1
|
Feng J, Jia Y, Xu B, Bi X, Ge Z, Ma G, Xie Y, Wang C, Ma D. Quantitative proteomic analysis for characterization of protein components related to dough quality and celiac disease in wheat flour, dough, and heat-treated dough. Food Chem 2024; 461:140924. [PMID: 39181042 DOI: 10.1016/j.foodchem.2024.140924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
High-sensitivity 4D label-free proteomic technology was used to identify protein components related to gluten quality and celiac disease (CD) in strong-gluten wheat cultivar KX 3302 and medium-gluten wheat cultivar BN 207. The highly expressed storage protein components in KX3302 were high-molecular-weight-glutenin-subunits (HMW-GSs), α-gliadin, and globulin, whereas those in BN207 were γ-gliadin, low-molecular-weight-glutenin-subunits (LMW-GSs) and avenin-like proteins. In addition, BN207 had more upregulated metabolic proteins than KX3302. The abundance of storage proteins increased during dough formation. After heat treatment, the upregulated proteins accounted for 57.53 % of the total proteins, but the downregulated storage proteins accounted for 79.34 % of the total storage proteins. In cultivar KX3302, CD proteins mainly included α-gliadin and HMW-GSs, whereas in BN207, they were mainly γ-gliadin and LMW-GSs. Thermal treatment significantly reduces the expression levels of CD-related proteins. These findings provide a new perspective on reducing the content of CD-related proteins in wheat products.
Collapse
Affiliation(s)
- Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuku Jia
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Xintong Bi
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Zifei Ge
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Geng Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Jahdkaran M, Asri N, Esmaily H, Rostami-Nejad M. Potential of nutraceuticals in celiac disease. Tissue Barriers 2024:2374628. [PMID: 38944818 DOI: 10.1080/21688370.2024.2374628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024] Open
Abstract
Celiac Disease (CD) is the most common hereditarily-based food intolerance worldwide and a chronic inflammatory condition. The current standard treatment for CD involves strict observance and compliance with a gluten-free diet (GFD). However, maintaining a complete GFD poses challenges, necessitating the exploration of alternative therapeutic approaches. Nutraceuticals, bioactive products bridging nutrition and pharmaceuticals, have emerged as potential candidates to regulate pathways associated with CD and offer therapeutic benefits. Despite extensive research on nutraceuticals in various diseases, their role in CD has been relatively overlooked. This review proposes comprehensively assessing the potential of different nutraceuticals, including phytochemicals, fatty acids, vitamins, minerals, plant-based enzymes, and dietary amino acids, in managing CD. Nutraceuticals exhibit the ability to modulate crucial CD pathways, such as regulating gluten fragment accessibility and digestion, intestinal barrier function, downregulation of tissue transglutaminase (TG2), intestinal epithelial morphology, regulating innate and adaptive immune responses, inflammation, oxidative stress, and gut microbiota composition. However, further investigation is necessary to fully elucidate the underlying cellular and molecular mechanisms behind the therapeutic and prophylactic effects of nutraceuticals for CD. Emphasizing such research would contribute to future developments in CD therapies and interventions.
Collapse
Affiliation(s)
- Mahtab Jahdkaran
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaily
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Mousavi Maleki MS, Aghamirza Moghim Ali Abadi H, Vaziri B, Shabani AA, Ghavami G, Madanchi H, Sardari S. Bromelain and ficin proteolytic effects on gliadin cytotoxicity and expression of genes involved in cell-tight junctions in Caco-2 cells. Amino Acids 2023; 55:1601-1619. [PMID: 37803248 DOI: 10.1007/s00726-023-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
Enzyme therapy for celiac disease (CeD), which digests gliadin into non-immunogenic and non-toxic peptides, can be an appropriate treatment option for CeD. Here, we have investigated the effectiveness of bromelain and ficin on gliadin digestion using in vitro, such as SDS-PAGE, HPLC, and circular dichroism (CD). Furthermore, the cytotoxicity of gliadin and 19-mer peptide before and after digestion with these enzymes was evaluated using the MTT assay in the Caco-2 cell line. Finally, we examined the effect of these treatments along with Larazotide Acetate on the expression of genes involved in cell-tight junctions, such as Occludin, Claudin 3, tight junction protein-1, and Zonulin in the Caco-2 cell line. Our study demonstrated bromelain and ficin digestion effects on the commercial and wheat-extracted gliadin by SDS-PAGE, HPLC, and CD. Also, the cytotoxicity results on Caco-2 showed that toxicity of the gliadin and synthetic 19-mer peptide was decreased by adding bromelain and ficin. Furthermore, the proteolytic effects of bromelain and ficin on gliadin indicated the expression of genes involved in cell-tight junctions was improved. This study confirms that bromelain and ficin mixture could be effective in improving the symptoms of CeD.
