1
|
Wang Y, Tian G, Huang J, Wu W, Cui Z, Li H, Zhang L, Qi H. Mussel-inspired protein-based nanoparticles for curcumin encapsulation and promoting antitumor efficiency. Int J Biol Macromol 2024; 273:132965. [PMID: 38851615 DOI: 10.1016/j.ijbiomac.2024.132965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Curcumin demonstrated therapeutic potential for cancer. However, its medical application is limited due to low solubility, poor stability and low absorption rate. Here, we used the mussel-inspired functional protein (MPKE) to fabricate the curcumin-carrying nanoparticle (Cur-MPKE) for encapsulating and delivering curcumin. The protein MPKE is composed of the mussel module and zwitterionic peptide. The Dopa group bonding characteristic of the mussel module was leveraged for the self-assembly of nanoparticles, while the superhydrophilic property of the zwitterionic peptide was utilized to enhance the stability of nanoparticles. As expected, MPKE and Cur are tightly bound through hydrogen bonds and dynamic imide bonds to form nanoparticles. Cur-MPKE showed improved solubility and stability in aqueous solutions as well as excellent biocompatibility. Besides, Cur-MPKE also exhibited pH-triggered release and enhanced uptake of curcumin by tumor cells, promoting the antioxidant activity and antitumor effect of curcumin. Moreover, systemic experiments of Cur-MPKE to rats demonstrated that Cur-MPKE significantly inhibited tumor tissue growth and proliferation without causing obvious systemic toxicity. This work provides a new strategy for fabricating the delivery system of curcumin with improved stability, sustainability and bioavailability.
Collapse
Affiliation(s)
- Yuefeng Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Guanfang Tian
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Jie Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Weidang Wu
- National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Zhongxin Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Haoyue Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China.
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
2
|
Ando K, Uchiyama H, Minoura K, Kadota K, Tozuka Y. The Impact of Adding a Cationic Metal Salt and Curcumin to Monoammonium Glycyrrhizic Acid on Its Solubilizing Capacity and Gelation. Chem Pharm Bull (Tokyo) 2024; 72:838-844. [PMID: 39343537 DOI: 10.1248/cpb.c24-00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Monoammonium glycyrrhizic acid (MAG), a glycyrrhizic acid monoammonium salt, is a naturally derived low-molecular-weight gelling agent with surface-active properties. It has the capacity to individually facilitate the preparation of gel-solubilized drugs. As MAG is an anionic surfactant with carboxyl groups, the addition of counterions may affect micelle formation and gelation. In this study, the solubilization and gelling properties of MAG were investigated following the addition of metal salts (NaCl and KCl). The addition of metal salts resulted in a decrease in the critical micelle concentration and an increase in gel hardness. Supersaturation of curcumin (CUR) was maintained by the addition of metal salts because of increased micelle number and viscosity. When the gel hardness was compared between formulations with and without CUR, a significant reduction in hardness was observed with the solubilization of CUR. The addition of KCl prevented the decrease in the hardness of gels containing CUR compared to the addition of NaCl. Put together, the addition of metal salts had a noteworthy impact on micelle and gel formation of MAG. In particular, the addition of KCl was more effective in the preparation of gel-solubilized CUR.
