1
|
Konofal E. From past to future: 50 years of pharmacological interventions to treat narcolepsy. Pharmacol Biochem Behav 2024; 241:173804. [PMID: 38852786 DOI: 10.1016/j.pbb.2024.173804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The history of narcolepsy research began with the pioneering work of Jean-Baptiste-Édouard Gélineau in the late 19th century. In the 1880s, Gélineau introduced the term "narcolepsy" to describe a condition characterized by sudden and uncontrollable episodes of sleep. His clinical descriptions laid the foundation for our understanding of this complex disorder. Over the last half-century, the pharmacological landscape for narcolepsy treatment has evolved remarkably, shifting from merely managing symptoms to increasingly targeting its underlying pathophysiology. By the 1930s, treatments such as ephedrine and amphetamine were introduced to alleviate excessive daytime sleepiness, marking significant advancements in narcolepsy management. These stimulants provided temporary relief, helping patients maintain wakefulness during the day. As research progressed, the focus shifted towards understanding the disorder's underlying mechanisms. The discovery of orexin (also known as hypocretin) in the late 1990s revolutionized the field. This breakthrough underscored the importance of orexin in regulating sleep-wake cycles and provided new targets for pharmacological intervention. Looking ahead, the future of narcolepsy pharmacotherapy is poised for further innovation. The ongoing exploration of orexin receptor agonists and the potential development of neuroprotective therapeutic targets underscore a promising horizon. Emerging research into the genetic and immunological underpinnings of narcolepsy opens new avenues for personalized medicine approaches and the identification of biomarkers for more precise treatment strategies. Additionally, the refinement of existing treatments through improved delivery systems and the investigation of combination therapies offer opportunities for enhanced efficacy and improved quality of life for patients with narcolepsy.
Collapse
Affiliation(s)
- Eric Konofal
- Centre Pédiatrique des Pathologies du Sommeil, APHP Hôpital Robert Debré, 48 Boulevard Sérurier, Paris 75019, France.
| |
Collapse
|
2
|
Zhang L, Zhu Z, Zhao M, He J, Zhang X, Hao F, Du P. Occurrence, removal, emission and environment risk of 32 antibiotics and metabolites in wastewater treatment plants in Wuhu, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165681. [PMID: 37481090 DOI: 10.1016/j.scitotenv.2023.165681] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered important sources of antibiotics and metabolites in aquatic environments and pose a serious threat to the safety of aquatic organisms. In this study, we investigated the seasonal occurrence, removal, emission, and environmental risk assessment (ERA) of 32 antibiotics and metabolites at four WWTPs located in Wuhu, China. The main findings of this study are as follows: Ofloxacin concentrations dominated all WWTPs, and large quantities of sulfachinoxalin were only detected in WWTP 2 treating mixed sewage. The average apparent removal of individual parent antibiotics or metabolites ranged from -94.7 to 100 %. There was a noticeable seasonal emission pattern (independent t-test, t = 9.89, p < 0.001), with lower emissions observed during summer. WWTPs discharged 85.2 ± 43.8 g of antibiotics and metabolites each day. Approximately 87 % of emissions were discharged into the mainstream of the Yangtze River, while the remainder were discharged into its tributary, the Zhanghe River. The total emissions of 21 parent antibiotics were approximately 18 % of the prescription data, indicating that a considerable and alarming amount of prototype drugs entered the receiving water body. Based on the risk quotient (RQ) of the ERA, the Zhanghe River has a moderate risk of ofloxacin (RQ = 0.111-0.583), a low or insignificant risk of sulfamethoxazole (RQ = 0.003-0.048), and an insignificant risk of other antibiotics or metabolites. However, the risk of antibiotics or metabolites in the mainstream of Yangtze River is insignificant. This study could help understand the seasonal emission patterns of antibiotics and metabolites, as well as more antibiotics sensitive of environmental risks in tributary than that in mainstream.