Collapse
Affiliation(s)
- Masoumeh Sadat Mousavi Maleki
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Behrooz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ghazaleh Ghavami
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 13198, Tehran, Iran
| | - Hamid Madanchi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 13198, Tehran, Iran.
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, 13198, Tehran, Iran.
| |
Collapse
|
4
|
Bu Z, Fang G, Yu H, Kong D, Huo Y, Ma X, Chong H, Guan X, Liu D, Fan K, Yan M, Ma W, Chen J. Quality and Agronomic Trait Analyses of Pyramids Composed of Wheat Genes NGli-D2, Sec-1s and 1Dx5+1Dy10. Int J Mol Sci 2023; 24:ijms24119253. [PMID: 37298204 DOI: 10.3390/ijms24119253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Due to rising living standards, it is important to improve wheat's quality traits by adjusting its storage protein genes. The introduction or locus deletion of high molecular weight subunits could provide new options for improving wheat quality and food safety. In this study, digenic and trigenic wheat lines were identified, in which the 1Dx5+1Dy10 subunit, and NGli-D2 and Sec-1s genes were successfully polymerized to determine the role of gene pyramiding in wheat quality. In addition, the effects of ω-rye alkaloids during 1BL/1RS translocation on quality were eliminated by introducing and utilizing 1Dx5+1Dy10 subunits through gene pyramiding. Additionally, the content of alcohol-soluble proteins was reduced, the Glu/Gli ratio was increased and high-quality wheat lines were obtained. The sedimentation values and mixograph parameters of the gene pyramids under different genetic backgrounds were significantly increased. Among all the pyramids, the trigenic lines in Zhengmai 7698, which was the genetic background, had the highest sedimentation value. The mixograph parameters of the midline peak time (MPT), midline peak value (MPV), midline peak width (MPW), curve tail value (CTV), curve tail width (CTW), midline value at 8 min (MTxV), midline width at 8 min (MTxW) and midline integral at 8 min (MTxI) of the gene pyramids were markedly enhanced, especially in the trigenic lines. Therefore, the pyramiding processes of the 1Dx5+1Dy10, Sec-1S and NGli-D2 genes improved dough elasticity. The overall protein composition of the modified gene pyramids was better than that of the wild type. The Glu/Gli ratios of the type I digenic line and trigenic lines containing the NGli-D2 locus were higher than that of the type II digenic line without the NGli-D2 locus. The trigenic lines with Hengguan 35 as the genetic background had the highest Glu/Gli ratio among the specimens. The unextractable polymeric protein (UPP%) and Glu/Gli ratios of the type II digenic line and trigenic lines were significantly higher than those of the wild type. The UPP% of the type II digenic line was higher than that of the trigenic lines, while the Glu/Gli ratio was slightly lower than that of the trigenic lines. In addition, the celiac disease (CD) epitopes' level of the gene pyramids significantly decreased. The strategy and information reported in this study could be very useful for improving wheat processing quality and reducing wheat CD epitopes.