Collapse
Affiliation(s)
- Kenta Ando
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Katsuhiko Minoura
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Kazunori Kadota
- Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
3
|
Jia Y, Zhang L, Guan W, Lu C. Vesicles as a Multifunctional Microenvironment for Electrochemiluminescence Signal Amplification. Anal Chem 2023; 95:13273-13280. [PMID: 37616465 DOI: 10.1021/acs.analchem.3c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Vesicles as a typical interface-rich microenvironment can promote the reaction rate and the intermediate stability, which are promising for introduction in electrochemiluminescence (ECL) signal amplification. In this work, a kind of multilamellar vesicle obtained from sodium bis(2-ethylhexyl) sulfosuccinate (AOT) was used to modify the electrode surface. The AOT vesicle-modified microenvironment could significantly enhance the ECL performances for the luminol/O2 system in a neutral medium. The mechanism study demonstrated that the nanoscale multilamellar vesicles could maintain the vesicle structure on the electrode surface, which substantially improved the electron transfer and reaction rate, luminescence efficiency of the excited-state 3-aminophthalate anion, and stability of the superoxide anion radical. Alternatively, such a multifunctional microenvironment was also able to enhance the ECL signals from the tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+)/tripropylamine (TPrA) system. Moreover, another dodecyl dimethyl(3-sulfopropyl) ammonium hydroxide inner salt (DSB)-based vesicle was constructed to further verify the versatility of the vesicle-modified microenvironment for ECL signal amplification. Our work not only provides a versatile microenvironment for improving the efficiency of various ECL systems but also offers new insights for the microenvironment construction using the ordered assemblies in ECL fields.
Collapse
Affiliation(s)
- Yunxiu Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Bera N, Layek S, Pramanik S, Nandi PK, Hazra R, Sarkar N. Ultrafast Dynamics of the Medicinal Pigment Curcumin inside the Imidazolium Surface Active Ionic Liquid Containing Giant Vesicles and White Light Generation via Triple-FRET Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11653-11663. [PMID: 37564012 DOI: 10.1021/acs.langmuir.3c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The naturally occurring yellow polyphenolic medicinal pigment curcumin shows ultrafast dynamics in the excited states. These ultrafast dynamics are strongly influenced by the rigidity of the environments of the systems. The present investigation unveils the ultrafast excited-state intramolecular hydrogen atom transfer (ESIHT) (which is involved in the antioxidant mechanism) and the solvation dynamics of curcumin inside the imidazolium surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl) micelle, and giant vesicles after introducing sorbitan monoesters (Span 20 and Span 80) in the aqueous medium. Interestingly, the short hydrocarbon chain containing Span 20 forms smaller, less rigid vesicles, and the long hydrocarbon chain containing Span 80 forms larger, more rigid giant vesicles after being assembled with [C16mim]Cl. The ESIHT and the solvation dynamics are slower in Span 80, containing rigid vesicles, than that in Span 20, comprising less rigid vesicles. Finally, we have established a three-component fluorescence resonance energy transfer (Triple-FRET) system to generate white light (WL) in the micelle and giant vesicles. Here the hydrophobic dye 1,6-diphenyl-1,3,5-hexatriene (DPH) acts as the donor, and the hydrophilic anticancer drug doxorubicin hydrochloride (DOX) serves as the acceptor along with the intermediate donor, curcumin. At a specific combination of the concentrations of these dyes in a particular self-assembled system, WL is generated due to the triple-FRET phenomena.
Collapse
Affiliation(s)
- Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Shashwata Pramanik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Ritwik Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
5
|
Trigo-Gutierrez JK, Calori IR, de Oliveira Bárbara G, Pavarina AC, Gonçalves RS, Caetano W, Tedesco AC, Mima EGDO. Photo-responsive polymeric micelles for the light-triggered release of curcumin targeting antimicrobial activity. Front Microbiol 2023; 14:1132781. [PMID: 37152758 PMCID: PMC10157243 DOI: 10.3389/fmicb.2023.1132781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Nanocarriers have been successfully used to solubilize, deliver, and increase the bioavailability of curcumin (CUR), but slow CUR release rates hinder its use as a topical photosensitizer in antimicrobial photodynamic therapy. A photo-responsive polymer (PRP) was designed for the light-triggered release of CUR with an effective light activation-dependent antimicrobial response. The characterization of the PRP was compared with non-responsive micelles comprising Pluronics™ P123 and F127. According to the findings, the PRP formed photo-responsive micelles in the nanometric scale (< 100 nm) with a lower critical micelle concentration (3.74 × 10-4 M-1, 5.8 × 10-4 M-1, and 7.2 × 10-6 M-1 for PRP, F127, P123, respectively, at 25°C) and higher entrapment efficiency of CUR (88.7, 77.2, and 72.3% for PRP, F127, and P123 micelles, respectively) than the pluronics evaluated. The PRP provided enhanced protection of CUR compared to P123 micelles, as demonstrated in fluorescence quenching studies. The light-triggered release of CUR from PRP occurred with UV light irradiation (at 355 nm and 25 mW cm-2) and a cumulative release of 88.34% of CUR within 1 h compared to 80% from pluronics after 36 h. In vitro studies showed that CUR-loaded PRP was non-toxic to mammal cell, showed inactivation of the pathogenic microorganisms Candida albicans, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus, and decreased biofilm biomass when associated with blue light (455 nm, 33.84 J/cm2). The findings show that the CUR-loaded PRP micelle is a viable option for antimicrobial activity.