Collapse
Affiliation(s)
- Lingrong Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhu Zhu
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Menglin Zhao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
3
|
Wang SH, Wang JP, Wu NP. Determination of 35 sulfonamides in pork by magnetic molecularly imprinted polymer-based dispersive solid-phase extraction and ultra-performance liquid chromatography photodiode array method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1954-1963. [PMID: 36347630 DOI: 10.1002/jsfa.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Sulfonamide residues in foods of animal origin are potential risks to consumer health, so it is very important to inspect them. Among the previously reported instrumental methods, the best method can only be used to determine at most 22 sulfonamides. Thus, an instrumental method capable of determining more sulfonamide species is desirable. RESULTS In this study, sulfadoxine was used as a template to synthesize a type of magnetic molecularly imprinted polymer that could recognize 35 sulfonamides. After characterization, this composite was used to develop a dispersive solid-phase extraction method for extraction and purification of the 35 sulfonamides in pork, followed by determination using an ultra-performance liquid chromatography photodiode array method. This composite exhibited high adsorption capacity (11.01-19.21 μg mg-1 ) and high recovery (>89.01%), and could be reused at least ten times. Due to the enrichment effect during sample preparation (enrichment factor 22-66), the limits of detection for determination of the 35 drugs in pork were in the range of 0.08-0.53 ng g-1 . The detection results for some real pork samples were consistent with a liquid chromatographic-tandem mass spectrometric method. After comparison, the present method showed generally better performances than the previously reported sample preparation methods and instrumental methods for detection of sulfonamides. CONCLUSION The method developed in the present study could be used as a practical tool for routine detection of sulfonamide residues in pork samples. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su Han Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei, China
| | - Ning Peng Wu
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Jia W, Zhang M, Zhu J, Shi L. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of sulfanilamide metabolites in food (2012-2022). Food Chem 2022; 388:133039. [PMID: 35489175 DOI: 10.1016/j.foodchem.2022.133039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Sulfonamide metabolites are a major source of food pollution worldwide. However, the formation of internal sulfanilamide metabolites has only been investigated for selected compounds. In this paper, the fragmentation mechanism and characteristic ions of sulfonamide metabolites are reviewed using density functional theory and Q-Orbitrap high-resolution mass spectrometry. The result of the protonation site, rearrangement and bond breaking induced fragmentations at C6H6NO2S+m/z 156.01138, C6H6NO+m/z 108.04439, and C6H6N+m/z 92.04948. Mass shifts are calculated for derivative metabolites, including hydrogenation, acetylation, oxidation, glucosylation, glucosidation, sulfation, deamination, formylation, desulfonation and O-aminomethylation. Given their homologous series, it is demonstrated that similar metabolic reactions occur for all sulfonamides. The suspicious sulfonamide metabolites are confirmed by d-labelling experiments and reference standards. This is the first review of the latest advances in the field of sulfonamide metabolite prediction (2012-2022), and scheme design for metabolite multirresidue screening, as well as the challenges in the mass spectrometry evolution.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Min Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiying Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Simultaneous Determination of 21 Sulfonamides in Poultry Eggs Using Ionic Liquid-Modified Molecularly Imprinted Polymer SPE and UPLC-MS/MS. Molecules 2022; 27:molecules27154953. [PMID: 35956903 PMCID: PMC9370267 DOI: 10.3390/molecules27154953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
An ionic liquid-modified molecularly imprinted polymer (IL-MIP) composite with sulfamethazine as a template molecule and methyl acrylic acid and 1-aminopropyl-3-methylimidazolium bromide as functional monomers was successfully synthesized. The achieved IL-MIP was characterized and evaluated in detail and utilized in the extraction and cleanup of sulfonamides (SAs) in poultry egg samples. The results demonstrated that the IL-MIP possessed a broad reorganization toward SAs and could selectively adsorb 21 kinds of SA compounds. Furthermore, the solid-phase extraction column based on the IL-MIP was used in the extraction and cleanup of 21 SAs in eggs, and the confirmatory detection of SAs was performed using ultraperformance liquid chromatography−tandem mass spectrometry. Under optimum conditions, the limits of detection (LODs) for all SAs ranged from 0.1 ng·g−1 to 1.5 ng·g−1, and the LOD of this method was better than those of the existing methods. The recoveries of SA compounds spiked in egg samples ranged from 84.3% to 105.8%, with low relative standard deviations (<15%). The developed method based on the IL-MIP extraction and cleanup was successfully used in the detection of 21 SAs in more than 100 real poultry egg samples. The results indicated that the proposed method was suitable for detecting 21 SAs in poultry eggs.
