation, the cooked soybeans were inoculated with different concentrations (1%, 3%, and 5%) of B. amyloliquefaciens RWL-1. The changes in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, total phenolic contents, isoflavones (Daidzin, Genistin, Glycitin, Daidzein, Glycitein, and Genistein), amino acids (aspartic acid, threonine, serine, glutamic acid, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline) composition, and minerals (calcium, copper, iron, potassium, magnesium, manganese, sodium, nickel, lead, arsenic, and zinc) were investigated. The level of antioxidants, total phenolic contents, isoflavones, and total amino acids were higher in fermented soybean inoculated with 1% B. amyloliquefaciens RWL-1 after 60 h of fermentation as compared to control, 3% and 5% B. amyloliquefaciens RWL-1. Additionally, fermented soybean inoculated with 5% B. amyloliquefaciens RWL-1 showed the highest values for mineral contents. Changes in antioxidant activities and bioactive compounds depended on the concentration of the strain used for fermentation. From these results, we conclude that fermented soybean has strong antioxidant activity, probably due to its increased total phenolic contents and aglycone isoflavone that resulted from fermentation. Such natural antioxidants could be used in drug and food industries and can be considered to alleviate oxidative stress.
Collapse
Affiliation(s)
- Raheem Shahzad
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
5
|
Ali MW, Shahzad R, Bilal S, Adhikari B, Kim ID, Lee JD, Lee IJ, Kim BO, Shin DH. Comparison of antioxidants potential, metabolites, and nutritional profiles of Korean fermented soybean ( Cheonggukjang) with Bacillus subtilis KCTC 13241. Journal of Food Science and Technology 2018; 55:2871-2880. [PMID: 30065396 DOI: 10.1007/s13197-018-3202-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
This study was carried out to determine the effect of different concentrations of Bacillus subtilis (0, 1, 3, 5, and 7%) on the antioxidant potential and biochemical constituents of traditional Korean fermented soybean, Cheonggukjang (CKJ). The antioxidant capacity was studied using the reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) assays and the total phenolic contents (TPC) were measured using the Folin-Ciocalteu method. CKJ prepared using 1% B. subtilis revealed the highest TPC (5.99 mg/g), total amino acids (7.43 mg/g), DPPH (94.24%), and ABTS (86.03%) radical-scavenging activity and had the highest value of palmitic acid (11.65%), stearic acid (2.87%), and linolenic acid (11.76%). Results showed that the calcium, iron, sodium, and zinc contents increased in the CKJ prepared using 7% B. subtilis from 1481.38 to 1667.32, 41.38 to 317.00, 48.01 to 310.07, and 32.82 to 37.18 mg/kg respectively. In conclusion, the present results indicate that the fermentation of soybean with B. subtilis (KCTC 13241) significantly augments the nutritional and antioxidant potential of CKJ and it can be recommended as a health-promoting food source.
Collapse
Affiliation(s)
- Muhammad Waqas Ali
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Raheem Shahzad
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Saqib Bilal
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Bishnu Adhikari
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Il-Doo Kim
- 2International Institute of Agriculture Research and Development, Kyungpook National University, Daegu, 41566 South Korea
| | - Jeong-Dong Lee
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - In-Jung Lee
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Byung Oh Kim
- 3School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566 Korea
| | - Dong-Hyun Shin
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| |
Collapse
|
6
|
Ziegler V, Vanier NL, Ferreira CD, Paraginski RT, Monks JLF, Elias MC. Changes in the Bioactive Compounds Content of Soybean as a Function of Grain Moisture Content and Temperature during Long-Term Storage. J Food Sci 2016; 81:H762-8. [PMID: 26816290 DOI: 10.1111/1750-3841.13222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/19/2015] [Indexed: 12/29/2022]
Abstract
Soybean is a rich source of bioactive compounds, such as phenolic acids, flavonoids, isoflavones, carotenoids, and tocopherols. The amount of bioactive compounds in freshly harvested soybeans and their derived products has been determined; however, when they are used in the food industry, soybeans are generally stored prior to being processed. This study aimed to evaluate the effects of soybean moisture content (12%, 15%, and 18%) and storage temperature (11, 18, 25, and 32 °C) on the free phenolic, total flavonoid, vanillic acid, total carotenoid, and δ- and γ-tocopherol content of soybeans stored for 12 mo. Moreover, the ABTS and DPPH radical scavenging activities of phenolic extracts were determined. There was an increase in free phenolics and total flavonoids in the stored grains compared with the grains on the 1st d of storage. Vanillic acid showed a decrease in soybeans stored at 15% and 18% moisture content and 25 or 32 °C, which indicated some degradation into other metabolites. Total carotenoid content decreased as a function of storage temperature and showed some temperature-dependent degradation. The δ- and γ-tocopherol content also tended to decrease in grains stored at 15% or 18% moisture content or 25 or 32 °C, regardless of the moisture content studied.
Collapse
Affiliation(s)
- Valmor Ziegler
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, CEP: 96010-900, Pelotas, RS, Brazil
| | - Nathan Levien Vanier
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, CEP: 96010-900, Pelotas, RS, Brazil
| | - Cristiano Dietrich Ferreira
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, CEP: 96010-900, Pelotas, RS, Brazil
| | - Ricardo Tadeu Paraginski
- Inst. Federal de Educação, Ciência e Tecnologia Farroupilha - Campus Alegrete, RS 377, Km 27, Passo Novo, CEP: 97541-970, Alegrete, RS, Brazil
| | - Jander Luis Fernandes Monks
- Inst. Federal de Educação, Ciência e Tecnologia Sul-Riograndense - Câmpus Pelotas, CEP: 96015-360 - Pelotas, RS, Brazil
| | - Moacir Cardoso Elias
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, CEP: 96010-900, Pelotas, RS, Brazil
| |
Collapse
|