1
|
Liu Q, Huang W, Sheng C, Wu Y, Lu M, Li T, Zhang J, Wei Y, Wang Y, Ning J. Contribution of tea stems to large-leaf yellow tea aroma. Food Chem 2024; 460:140472. [PMID: 39032306 DOI: 10.1016/j.foodchem.2024.140472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Large-leaf yellow tea (LYT) is processed from both leaves and stems, resulting in a distinctive rice crust-like aroma. Tea stems may contribute differently to the aroma of LYT than leaves. This study aimed to clarify the specific contribution of stems to LYT. The volatile compounds in different components of LYT were extracted and analyzed using a combination of headspace solid-phase microextraction and stir bar sorptive extraction coupled with gas chromatography-olfactory-mass spectrometry. The results revealed high concentrations of compounds with roasty attributes in stems such as 2-ethyl-3,5-dimethylpyrazine (OAV 153-208) and 2-ethyl-3,6-dimethylpyrazine (OAV 111-140). Aroma recombination and addition experiments confirmed that the roasty aroma provided by stems plays a pivotal role in the formation of the distinctive flavor of LYT. This study offers novel insights into the contribution of stems to the aroma of LYT, which can be used for processing and quality enhancement of roasted tea.
Collapse
Affiliation(s)
- Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mingxia Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China..
| |
Collapse
|
2
|
Vilar EG, O'Sullivan MG, Kerry JP, Kilcawley KN. Volatile organic compounds in beef and pork by gas chromatography‐mass spectrometry: A review. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elena Garicano Vilar
- Food Quality & Sensory Science Department Teagasc Food Research Centre, Moorepark Ireland
- School of Food and Nutritional Science University College Cork Cork Ireland
| | | | - Joseph P. Kerry
- School of Food and Nutritional Science University College Cork Cork Ireland
| | - Kieran N. Kilcawley
- Food Quality & Sensory Science Department Teagasc Food Research Centre, Moorepark Ireland
- School of Food and Nutritional Science University College Cork Cork Ireland
| |
Collapse
|
3
|
Yang C, Li J, Wang S, Wang Y, Jia J, Wu W, Hu J, Zhao Q. Determination of free fatty acids in Antarctic krill meals based on matrix solid phase dispersion. Food Chem 2022; 384:132620. [PMID: 35413776 DOI: 10.1016/j.foodchem.2022.132620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022]
Abstract
Amino-modified mesoporous silicawas prepared by modifying mesoporous silica with 3-aminopropyltriethoxysilane and used as adsorbents in matrix solid-phase dispersion (MSPD) to analyze free fatty acids (FFAs) in krill meals for the first time. The adsorption-desorption experiments and Fourier-transform infrared spectroscopy showed amino-modified mesoporous silica with ordered mesoporous structure was successfully synthesized. The adsorption experiments including static and dynamic adsorption showed thatabsorption capacity of amino-modified mesoporous silica towards FFAs was better than that of aminated silicon microspheres at all concentrations. Under optimal extraction conditions, outstanding linearity (0.1-12000 nmol g-1), low LODs (0.05-1.25 nmol g-1), satisfactory recoveries (82.17-96.43%) and precisions (0.19-5.26%) were obtained. Moreover, the application of MSPD for FFAs analysis avoided complicated lipid extraction procedures and accomplished the homogenization, crushing, extraction and cleaning of the samples in one step. Consequently, this approach provides an alternative choice to the existing approach for analyzing FFAs in solid and semi-solid samples.
Collapse
Affiliation(s)
- Chunyu Yang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shimiao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiran Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiao Jia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wenfei Wu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qi Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Ma L, Meng Q, Chen F, Gao W. SAFE and SBSE combined with GC-MS and GC-O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. J Food Sci 2022; 87:939-956. [PMID: 35122437 DOI: 10.1111/1750-3841.16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Volatile compounds in Chinese Zhizhonghe Wujiapi (WJP) medicinal liquor were extracted by solvent-assisted flavor evaporation extraction (SAFE) and stir bar sorptive extraction (SBSE), respectively, and identified by gas chromatography-mass spectrometry. Results showed that a total of 123 volatile compounds (i.e., 108 by SAFE, 50 by SBSE, and 34 by both) including esters, alcohols, acids, aldehydes, ketones, heterocycles, terpenes and terpenoids, alkenes, phenols, and other compounds were identified, and 67 of them were confirmed as aroma-active compounds by the application of the aroma extract dilution analysis coupled with gas chromatography-olfactometry. After making a simulated reconstitute by mixing 41 characterized aroma-active compounds (odor activity values ≥1) based on their concentrations, the aroma profile of the reconstitute showed good similarity to that of the original WJP liquor. Omission test further corroborated 34 key aroma-active compounds in the WJP liquor. The study of WJP liquor is expected to provide some insights into the characterization of special volatile components in traditional Chinese medicine liquors for the purpose of quality improvement and aroma optimization.