Collapse
|
6
|
Zhou J, Yun X, Wang J, Li Q, Wang Y. A review on the ecotoxicological effect of sulphonamides on aquatic organisms. Toxicol Rep 2022; 9:534-540. [PMID: 35371922 PMCID: PMC8971571 DOI: 10.1016/j.toxrep.2022.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Antibiotics are extensively used to treat human and animal diseases and are especially used in animal production to promote the growth performance of livestock and aquatic animals. Sulphonamides, as important drugs for aquatic animals, are often used in aquaculture to prevent and treat diseases. However, various antibiotics found in the aquatic environment exhibit varying degrees of toxicity to aquatic organisms. Antibiotics in wastewater produced in industrial and agricultural processes are not thoroughly removed by sewage treatment and are released into water, which results in varying degrees of pollution of the surrounding water environment, forcing people to pay attention towards the ecosystem. Several studies have investigated the impact of antibiotics on aquatic organisms in water environment; however, only a few studies have investigated the underlying mechanism. Antibiotics persisting in an aquatic environment for a long time can cause genotoxicity and histopathological changes in various aquatic organisms. Therefore, this paper reviews the sources of antibiotics in aquatic environment, the pollution status of sulfonamides in aquatic environment at home and abroad, and focuses on the research status of ecotoxicological effects of sulfonamides on aquatic organisms. Because there are not only antibiotic pollution, but also many other pollutants, such as heavy metals, micro plastics and other chemicals, it will be a challenge to determine the combined effects of antibiotics or other pollutants on aquatic organisms in future environmental toxicity studies. Sulphonamides are ubiquitously detected in the water environment. Sulfamethoxazole is one of the least efficient antibiotics removed in wastewater treatment plants. Interaction of sulphonamides with other antibiotics needs more attention. Multigeneration studies related to the water environment are needed.
Collapse
|
7
|
Maculewicz J, Kowalska D, Świacka K, Toński M, Stepnowski P, Białk-Bielińska A, Dołżonek J. Transformation products of pharmaceuticals in the environment: Their fate, (eco)toxicity and bioaccumulation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149916. [PMID: 34525754 DOI: 10.1016/j.scitotenv.2021.149916] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/07/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, a huge scientific attention is being paid to the chemicals of emerging concern, which may pose a significant risk to the human and whole ecosystems. Among them, residues of pharmaceuticals are a widely investigated group of chemicals. In recent years it has been repeatedly demonstrated that pharmaceuticals are present in the environment and that some of them can be toxic to organisms as well as accumulate in their tissues. However, even though the knowledge of the presence, fate and possible threats posed by the parent forms of pharmaceuticals is quite extensive, their transformation products (TPs) have been disregarded for long time. Since last few years, this aspect has gained more scientific attention and recently published papers proved their common presence in the environment. Also the interest in terms of their toxicity, bioconcentration and stability in the environment has increased. Therefore, the aim of our paper was to revise and assess the current state of knowledge on the fate and effects resulting from the presence of the pharmaceuticals' transformation drugs in the environment. This review discusses the metabolites of compounds belonging to six major pharmaceutical groups: SSRIs, anticancer drugs, antibiotics, antihistamines, NSAIDs and opioids, additionally discussing other individual compounds for which literature data exist. The data presented in this paper prove that some TPs may be as harmful as their native forms, however for many groups of drugs this data is still insufficient to assess the risk posed by their presence in the environment.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Michał Toński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
8
|
Ye C, Shi J, Zhang X, Qin L, Jiang Z, Wang J, Li Y, Liu B. Occurrence and bioaccumulation of sulfonamide antibiotics in different fish species from Hangbu-Fengle River, Southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44111-44123. [PMID: 33842998 DOI: 10.1007/s11356-021-13850-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
As a class of synthetic sulfur drugs, sulfonamides (SAs) have been used to treat diseases and promote organism growth. Different concentrations of SAs have been detected in the water environment, which has threatened the ecological environment. In this study, the contamination of 9 SAs in water, sediments, and 8 fish species from the Hangbu-Fengle River, China, were analyzed using UPLC-MS/MS. The total SA concentrations in surface water, sediments, and fish were ND-5.064 ng/L, ND-5.052 ng/g dry weight (d.w.), and ND-1.42 ng/g wet weight (w.w.), respectively. The major compounds were sulfadiazine (SDZ), sulfamerazine (SMZ), and sulfamethoxazole (SMX) in water and fish. The SA levels of in fish from different habitat preferences revealed a spatial difference, with the order of demersal species > pelagic species. Moreover, the SA concentrations were affected by trophic guilds, indicating their decrease in the order of piscivorous fish > omnivorous fish > planktivorous fish > herbivorous fish. The obtained bioaccumulation factors showed that SMZ and SMX have strong bioenrichments in Ophiocephalus argus Cantor and Pelteobagrus fulvidraco. The risk assessment indicated that SAs did not pose significant health threats to the organisms. This research is the first report of SA contamination in the Hangbu-Fenle River, which can provide an important scientific basis for their pollution prevention and ecological risk assessment in the aquatic environment.