Collapse
Affiliation(s)
- Jeffersson Krishan Trigo-Gutierrez
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geovana de Oliveira Bárbara
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
- *Correspondence: Ewerton Garcia de Oliveira Mima,
| |
Collapse
|
6
|
Patel B, Singh S, Parikh K, Chavda V, Ray D, Aswal VK, Kumar S. Micro-Environment mapping of mole fraction inspired contrasting charged aqueous gemini micelles: A drug solubilization/release study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Zhan X, Wu Z, Chen Z, Cui X. Mechanism of the Micellar Solubilization of Curcumin by Mixed Surfactants of SDS and Brij35 via NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155032. [PMID: 35956981 PMCID: PMC9370735 DOI: 10.3390/molecules27155032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
The micellar solubilization mechanism of curcumin by mixed surfactants of SDS and Brij35 was investigated at the molecular scale by NMR spectroscopy. Through the investigation of the micelle formation process, types and structures of mixed micelles and solubilization sites, the intrinsic factors influencing the solubilization capacity were revealed. For systems with αSDS = 0.5 and 0.2, the obtained molar solubilization ratios (MSRs) are consistent with the MSRideal values. However, for αSDS = 0.8, the solubilization capacity of curcumin is weakened compared to the MSRideal. Furthermore, only one single mixed SDS/Brij35 micelles are formed for αSDS = 0.5 and 0.2. However, for αSDS = 0.8, there are separate SDS-rich and Brij35-rich mixed micelles formed. In addition, NOESY spectra show that the interaction patterns of SDS and Brij35 in mixed micelles are similar for three systems, as are the solubilization sites of curcumin. Therefore, for αSDS = 0.5 and 0.2 with single mixed micelles formed, the solubility of curcumin depends only on the mixed micelle composition, which is almost equal to the surfactant molar ratio. Although curcumin is solubilized in both separate micelles at αSDS = 0.8, a less stable micelle structure may be responsible for the low solubility. This study provides new insights into the investigation and application of mixed micelle solubilization.
Collapse
|
8
|
Weng T, Wang L, Liu Y, Zhang X, Wu Y, Zhang Y, Han J, Liu M. Interaction of bisdemethoxycurcumin with sodium dodecyl sarcosine + Tween 20/Tween 60 mixed surfactants: Insights from multispectral analysis and solubilization effect. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ionic liquid-based catanionic vesicles: A de novo system to judiciously improve the solubility, stability and antimicrobial activity of curcumin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Afzal S, Lone MS, Nazir N, Dar AA. pH Changes in the Micelle-Water Interface of Surface-Active Ionic Liquids Dictate the Stability of Encapsulated Curcumin: An Insight Through a Unique Interfacial Reaction between Arenediazonium Ions and t-Butyl Hydroquinone. ACS OMEGA 2021; 6:14985-15000. [PMID: 34151080 PMCID: PMC8209824 DOI: 10.1021/acsomega.1c01119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
The chemical kinetic (CK) method, which involves the reduction of 4-hexadecylbenzenediazonium ions (16-ArN2 +) by antioxidants (in the present case, TBHQ) occurring exclusively at the interface of the association colloids, was employed to establish the changes in the chemical reactivity of anionic surface-active ionic liquids (SAILs) as a function of the concentration and the composition in their mixed states. We used sodium dodecyl sulfate and different SAILs based on the dodecylsulfate surfactant containing 1-alkyl-3-methylimidazolium cations as counterions having a varying alkyl chain length of 4 (bmim), 8 (omim), and 12 (ddmim) carbon atoms. The structural transitions of aggregates of the SAILs from the micellar to vesicular form were observed as a function of concentration in single surfactant systems and as a function of composition in mixed surfactant systems. Results of the reduction kinetics of 16-ArN2 + at the interface of such aggregates, which depends on the acid/base equilibria at the interface, gave an insight into the changes in the interfacial H+ ions with the change in the hydrophobicity of the counterions of SAILs and the morphological changes from micelles to vesicles as a function of concentration or composition. These changes in the interfacial pH correlate very well with the stability of curcumin within these self-assemblies, which exclusively depends on the pH of the medium and highlights the importance of the results obtained from the CK method in selecting the appropriate medium/conditions for the stabilization of the bioactive molecules.