Collapse
Affiliation(s)
- Longhua Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P. R. China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Wenjie Gao
- Department of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, P. R. China
| |
Collapse
|
5
|
Jin Z, Zou G, Mao X, Guan S, Guan W. Rapid Determination of Free Fatty Acids in the Extracellular Medium of Cyanobacteria by Stir Bar Sorptive Extraction (SBSE) Coupled to Ultra-High-Performance Liquid Chromatography – Triple Quadrupole Tandem Mass Spectrometry (UHPLC-MS/MS). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1891547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhao Jin
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guanyu Zou
- Public Laboratory of Bioenergy and Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xintao Mao
- Public Laboratory of Bioenergy and Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shanshan Guan
- Public Laboratory of Bioenergy and Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wenna Guan
- Public Laboratory of Bioenergy and Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Chang Y, Wang S, Chen H, Zhang N, Sun J. Characterization of the key aroma compounds in pork broth by sensory-directed flavor analysis. J Food Sci 2021; 86:4932-4945. [PMID: 34642953 DOI: 10.1111/1750-3841.15937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
The solvent-assisted flavor evaporation, sensory evaluation, and partial least squares regression analysis were used to screen the relatively better flavor of pork broth among different stewing time (1, 2, 4, 6, and 8 h). A total of 48 volatile compounds were successfully characterized by gas chromatography-mass spectrometry in the pork broth, which stewed for 4 h. The dominant volatiles were confirmed by aroma extract dilution analysis. Twenty-seven odorants with flavor dilution factors between 2 and 1,024 were identified. Among them, odor activity values of 19 components were greater than or equal to 1. An aroma recombination test was performed, and a similar flavor (93.04 %) was simulated. Omission test further confirmed that 4-hydroxy-2,5-dimethyl-3(2H)-furanone, hexanal, 1-octen-3-ol, (E)-2-octenal, (E)-2-decenal, (E)-2-undecanal, (E, E)-2,4-decadienal, nonanoic acid, decanoic acid, 2-heptanone, 3-hydroxy-2-butanone, δ-decanolactone, and 2-acetylpyrrole were the key odorants of the aroma profile of pork broth. PRACTICAL APPLICATION: Pork broth is popular in China, but lacks the study of its key aroma compounds, which restricts its industrial production. This study researched the optimum stewing time of pork broth and analyzed its key aroma compounds. Finally, the flavor profile can be obtained and understood. This study could provide a reference and further promote research on pork flavor.
Collapse
Affiliation(s)
- Yuan Chang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| | - Jie Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020; 25:E1719. [PMID: 32283595 PMCID: PMC7180442 DOI: 10.3390/molecules25071719] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
Collapse
Affiliation(s)
- Alshymaa A. Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate 61519, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
8
|
Zheng Y, Yang P, Chen E, Song H, Li P, Li K, Xiong J. Investigating characteristics and possible origins of off-odor substances in various yeast extract products. J Food Biochem 2020; 44:e13184. [PMID: 32163601 DOI: 10.1111/jfbc.13184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Abstract
Yeast extract (YE) is rich in amino acids, nucleotides, peptides, and other flavor substances, and is a natural nutrient, umami, and flavor enhancer. However, certain YE samples impart a yeasty flavor that affects the quality parameters of YE. We compared solid-phase microextraction (SPME), solvent-assisted evaporation (SAFE), dynamic headspace sample preparation (DHS), stir bar sorptive extraction (SBSE), and other pretreatment methods for the extraction of volatiles substances in YE. SPME was selected as a suitable extraction method, and aroma extract dilution analysis (AEDA) was combined with gas chromatography-olfactometry-mass spectrometry (GC-O-MS) for identification of key odor-active compounds in 23 YE samples. The yeast off-odor substances were screened from these compounds. Principal component analysis (PCA) was used to investigate the relationship between strains and the processing of YE products and their yeasty flavor. PRACTICAL APPLICATIONS: YE is prepared primarily from baker's yeast or waste beer yeast by autolysis or enzymatic hydrolysis, and is rich in nucleotides, peptides, amino acids, and other flavor compounds. It is used globally as a common umami and flavor enhancer. However, consumers have observed that YE imparts a certain yeasty flavor that influences the overall flavor negatively. Hence, the yeasty flavor-imparting substances from 23 YE samples were investigated in this study, and the observations (including strains, processing techniques, etc.) were integrated to explain the relationship between the yeasty flavor of the YE products with strain (different yeast strain for production) or processing of YE products (enzymes used, enzymatic hydrolysis conditions, composition of products, concentration conditions of YE, etc.), or storage conditions (temperature, humidity, duration, package, etc.), providing a scientific basis for removal/lowering or masking of yeasty flavor and the improvement of flavor quality of YE products.