Collapse
Affiliation(s)
- Chunmeng Ye
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Jiaqi Shi
- Nanjing Institute of Environmental Sciences of the Ministry of Environmental Protection, Nanjing, 210042, Jiangsu, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China.
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhongguan Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Jinhua Wang
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China
| | - Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, Anhui, China.
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
9
|
Li X, Chi Q, Xia S, Pan Y, Chen Y, Wang K. Untargeted multi-residue method for the simultaneous determination of 141 veterinary drugs and their metabolites in pork by high-performance liquid chromatography time-of-flight mass spectrometry. J Chromatogr A 2020; 1634:461671. [PMID: 33166891 DOI: 10.1016/j.chroma.2020.461671] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/10/2023]
Abstract
A rapid, simple and generic analytical method has been developed for the analysis of veterinary drugs in pork by a quadrupole time-of-flight mass spectrometry (Q-TOF MS). This method allows for the simultaneous identification, screening and quantitation of 141 veterinary drug residues and metabolites from eighteen different classes. After extraction with acetonitrile/water and clean-up with C18 cartridges, the samples were analyzed by HPLC-Q-TOF MS. Validation of this method consisted of confirmation of identity, selectivity, linearity, limit of detection (LOD), lowest limit of quantification (LLOQ), matrix effect, recovery, precision and applicability of the method. Identification of the analytes was based on accurate mass measurements. The characteristic fragments were obtained by collisional experiments for a more reliable identification. The procedure was then applied to real pork samples. Sulfamethazine was detected in one sample and its metabolites were successfully found in one single run. This approach proved to be satisfactory for routine analysis.
Collapse
Affiliation(s)
- Xiaowen Li
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Qiuchi Chi
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Sujie Xia
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Ying Pan
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Yan Chen
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Ke Wang
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China.
| |
Collapse
|
10
|
Zhu M, Wang Z, Chen J, Xie H, Zhao H, Yuan X. Bioaccumulation, Biotransformation, and Multicompartmental Toxicokinetic Model of Antibiotics in Sea Cucumber ( Apostichopus japonicus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13175-13185. [PMID: 32985863 DOI: 10.1021/acs.est.0c04421] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive application of antibiotics leads to their ubiquitous occurrence in coastal aquatic environments. However, it remains largely unknown whether antibiotics can be bioaccumulated and biotransformed in major mariculture organisms such as sea cucumbers and toxicokinetic models for Echinodermata are lacking. In this study, laboratory exposure experiments on juvenile sea cucumber (Apostichopus japonicus) were performed for seven antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, enrofloxacin, ofloxacin, clarithromycin, and azithromycin). Field sea cucumber and surrounding seawater samples were also analyzed. Results show that the sea cucumbers tend to accumulate high concentrations of the antibiotics with kinetic bioconcentration factors (BCFs) up to 1719.7 L·kg-1 for ofloxacin. The BCFs determined in the laboratory agree well with those estimated from the field measurements. Seven biotransformation products (BTPs) of the antibiotics were identified, four of which were not reported previously in aquatic organisms. The BTPs were mainly found in the digestive tract, indicating its high capacity in the biotransformation. A multicompartmental toxicokinetic model based on the principles of passive diffusion was developed, which can successfully predict time-course concentrations of the antibiotics in different compartments of the juvenile sea cucumbers. The findings may offer a scientific basis for assessing health risks and guiding healthy mariculture of sea cucumbers.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
11
|
Li S, Zhang Q, Chen M, Zhang X, Liu P. Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1798247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuling Li
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiongyao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengdi Chen
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuejiao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Liu
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Development of Nanozyme-Labeled Biomimetic Immunoassay for Determination of Sulfadiazine Residue in Foods. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/7647580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The excessive use and ingestion of residues of sulfonamides harm the human body and the environment. To meet the requirements of the maximum residue limit specified by the Ministry of Agriculture of China, a rapid detection method urgently needs to be developed. In the present study, a molecularly imprinted polymer (MIP) that could selectively recognize sulfadiazine (SDZ) was prepared using SDZ as the template molecule and methacrylic acid as the functional monomer. Using MIP as biomimetic antibody and Au@Pt@SiO2 nanozyme as a marker, a new biomimetic immunoassay was developed to detect sulfadiazine. Under the optimal conditions, the limit of detection (IC15) and sensitivity (IC50) of this method were 0.09 and 6.1 mg/L, respectively. To determine the accuracy of this method, honey and milk samples spiked with sulfadiazine were analyzed, with recoveries in the range of 70.8%-90.2%. The method was also used for the quantitative analysis of sulfadiazine residues in milk powder and milk samples, producing results which correlated well with those obtained by high-performance liquid chromatography.
