1
|
Yan Y, Li L, Long C, Dong Y, Li J, Shen C, Zhao Y, Zhao J, Wang J, Xiong A, Li X, Chen H, He S. A novel IgE epitope-specific antibodies-based sandwich ELISA for sensitive measurement of immunoreactivity changes of peanut allergen Ara h 2 in processed foods. Front Nutr 2024; 11:1323553. [PMID: 38439921 PMCID: PMC10910080 DOI: 10.3389/fnut.2024.1323553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Peanut is an important source of dietary protein for human beings, but it is also recognized as one of the eight major food allergens. Binding of IgE antibodies to specific epitopes in peanut allergens plays important roles in initiating peanut-allergic reactions, and Ara h 2 is widely considered as the most potent peanut allergen and the best predictor of peanut allergy. Therefore, Ara h 2 IgE epitopes can serve as useful biomarkers for prediction of IgE-binding variations of Ara h 2 and peanut in foods. This study aimed to develop and validate an IgE epitope-specific antibodies (IgE-EsAbs)-based sandwich ELISA (sELISA) for detection of Ara h 2 and measurement of Ara h 2 IgE-immunoreactivity changes in foods. Methods DEAE-Sepharose Fast Flow anion-exchange chromatography combining with SDS-PAGE gel extraction were applied to purify Ara h 2 from raw peanut. Hybridoma and epitope vaccine techniques were employed to generate a monoclonal antibody against a major IgE epitope of Ara h 2 and a polyclonal antibody against 12 IgE epitopes of Ara h 2, respectively. ELISA was carried out to evaluate the target binding and specificity of the generated IgE-EsAbs. Subsequently, IgE-EsAbs-based sELISA was developed to detect Ara h 2 and its allergenic residues in food samples. The IgE-binding capacity of Ara h 2 and peanut in foods was determined by competitive ELISA. The dose-effect relationship between the Ara h 2 IgE epitope content and Ara h 2 (or peanut) IgE-binding ability was further established to validate the reliability of the developed sELISA in measuring IgE-binding variations of Ara h 2 and peanut in foods. Results The obtained Ara h 2 had a purity of 94.44%. Antibody characterization revealed that the IgE-EsAbs recognized the target IgE epitope(s) of Ara h 2 and exhibited high specificity. Accordingly, an IgE-EsAbs-based sELISA using these antibodies was able to detect Ara h 2 and its allergenic residues in food samples, with high sensitivity (a limit of detection of 0.98 ng/mL), accuracy (a mean bias of 0.88%), precision (relative standard deviation < 16.50%), specificity, and recovery (an average recovery of 98.28%). Moreover, the developed sELISA could predict IgE-binding variations of Ara h 2 and peanut in foods, as verified by using sera IgE derived from peanut-allergic individuals. Conclusion This novel immunoassay could be a user-friendly method to monitor low level of Ara h 2 and to preliminary predict in vitro potential allergenicity of Ara h 2 and peanut in processed foods.
Collapse
Affiliation(s)
- Yan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Liming Li
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Caiyun Long
- Department of Laboratory, Ganzhou Center for Disease Control and Prevention, Ganzhou, China
| | - Yaping Dong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jinyu Li
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Caiyi Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yiqian Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiangqiang Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jianbin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Anqi Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
- Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Kim E, Hahn J, Ban C, Jo Y, Han H, Lim S, Choi YJ. Visible on-site detection of Ara h 1 by the switchable-linker-mediated precipitation of gold nanoparticles. Food Chem 2021; 352:129354. [PMID: 33677209 DOI: 10.1016/j.foodchem.2021.129354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/17/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
Biosensors have been widely applied in tests for allergens, but on-site detection remains a challenge. Herein, we proposed a detection procedure for peanut Ara h 1 as a representative allergen, which was extracted from a cookie, thereby minimising the need for any complex pretreatment that was difficult to perform, and enabling the visual detection of the target without the use of analytical equipment. The extraction procedure was performed in less than 30 min using a syringe and filter (0.45 μm). The detection method for Ara h 1 was based on the aggregation of switchable linkers (SL) and gold nanoparticles (AuNP), and the presence of 0.19 mg peanut protein per 30 g of cookie could be confirmed within 30 min based on the AuNP/SL concentration ratio by the precipitation. This proposed procedure could be successfully applied to the detection of a wide range of food allergens.
Collapse
Affiliation(s)
- Eunghee Kim
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea
| | - Jungwoo Hahn
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Youngje Jo
- Crop Post-harvest Technology Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea
| | - Hyebin Han
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea
| | - Seokwon Lim
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Meng S, Li J, Chang S, Maleki SJ. Quantitative and kinetic analyses of peanut allergens as affected by food processing. FOOD CHEMISTRY-X 2019; 1:100004. [PMID: 31432004 PMCID: PMC6694862 DOI: 10.1016/j.fochx.2019.100004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/11/2018] [Accepted: 01/09/2019] [Indexed: 01/22/2023]
Abstract
Peanuts contain four major allergens with differences in allergenic potency. Thermal processing can influence the allergenic properties of peanuts. Until now, a kinetic model has not been reported to assess the changes of soluble allergen (extracted from processed peanuts) content as affected by various thermal processing methods. Our objective is to characterize the reaction kinetics of the thermal processing methods, including wet processing (boiling with/without high-pressure, steaming with/without high-pressure), deep-frying and dry processing (microwaving and roasting) using five time intervals. The relationships between processing time and extractable major allergen content could be explained by a simple linear regression kinetic model (except high-pressure steaming). Among all the methods with optimal processing point, frying for 6 min had a relatively lower IgE binding (linear epitopes) ratio, possibly due to the processing conditions, which caused break down, cross-linking and aggregation of Ara h 2, and a relatively lower solubility.
Collapse
Affiliation(s)
- Shi Meng
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA
| | - Sam Chang
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS 39762, USA
- Coastal Research & Extension Center, 3411 Frederic Street, Pascagoula, MS 39567, USA
- Corresponding author at: Coastal Research & Extension Center, 3411 Frederic Street, Pascagoula, MS 39567, USA.
| | - Soheila J. Maleki
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| |
Collapse
|