Collapse
Affiliation(s)
- Zhimu Bu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Gongyan Fang
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Haixia Yu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Dewei Kong
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Yanbing Huo
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyu Ma
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Hui Chong
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Guan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Daxin Liu
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Kexin Fan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Min Yan
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Chengyang District, Qingdao 266109, China
| | - Jiansheng Chen
- State Key Laboratory of Crop Biology/Key Laboratory of Crop Water Physiology and Drought-Tolerance Germplasm Improvement, Ministry of Agriculture/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
The Efficacy of Plant Enzymes Bromelain and Papain as a Tool for Reducing Gluten Immunogenicity from Wheat Bran. Processes (Basel) 2022. [DOI: 10.3390/pr10101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gluten-free products made from naturally gluten-free raw materials have an inferior taste and can cause deficiencies in various nutrients, especially non-starch polysaccharides. To address this problem, scientists are searching for new strategies to eliminate harmful gluten from wheat, rye, and barley and to produce balanced products with good organoleptic properties. This study evaluated the possibility of hydrolysing gluten in wheat bran, a by-product obtained after the dry fractionation of wheat, using plant enzymes. The gluten content of wheat bran after treatment with papain, bromelain, and their combination under different hydrolysis conditions was investigated. The amount of gluten was determined using an enzyme-linked immunosorbent assay ELISA R5 and the reduction in immunogenic gliadins was analysed using high-performance reverse phase liquid chromatography. The results of the study showed that 4 h hydrolysis with bromelain and papain reduced the levels of gluten immunogenic compounds in bran from 58,650.00 to 2588.20–3544.50 mg/kg; however, they did not reach the gluten-free limit. A higher hydrolysis efficiency of 95.59% was observed after treatment with papain, while the combination of both enzymes and bromelain alone were less effective. The results presented in this article will be helpful to other researchers and manufacturers of wheat-based products when selecting methods to reduce gluten immunogenicity and contribute to the development of sustainable technologies.
Collapse
|
6
|
Juhász A, Nye-Wood MG, Tanner GJ, Colgrave ML. Digestibility of wheat alpha-amylase/trypsin inhibitors using a caricain digestive supplement. Front Nutr 2022; 9:977206. [PMID: 36034932 PMCID: PMC9399795 DOI: 10.3389/fnut.2022.977206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Wheat is a major source of nutrition, though in susceptible people it can elicit inappropriate immune responses. Wheat allergy and non-celiac wheat sensitivity are caused by various wheat proteins, including alpha-amylase trypsin inhibitors (ATIs). These proteins, like the gluten proteins which can cause celiac disease, are incompletely digested in the stomach such that immunogenic epitopes reach the lower digestive system where they elicit the undesirable immune response. The only completely effective treatment for these immune reactions is to eliminate the food trigger from the diet, though inadvertent or accidental consumption can still cause debilitating symptoms in susceptible people. One approach used is to prevent the causal proteins from provoking an immune reaction by enhancing their digestion using digestive protease supplements that act in the stomach or intestine, cleaving them to prevent or quench the harmful immune response. In this study, a digestive supplement enriched in caricain, an enzyme naturally present in papaya latex originally designed to act against gluten proteins was assessed for its ability to digest wheat ATIs. The digestion efficiency was quantitatively measured using liquid chromatography-mass spectrometry, including examination of the cleavage sites and the peptide products. The peptide products were measured across a digestion time course under conditions that mimic gastric digestion in vivo, involving the use of pepsin uniquely or in combination with the supplement to test for additive effects. The detection of diverse cleavage sites in the caricain supplement-treated samples suggests the presence of several proteolytic enzymes that act synergistically. Caricain showed rapid action in vitro against known immunogenic ATIs, indicating its utility for digestion of wheat ATIs in the upper digestive tract.
Collapse
Affiliation(s)
- Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
| | | | - Gregory J Tanner
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
7
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
8
|
Peng Y, Zhao Y, Yu Z, Zeng J, Xu D, Dong J, Ma W. Wheat Quality Formation and Its Regulatory Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:834654. [PMID: 35432421 PMCID: PMC9006054 DOI: 10.3389/fpls.2022.834654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
Elucidation of the composition, functional characteristics, and formation mechanism of wheat quality is critical for the sustainable development of wheat industry. It is well documented that wheat processing quality is largely determined by its seed storage proteins including glutenins and gliadins, which confer wheat dough with unique rheological properties, making it possible to produce a series of foods for human consumption. The proportion of different gluten components has become an important target for wheat quality improvement. In many cases, the processing quality of wheat is closely associated with the nutritional value and healthy effect of the end-products. The components of wheat seed storage proteins can greatly influence wheat quality and some can even cause intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors have great impacts on seed storage protein synthesis and accumulation, and fertilization and irrigation strategies also greatly affect the seed storage protein content and composition, which together determine the final end-use quality of wheat. This review summarizes the recent progress in research on the composition, function, biosynthesis, and regulatory mechanism of wheat storage proteins and their impacts on wheat end-product quality.