Collapse
|
13
|
Mokh S, El Hawari K, Rahim HA, Al Iskandarani M, Jaber F. Antimicrobial residues survey by LC-MS in food-producing animals in Lebanon. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:121-129. [PMID: 32200691 DOI: 10.1080/19393210.2020.1739148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The treatment of animals with antimicrobial products may lead to the contamination of edible tissues by their residues, which may represent a risk to human health. Therefore, this study aimed to determine the level of antimicrobial residues in food-producing animals (chicken, beef, and milk) in Lebanon. A total of 310 samples were collected and analysed using an LC-MS/MS for the determination of 48 compounds belonging to different families in order to map their compliance according to the European Commission decision 2002/657/EC. Results show that 60% of the analysed samples were not contaminated by any residue, while 12% presented a concentration higher than the MRLs for tetracyclines, sulphonamides, quinolones, and macrolides. Results revealed that chicken were the most contaminated by antimicrobial residues, when compared to beef and milk. The obtained results demonstrate the uncontrolled use of antimicrobials in some Lebanese farms and claim for better management of livestock.
Collapse
Affiliation(s)
- Samia Mokh
- CNRSL, Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LAOC) , Beirut, Lebanon
| | - Khaled El Hawari
- CNRSL, Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LAOC) , Beirut, Lebanon
| | | | - Mohamad Al Iskandarani
- CNRSL, Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LAOC) , Beirut, Lebanon.,Faculty of Public Health I, Lebanese University , Beirut, Lebanon
| | - Farouk Jaber
- CNRSL, Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LAOC) , Beirut, Lebanon.,Faculty of Sciences I, Lebanese University , Beirut, Lebanon
| |
Collapse
|
14
|
Debbabi KF, Al-Harbi SA, Al-Saidi HM, Aljuhani EH, Felaly RN, Abd El-Gilil SM, Bashandy MS, Jannet HB. Synthesis, anticancer, antimicrobial, anti-tuberculosis and molecular docking of heterocyclic N-ethyl-N-methylbenzenesulfonamide derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
He J, Liu G, Jiang M, Xu L, Kong F, Xu Z. Development of novel biomimetic enzyme-linked immunosorbent assay method based on Au@SiO2 nanozyme labelling for the detection of sulfadiazine. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1728234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jingbo He
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Guanyong Liu
- Binzhou Vocational College, Binzhou, People’s Republic of China
| | - Mingdi Jiang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Longhua Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Feifan Kong
- Shandong Wuzhou Testing Co., Ltd., Sishui, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| |
Collapse
|
16
|
Wu Y, Zhou J, Wang X, Zhang Z, Gao S. Ionic Liquid-based Hollow Fiber Liquid–Liquid–Liquid Microextraction Combined with Capillary Electrophoresis for the Determination of Sulfonamides in Aquaculture Waters. J Chromatogr Sci 2019; 57:950-960. [DOI: 10.1093/chromsci/bmz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/03/2019] [Accepted: 06/07/2019] [Indexed: 11/14/2022]
Abstract
Abstract
Ionic liquid-based hollow-fiber liquid–liquid–liquid microextraction (IL-HF-LLLME) coupled to capillary electrophoresis (CE) has been developed for the determination of six sulfonamides (SAs) in aquaculture waters. A series of extraction parameters was optimized to enhance the extraction efficiency, which included type and pore size of hollow fiber, type and composition of extraction solvent, pH value of donor phase, the concentration of acceptor phase and the mass ratio of donor phase to acceptor phase along with extraction temperature and time. Under optimal conditions, the IL-HF-LLLME-CE method provided a wide liner range for six SAs from 2 to 1,000 μg L−1 (r2 ≥ 0.9995), the limits of the detection from 0.25 to 0.48 and the enrichment factors from 122 to 230, respectively. Relative standard deviations for intra- and interday precision were 1.4–5.3% and 1.8–7.5% (n = 5), respectively. The proposed method was successfully applied for the determination of trace-level SAs in seven real-world aquaculture water samples with good recoveries (80.4–100.7%). Also, sulfamerazine and sulfamethoxazole were detected at the level of 0.52–1.60 μg L−1 in two water samples. Due to its good sensitivity, simple operation, short analysis time and eco-friendliness, the developed method has a great application potential in analysis of trace SA residues in aquaculture waters.