Collapse
Affiliation(s)
- Yingying Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, College of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Ping Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, College of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Erbao Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, College of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Huanlu Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, College of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Pei Li
- Yeast Extract Seasoning Division, Angel Yeast Co. Ltd, Yichang, China
| | - Ku Li
- Yeast Extract Seasoning Division, Angel Yeast Co. Ltd, Yichang, China
| | - Jian Xiong
- Yeast Extract Seasoning Division, Angel Yeast Co. Ltd, Yichang, China
| |
Collapse
|
9
|
Dual-fiber solid-phase microextraction coupled with gas chromatography–mass spectrometry for the analysis of volatile compounds in traditional Chinese dry-cured ham. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1140:121994. [DOI: 10.1016/j.jchromb.2020.121994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/01/2019] [Accepted: 01/14/2020] [Indexed: 11/24/2022]
|
10
|
Metal organic framework assisted in situ complexation for miniaturized solid phase extraction of organic mercury in fish and Dendrobium officinale. Talanta 2019; 209:120598. [PMID: 31892039 DOI: 10.1016/j.talanta.2019.120598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Zirconium-based metal-organic frameworks, namely Zr-based MOF, was employed as adsorbent material in the miniaturized solid phase extraction of organic mercury compounds in food prior to capillary electrophoresis-diode array detector analysis. The synthesized adsorbent was characterized by different spectroscopic techniques. Parameters influencing the extraction and complexation of methylmercury chloride, ethylmercury chloride and phenylmercury chloride such as type of eluent solvent, type and amount of adsorbent were investigated. In addition, linear ranges contained 2.00-300.00 ng mL-1 for MeHg+, 5.00-500.00 ng mL-1 for EtHg+ and PhHg+, and the established method presented good linearity (R2 ≥ 0.998). Under the optimized experimental conditions, the ranges of detection limit and quantitation limit were 0.022-0.067 ng mL-1 and 0.073-0.220 ng mL-1, respectively. The relative standard deviations of intra- and inter-day analysis were less than 3.2 and 3.1%, respectively. Trueness of the present method was successfully accomplished by means of the recovery assays (81.4-98.5%) in the blank samples with two concentration levels. The repeatability %RSD of the method was lower than 2.7%. Overall, the developed approach proved to have the latent capability to be utilized in routine analysis of organic mercury compounds in fish and Dendrobium officinale.
Collapse
|
11
|
García-García A, Herrera A, Fernández-Valle M, Cambero M, Castejón D. Evaluation of E-beam irradiation and storage time in pork exudates using NMR metabolomics. Food Res Int 2019; 120:553-559. [DOI: 10.1016/j.foodres.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 10/27/2022]
|
12
|
Electrospun polydimethylsiloxane/polyacrylonitrile/titanium dioxide nanofibers as a new coating for determination of alpha-linolenic acid in milk by direct immersion-solid phase nanoextraction. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:43-50. [DOI: 10.1016/j.jchromb.2017.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
|
13
|
Jaworek K. Determination of Aromatic Hydrocarbons, Phenols, and Polycyclic Aromatic Hydrocarbons in Water by Stir bar Sorptive Extraction and Gas Chromatography–Mass Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1338712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Katarzyna Jaworek
- Environmental Protection Department, Institute of Non-Ferrous Metals, Gliwice, Poland
| |
Collapse
|
14
|
Xu Y, Limwachiranon J, Li L, Ru Q, Luo Z. Characterisation of volatile compounds of farmed soft-shelled turtle (Pelodiscus sinensis) by solid-phase microextraction and the influence of matrix pH on the release of volatiles. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yanqun Xu
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agri-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agri-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Li Li
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agri-Food Processing; Zhejiang University; Hangzhou 310058 China
| | - Qiaomei Ru
- Hangzhou Wanxiang Polytechnic; Hangzhou 310023 China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science; Zhejiang Key Laboratory for Agri-Food Processing; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
15
|
Stir bar sorptive extraction coupled with GC/MS applied to honey: optimization of method and comparative study with headspace extraction techniques. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2787-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Bezerra MA, dos Santos QO, Santos AG, Novaes CG, Ferreira SLC, de Souza VS. Simplex optimization: A tutorial approach and recent applications in analytical chemistry. Microchem J 2016. [DOI: 10.1016/j.microc.2015.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|