Collapse
Affiliation(s)
- Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yun Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zitong Yu
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma,
| |
Collapse
|
9
|
Tanner GJ. Relative Rates of Gluten Digestion by Nine Commercial Dietary Digestive Supplements. Front Nutr 2021; 8:784850. [PMID: 34950690 PMCID: PMC8688929 DOI: 10.3389/fnut.2021.784850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Endopeptidases containing supplements may digest gluten and reduce the impact on celiac and gluten-sensitive subjects who inadvertently consume gluten. We investigated the relative rate of disappearance of coeliac relevant epitopes in extracts of nine commercial supplements, using two competitive enzyme-linked immunosorbent assays (ELISAs)—Ridascreen (detects QQPFP, QQQFP, LQPFP, and QLPFP) and Gluten-Tec (detects Glia-α20 and PFRPQQPYPQ). All epitopes are destroyed by cleavage after P and Q amino acids. Rates at pH 3.5 and pH 7.0 were measured. These experiments were designed to measure relative rates of epitope digestion not to mimic in vivo digestion. The supplements were: 1 GluteGuard, 2 GlutenBlock, 3 GliadinX, 4 GlutnGo, 5 GlutenRescue, 6 Eat E-Z Gluten+, 7 Glutenease, 8 Glutezyme, and 9 Gluten Digest. The mean initial rate and half-lives of epitope digestion were deduced and extrapolated to rates at the recommended dose of one supplement in a fasting stomach volume. At pH 7, supplement 1 was the fastest acting of the supplements, with Ridascreen ELISA, more than twice as fast as the next fastest supplements, 5, 6, 7, and 8. Supplements 2, 3, and 4 showed little activity at pH 7.0. Supplement 1 was also the fastest acting at pH 7 with Gluten-Tec ELISA, more than three times the rate for supplements 2 and 3, with supplements 4–9 showing minimal activity. At pH 3.5, supplement 1 acted more than five times as fast as the next fastest supplements, 2 and 3, when measured by Ridascreen, but supplements 2 and 3 were over two times faster than supplement 1 when measured by Gluten-Tec. Supplements 4–9 demonstrated minimal activity at pH 3.5 with either ELISA. Supplement 1 most rapidly digested the key immuno-reactive gluten epitopes identified by the R5 antibody in the Codex-approved competitive Ridascreen ELISA method and associated with the pathology of celiac disease.
Collapse
|
10
|
Dunaevsky YE, Tereshchenkova VF, Belozersky MA, Filippova IY, Oppert B, Elpidina EN. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics 2021; 13:1603. [PMID: 34683896 PMCID: PMC8541236 DOI: 10.3390/pharmaceutics13101603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
To date, there is no effective treatment for celiac disease (CD, gluten enteropathy), an autoimmune disease caused by gluten-containing food. Celiac patients are supported by a strict gluten-free diet (GFD). However, in some cases GFD does not negate gluten-induced symptoms. Many patients with CD, despite following such a diet, retain symptoms of active disease due to high sensitivity even to traces of gluten. In addition, strict adherence to GFD reduces the quality of life of patients, as often it is difficult to maintain in a professional or social environment. Various pharmacological treatments are being developed to complement GFD. One promising treatment is enzyme therapy, involving the intake of peptidases with food to digest immunogenic gluten peptides that are resistant to hydrolysis due to a high prevalence of proline and glutamine amino acids. This narrative review considers the features of the main proline/glutamine-rich proteins of cereals and the conditions that cause the symptoms of CD. In addition, we evaluate information about peptidases from various sources that can effectively break down these proteins and their immunogenic peptides, and analyze data on their activity and preliminary clinical trials. Thus far, the data suggest that enzyme therapy alone is not sufficient for the treatment of CD but can be used as a pharmacological supplement to GFD.
Collapse
Affiliation(s)
- Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | | | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | - Irina Y. Filippova
- Chemical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.F.T.); (I.Y.F.)