Collapse
Affiliation(s)
- Youyi Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingwen Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhanen Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
17
|
Zhu N, Zhu Y, Wang J, Gyimah E, Hu X, Zhang Z. A novel fluorescence immunoassay based on AgNCs and ALP for ultrasensitive detection of sulfamethazine (SMZ) in environmental and biological samples. Talanta 2019; 199:72-79. [DOI: 10.1016/j.talanta.2019.01.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
|
18
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
19
|
Melamine sponge decorated with copper sheets as a material with outstanding properties for microextraction of sulfonamides prior to their determination by high-performance liquid chromatography. J Chromatogr A 2018; 1554:28-36. [DOI: 10.1016/j.chroma.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 01/16/2023]
|
20
|
El-Dakdouki MH, Hussein A, Abdallah H, Shatila R, Mouneimne Y. Synthesis of novel 2H-indazole analogues via the Davis-Beirut reaction and conjugation onto magnetic nanoparticles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Synthesis and molecular docking against dihydrofolate reductase of novel pyridin-N-ethyl-N-methylbenzenesulfonamides as efficient anticancer and antimicrobial agents. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Łukaszewicz P, Maszkowska J, Mulkiewicz E, Kumirska J, Stepnowski P, Caban M. Impact of Veterinary Pharmaceuticals on the Agricultural Environment: A Re-inspection. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 243:89-148. [PMID: 28005213 DOI: 10.1007/398_2016_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of veterinary pharmaceuticals (VPs) is a result of growing animal production. Manure, a great crop fertilizer, contains a significant amount of VPs. The investigation of VPs in manure is prevalent, because of the potential risk for environmental organisms, as well as human health. A re-evaluation of the impact of veterinary pharmaceuticals on the agricultural environment is needed, even though several publications appear every year. The aim of this review was to collate the data from fields investigated for the presence of VPs as an inevitable component of manure. Data on VP concentrations in manure, soils, groundwater and plants were collected from the literature. All of this was connected with biotic and abiotic degradation, leaching and plant uptake. The data showed that the sorption of VPs into soil particles is a process which decreases the negative impact of VPs on the microbial community, the pollution of groundwater, and plant uptake. What was evident was that most of the data came from experiments conducted under conditions different from those in the environment, resulting in an overestimation of data (especially in the case of leaching). The general conclusion is that the application of manure on crop fields leads to a negligible risk for plants, bacteria, and finally humans, but in future every group of compounds needs to be investigated separately, because of the high divergence of properties.
Collapse
Affiliation(s)
- Paulina Łukaszewicz
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Joanna Maszkowska
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Ewa Mulkiewicz
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Jolanta Kumirska
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Piotr Stepnowski
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Magda Caban
- Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, ul. Wita Stwosza 63, Gdańsk, 80-308, Poland.