Collapse
Affiliation(s)
- Saima Afzal
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mohd Sajid Lone
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Nighat Nazir
- Department
of Chemistry, Islamia College of Science
and Commerce, Hawal, Srinagar 190002, Jammu and Kashmir, India
| | - Aijaz Ahmad Dar
- Soft
Matter Research Group, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
11
|
Chen XL, Liang XL, Zhao GW, Zeng QY, Dong W, Ou LQ, Zhang HN, Jiang QY, Liao ZG. Improvement of the bioavailability of curcumin by a supersaturatable self nanoemulsifying drug delivery system with incorporation of a hydrophilic polymer: in vitro and in vivo characterisation. J Pharm Pharmacol 2021; 73:641-652. [PMID: 33772289 DOI: 10.1093/jpp/rgaa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The current study was focused on preparing curcumin (CUR) supersaturated self-nano-emulsion (PI-CUR-SNEDDS) using hydrophilic polymer and to study the influence of polymer precipitation inhibitor on the physicochemical and biopharmaceutical properties of the PI-CUR-SNEDDS. METHODS PI-CUR-SNEDDS were prepared using hydrophilic polymer in order to maintain the supersaturation of CUR in nano-emulsion solution, artificial gastrointestinal fluid (AGF), and the precipitates formed, and characterised by in vitro dispersion tests, in vitro intestinal absorption and in vivo pharmacokinetic and compared with CUR-SNEDDS. KEY FINDINGS PI-CUR-SNEDDS prepared with 2% hydroxypropyl methylcellulose 55-60 (HPMC55-60) as precipitation inhibitor (PI) significantly improved the viscosity, physical stability and CUR's equilibrium solubility of nanoemulsion. HPMC55-60 and CUR interact in AGF through intermolecular interactions, form hydrogen bonds, and produce amorphous precipitates. Compared with CUR-SNEDDS, the proportion of CUR in the hydrophilic phase increased by about 3-fold, and apparent permeability coefficient (Papp) in duodenum, jejunum, ileum, and colon increased by 2.30, 3.65, 1.54 and 2.08-fold, respectively, and the area under the plasma concentration-time curve0-12h of PI-CUR-SNEDDS also increased by 3.50-fold. CONCLUSIONS Our results suggested that HPMC55-60 maintained the CUR supersaturation state by forming hydrogen bonds with CUR, increasing the solution's viscosity and drug solubilisation, thus improving the absorption and bioavailability of CUR.