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| |
Collapse
|
11
|
Pourmohammadi K, Abedi E. Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review. Food Sci Nutr 2021; 9:3988-4006. [PMID: 34262753 PMCID: PMC8269544 DOI: 10.1002/fsn3.2344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Poor water solubility, emulsifying, and foaming properties of gluten protein have limited its applications. Gluten is structured by covalent (disulfide bonds) and noncovalent bonds (hydrogen bonds, ionic bonds, hydrophobic bonds) which prone to alteration by various treatments. Enzyme modification has the ability to alter certain properties of gluten and compensate the deficiencies in gluten network. By hydrolyzing mechanisms and softening effects, hydrolytic enzymes affect gluten directly and indirectly and improve dough quality. The present review investigates the effects of some hydrolytic enzymes (protease and peptidase, alcalase, xylanase, pentosanase, and cellulase) on the rheological, functional, conformational, and nutritional features of gluten and dough. Overall, protease, peptidase, and alcalase directly affect peptide bonds in gluten. In contrast, arabinoxylan, pentosan, and cellulose are affected, respectively, by xylanase, pentosanase, and cellulase which indirectly affect gluten proteins. The changes in gluten structure by enzyme treatment allow gluten for being used in variety of purposes in the food and nonfood industry.
Collapse
Affiliation(s)
- Kiana Pourmohammadi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| | - Elahe Abedi
- Department of Food Science and TechnologyCollege of AgricultureFasa UniversityFasaIran
| |
Collapse
|
12
|
Bradauskiene V, Vaiciulyte-Funk L, Shah B, Cernauskas D, Tita M. Recent Advances in Biotechnological Methods for Wheat Gluten Immunotoxicity Abolishment – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/132853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L. acidophilus 5e2 and A. niger. Catalysts 2020. [DOI: 10.3390/catal10080923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wheat storage proteins and products of their hydrolysis may cause coeliac sprue in genetically predisposed individuals with high expression of main histocompatibility complex HLA-DQ2 or DQ8, since by consuming wheat, they become exposed to proline- (P) and glutamine (Q)-rich gluten. In bread-making, the hydrolysis of gliadins and coeliac-toxic peptides occurs with varied efficiency depending on the fermentation pH and temperature. Degradation of gliadins catalysed by Lactobacillus acidophilus 5e2 peptidases and a commercial prolyl endopeptidase synthesised by A. niger, carried out at pH 4.0 and 37 °C, reduces the gliadin concentration over 110-fold and decreases the relative immunoreactivity of the hydrolysate to 0.9% of its initial value. Hydrolysis of coeliac-toxic peptides: LGQQQPFPPQQPY (P1) and PQPQLPYPQPQLP (P2) under the same conditions occurs with the highest efficiency, reaching 99.8 ± 0.0% and 97.5 ± 0.1%, respectively. The relative immunoreactivity of peptides P1 and P2 was 0.8 ± 0.0% and 3.2 ± 0.0%, respectively. A mixture of peptidases from L. acidophilus 5e2 and A. niger may be used in wheat sourdough fermentation to reduce the time needed for degradation of proteins and products of their hydrolysis.
Collapse
|
14
|
Jayawardana IA, Montoya CA, McNabb WC, Boland MJ. Possibility of minimizing gluten intolerance by co-consumption of some fruits – A case for positive food synergy? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Sievers S, Rohrbach A, Beyer K. Wheat-induced food allergy in childhood: ancient grains seem no way out. Eur J Nutr 2019; 59:2693-2707. [DOI: 10.1007/s00394-019-02116-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
|
16
|
Rai S, Kaur A, Chopra CS. Gluten-Free Products for Celiac Susceptible People. Front Nutr 2018; 5:116. [PMID: 30619866 PMCID: PMC6304385 DOI: 10.3389/fnut.2018.00116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/12/2018] [Indexed: 01/20/2023] Open
Abstract
The gluten protein of wheat triggers an immunological reaction in some gluten-sensitive people with HLA-DQ2/8 genotypes, which leads to Celiac disease (CD) with symptomatic damage in the small intestinal villi. Glutenin and gliadin are two major components of gluten that are essentially required for developing a strong protein network for providing desired viscoelasticity of dough. Many non-gluten cereals and starches (rice, corn, sorghum, millets, and potato/pea starch) and various gluten replacers (xanthan and guar gum) have been used for retaining the physical-sensorial properties of gluten-free, cereal-based products. This paper reviews the recent advances in the formulation of cereal-based, gluten-free products by utilizing alternate flours, starches, gums, hydrocolloids, enzymes, novel ingredients, and processing techniques. The pseudo cereals amaranth, quinoa, and buckwheat, are promising in gluten-free diet formulation. Genetically-modified wheat is another promising area of research, where successful attempts have been made to silence the gliadin gene of wheat using RNAi techniques. The requirement of quantity and quality for gluten-free packaged foods is increasing consistently at a faster rate than lactose-free and diabetic-friendly foods. More research needs to be focused on cereal-based, gluten-free beverages to provide additional options for CD sufferers.