| |
Collapse
|
23
|
Recent Advances and Developments in the QuEChERS Method. COMPREHENSIVE ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/bs.coac.2017.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Distribution of sulfonamides in liquid and solid anaerobic digestates: effects of hydraulic retention time and swine manure to rice straw ratio. Bioprocess Biosyst Eng 2016; 40:319-330. [DOI: 10.1007/s00449-016-1699-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/19/2016] [Indexed: 11/26/2022]
|
25
|
Debbabi KF, Al-Harbi SA, Al-Saidi HM, Aljuhani EH, Abd El-Gilil SM, Bashandy MS. Study of reactivity of cyanoacetohydrazonoethyl-N-ethyl-N-methyl benzenesulfonamide: preparation of novel anticancer and antimicrobial active heterocyclic benzenesulfonamide derivatives and their molecular docking against dihydrofolate reductase. J Enzyme Inhib Med Chem 2016; 31:7-19. [PMID: 27557134 DOI: 10.1080/14756366.2016.1217851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article describes the synthesis of some novel heterocyclic sulfonamides having biologically active thiophene 3, 4, 5, 6, coumarin 8, benzocoumarin 9, thiazole 7, piperidine 10, pyrrolidine 11, pyrazole 14 and pyridine 12, 13. Starting with 4-(1-(2-(2-cyanoacetyl)hydrazono)ethyl)-N-ethyl-N-methylbenzenesulfonamide (2), which was prepared from condensation of acetophenone derivative 1 with 2-cyanoacetohydrazide. The structures of the newly synthesized compounds were confirmed by elemental analysis, IR, 1H NMR, 13C NMR, 19F NMR and MS spectral data. All the newly synthesized heterocyclic sulfonamides were evaluated as in-vitro anti-breast cancer cell line (MCF7) and as in-vitro antimicrobial agents. Compounds 8, 5 and 11 were more active than MTX reference drug and compounds 12, 7, 4, 14, 5 and 8 were highly potent against Klebsiella pneumonia. Molecular operating environment performed virtual screening using molecular docking studies of the synthesized compounds. The results indicated that some prepared compounds are suitable inhibitor against dihydrofolate reductase (DHFR) enzyme (PDBSD:4DFR) with further modification.
Collapse
Affiliation(s)
- Khaled F Debbabi
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia.,b Laboratory of Heterocyclic Chemistry , Natural Products and Reactivity, Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir , Tunisia
| | - Sami A Al-Harbi
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Hamed M Al-Saidi
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Enas H Aljuhani
- c Department of Chemistry , College of Applied Science, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Shimaa M Abd El-Gilil
- d Deparment of Organic Chemistry , Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt , and
| | - Mahmoud S Bashandy
- a Department of Chemistry , University College in Al-Jamoum, Umm Al-Qura University , Makkah , Saudi Arabia.,e Chemistry Department, Faculty of Science (Boys), Al-Azhar University , Nasr City , Cairo , Egypt
| |
Collapse
|
26
|
El-Megharbel SM. Ag(I), Cu(II), and Cd(II) sulfacetamide complexes: Synthesis, spectral, thermal study, and antimicrobial activity assessment. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216040368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Determination of Sulfonamide Residues in Chicken Liver Using High-Performance Liquid Chromatography. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0514-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Simirgiotis MJ, Quispe C, Bórquez J, Areche C, Sepúlveda B. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC-Q/Orbitrap/MS/MS). Molecules 2016; 21:92. [PMID: 26784158 PMCID: PMC6273977 DOI: 10.3390/molecules21010092] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/28/2015] [Accepted: 01/11/2016] [Indexed: 11/21/2022] Open
Abstract
A small Chilean variety of pears growing in the town of Toconao, an oasis located at the northeastern edge of the Salar de Atacama, northern Chile, was studied by means of modern PDA and high resolution mass spectral data (UHPLC-PDA-HESI-orbitrap-MS/MS). In addition, the antioxidant features of the fruits were compared with the varieties Packhman’s Triumph and Abate Fetel and correlated with the presence of phenolic compounds. The non-pigmented phenolics were fingerprinted and related to the antioxidant capacities measured by the bleaching of the DPPH radical, the ferric reducing antioxidant power (FRAP), the superoxide anion scavenging activity assay (SA), and total content of phenolics and flavonoids measured by spectroscopic methods. The machine allowed a fast separation of 15 min employing a flow rate of 1 mL per minute and could accurately identify 25 compounds, including several isorhamnetin derivatives and phenolic acids, present in the peel and pulps of this Chilean variety for the first time. The compounds were monitored using a wavelength range of 210–800 nm. The native small Chilean pear showed the highest antioxidant activity measured as the bleaching of the DPPH radical, the ferric reducing antioxidant power and superoxide anion scavenging activity (8.61 ± 0.65 μg/mL, 712.63 ± 12.12 micromols trolox equivalents (μmol/TE)/100 g FW, and 82.89% ± 2.52% at 100 μg/mL, respectively).
Collapse
Affiliation(s)
- Mario J Simirgiotis
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Coloso S-N, Antofagasta 1240000, Chile.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1110939, Chile.
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Coloso S-N, Antofagasta 1240000, Chile.
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile.
| | - Beatriz Sepúlveda
- Departamento de Ciencias Químicas, Universidad Andres Bello, Campus Viña del Mar, Quillota 980, Viña del Mar 2520000, Chile.
| |
Collapse
|