Collapse
Affiliation(s)
- Sweta Rai
- Department of Food Science and Technology, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Amarjeet Kaur
- Division of Food Science and Technology, Punjab Agricultural University, Ludhiana, India
| | - C S Chopra
- Department of Food Science and Technology, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| |
Collapse
|
17
|
Del Prete E, Facchiano A, Liò P. Bioinformatics methodologies for coeliac disease and its comorbidities. Brief Bioinform 2018; 21:355-367. [PMID: 30452543 DOI: 10.1093/bib/bby109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Coeliac disease (CD) is a complex, multifactorial pathology caused by different factors, such as nutrition, immunological response and genetic factors. Many autoimmune diseases are comorbidities for CD, and a comprehensive and integrated analysis with bioinformatics approaches can help in evaluating the interconnections among all the selected pathologies. We first performed a detailed survey of gene expression data available in public repositories on CD and less commonly considered comorbidities. Then we developed an innovative pipeline that integrates gene expression, cell-type data and online resources (e.g. a list of comorbidities from the literature), using bioinformatics methods such as gene set enrichment analysis and semantic similarity. Our pipeline is written in R language, available at the following link: http://bioinformatica.isa.cnr.it/COELIAC_DISEASE/SCRIPTS/. We found a list of common differential expressed genes, gene ontology terms and pathways among CD and comorbidities and the closeness among the selected pathologies by means of disease ontology terms. Physicians and other researchers, such as molecular biologists, systems biologists and pharmacologists can use it to analyze pathology in detail, from differential expressed genes to ontologies, performing a comparison with the pathology comorbidities or with other diseases.
Collapse
Affiliation(s)
- Eugenio Del Prete
- Department of Sciences, University of Basilicata,Via dell'Ateneo Lucano, Potenza, Italy.,National Research Council, Institute of Food Science (CNR-ISA),Via Roma 64, Avellino, Italy.,Computer Laboratory, University of Cambridge, JJ Thomson Ave., Cambridge, UK
| | - Angelo Facchiano
- National Research Council, Institute of Food Science (CNR-ISA),Via Roma 64, Avellino, Italy
| | - Pietro Liò
- Computer Laboratory, University of Cambridge, JJ Thomson Ave., Cambridge, UK
| |
Collapse
|
18
|
Ravee R, Mohd Salleh F‘I, Goh HH. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 2018; 6:e4914. [PMID: 29888132 PMCID: PMC5993016 DOI: 10.7717/peerj.4914] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/16/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. METHODS This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts). RESULTS Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. DISCUSSION These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
Collapse
Affiliation(s)
- Rishiesvari Ravee
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Faris ‘Imadi Mohd Salleh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
19
|
Scherf KA, Wieser H, Koehler P. Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products. Food Res Int 2016; 110:62-72. [PMID: 30029707 DOI: 10.1016/j.foodres.2016.11.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 02/08/2023]
Abstract
Celiac disease (CD), a chronic enteropathy of the small intestine caused by ingestion of gluten, is one of the most prevalent food hypersensitivities worldwide. The essential treatment is a strict lifelong gluten-free diet based on the avoidance of gluten-containing products from wheat, rye, barley and, in rare cases, oats. Products made from naturally gluten-free raw materials often have inferior nutritional, textural and sensory properties compared to the corresponding gluten-containing products. Therefore, the incorporation of wheat, rye and barley flours after efficient removal of the harmful component gluten into gluten-free products would be beneficial. Gluten modification resulting in decreased CD-immunoreactivity may be achieved via the formation of crosslinks using microbial transglutaminase. To effectively eliminate CD-immunoreactivity, plant, fungal, bacterial, animal or engineered peptidases are capable of degrading gluten proteins and peptides into harmless fragments. The application of peptidases from germinated cereal grains, fungal peptidases and/or lactic acid bacteria during food processing yielded high-quality sourdough wheat breads, pasta, wheat starch and bran, rye products and beer, all with gluten contents below the Codex Alimentarius threshold of 20mg/kg for gluten-free products. As with all gluten-free products, the legislative compliance of such treated materials needs to be monitored closely. Provided that all safety requirements are met, gluten-containing raw materials treated in an adequate way to remove CD-active gluten fragments may be used together with naturally gluten-free ingredients to create an extended choice of high-quality gluten-free products.
Collapse
Affiliation(s)
- Katharina Anne Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
20
|
Pahlavan A, Sharma GM, Pereira M, Williams KM. Effects of grain species and cultivar, thermal processing, and enzymatic hydrolysis on gluten quantitation. Food Chem 2016; 208:264-71. [PMID: 27132849 DOI: 10.1016/j.foodchem.2016.03.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Gluten from wheat, rye, and barley can trigger IgE-mediated allergy or Celiac disease in sensitive individuals. Gluten-free labeled foods are available as a safe alternative. Immunoassays such as the enzyme-linked immunosorbent assay (ELISA) are commonly used to quantify gluten in foods. However, various non-assay related factors can affect gluten quantitation. The effect of gluten-containing grain cultivars, thermal processing, and enzymatic hydrolysis on gluten quantitation by various ELISA kits was evaluated. The ELISA kits exhibited variations in gluten quantitation depending on the gluten-containing grain and their cultivars. Acceptable gluten recoveries were obtained in 200mg/kg wheat, rye, and barley-spiked corn flour thermally processed at various conditions. However, depending on the enzyme, gluten grain source, and ELISA kit used, measured gluten content was significantly reduced in corn flour spiked with 200mg/kg hydrolyzed wheat, rye, and barley flour. Thus, the gluten grain source and processing conditions should be considered for accurate gluten analysis.
Collapse
Affiliation(s)
- Autusa Pahlavan
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, 5201 Paint Branch Parkway, College Park, MD 20742, United States
| | - Girdhari M Sharma
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, United States.
| | - Marion Pereira
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Kristina M Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, United States
| |
Collapse
|
21
|
Cornell HJ, Stelmasiak T, Small DM, Buddrick O. Application of the rat liver lysosome assay to determining the reduction of toxic gliadin content during breadmaking. Food Chem 2016; 192:924-7. [PMID: 26304430 DOI: 10.1016/j.foodchem.2015.07.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/10/2015] [Accepted: 07/22/2015] [Indexed: 12/18/2022]
Abstract
Enriched caricain was able to detoxify a major proportion of the gliadin in wholemeal wheat dough by allowing it to react for 5h at 37 °C during the fermentation stage. A reduction of 82% in toxicity, as determined by the rat-liver lysosome assay, was achieved using 0.03% enzyme on weight of dough. Without enzyme, only 26% reduction occurred. The difference in reduction of toxicity achieved is statistically significant (p < 0.01). The results are very similar to those obtained in our previous work using an immuno assay and the same enzyme preparation. They confirm the value of caricain as a means of reducing the toxicity of gliadin and open the way for enzyme therapy as an adjunct to the gluten free diet. This approach should lead to better control over the elimination of dietary gluten intake in conditions such as coeliac disease and dermatitis herpetiformis.
Collapse
Affiliation(s)
- Hugh J Cornell
- Applied Chemistry, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia
| | | | - Darryl M Small
- Applied Chemistry, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia
| | - Oliver Buddrick
- Applied Chemistry, School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
22
|
Witczak M, Ziobro R, Juszczak L, Korus J. Starch and starch derivatives in gluten-free systems – A review. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2015.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|