Collapse
Affiliation(s)
- Xu-Long Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xin-Li Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guo-Wei Zhao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qing-Yun Zeng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wei Dong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Li-Quan Ou
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hao-Nan Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qie-Ying Jiang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zheng-Gen Liao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
12
|
Application of cationic-nonionic surfactant based nanostructured dye carriers: Mixed micellar solubilization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Liu Y, Liu M, Yan H, Liu H, Liu J, Zhao Y, Wu Y, Zhang Y, Han J. Enhanced solubility of bisdemethoxycurcumin by interaction with Tween surfactants: Spectroscopic and coarse-grained molecular dynamics simulation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Blokhin AN, Razina AB, Bursian AE, Ten’kovtsev AV. Synthesis of a New Type of Star-Shaped Poly(2-alkyl-2-oxazolines) on the Basis of Sulfochlorinated Calix[8]arene. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Liu Y, Yan H, Liu H, Liu J, Sun B, Liu M. Molecular dynamics simulation studies on the concentration-dependent interaction of dodecyltrimethylammonium bromide with curcumin. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1844015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yinglin Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Hui Yan
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - He Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, P. R. China
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, Shandong, P. R. China
| |
Collapse
|
16
|
Li J, Wang Z, Yao S, Song H. Aqueous solubilization and extraction of curcumin enhanced by imidazolium, quaternary ammonium, and tropine ionic liquids, and insight of ionic liquids-curcumin interaction. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113906] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Al-Akayleh F, Al-Naji I, Adwan S, Al-Remawi M, Shubair M. Enhancement of Curcumin Solubility Using a Novel Solubilizing Polymer Soluplus®. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Srivastava A, Yañez O, Cantero-López P. Mixed micellization of bile salts and transglycosylated stevia and enhanced binding and solubility of non-steroidal anti-inflammatory drugs using mixed micelle. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Aboudiab B, Tehrani-Bagha AR, Patra D. Curcumin degradation kinetics in micellar solutions: Enhanced stability in the presence of cationic surfactants. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Gutiérrez-Gutiérrez F, Sánchez-Jiménez C, Rangel-Castañeda IA, Carbajal-Arízaga GG, Macías-Lamas AM, Castillo-Romero A, Parra-Saavedra KJ. Encapsulation of curcumin into layered double hydroxides improve their anticancer and antiparasitic activity. J Pharm Pharmacol 2020; 72:897-908. [DOI: 10.1111/jphp.13266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/08/2020] [Indexed: 12/19/2022]
Abstract
Abstract
Objectives
Curcumin (CUR) has well-known activity against cancer cells and parasites; however, its applications are limited since this is an unstable molecule, which may suffer degradation by light and temperature, also, the low water solubility reduce its bioavailability. Layered double hydroxides (LDH) are well-known materials owing to the excellent anion exchange capacity, good biocompatibility and low toxicity.
Methods
Layered double hydroxides nanoparticles prepared with zinc and magnesium cations were used as a vehicle for CUR in Caco-2, Giardia lamblia and Entamoeba histolytica cultures. The physicochemical properties of Mg-LDH-CUR and Zn-LDH-CUR were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and X-ray powder diffraction (XRD). Additionally, the load efficiency, release profiles and photostability of CUR were quantified by high-performance liquid chromatography (HPLC) and UV-Vis spectrometry. Then, Mg-LDH-CUR and Zn-LDH-CUR were tested on Caco-2, G. lamblia and E. histolytica cultures.
Key findings
The experiments demonstrated that Zn-LDH-CUR protects better against photodegradation by UV light, while Mg-LDH-CUR showed increased toxicity against Caco-2 cell, G. lamblia and E. histolytica, in comparison with free CUR.
Conclusions
Layered double hydroxides are good vehicles to improve stability, resistance to degradation of CUR, also they are useful to improve solubility, provide a controlled release and improve the cytotoxic activity. Additionally, it was shown that the composition of the M+2 cation of LDH affects its properties and structure and that this directly influences its biological activity. The findings are important to select the composition of the encapsulation vehicle for a specific activity.
Collapse
Affiliation(s)
- Filiberto Gutiérrez-Gutiérrez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Cecilia Sánchez-Jiménez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Itzia Azucena Rangel-Castañeda
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | - Adriana Macaria Macías-Lamas
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Karina Jeanette Parra-Saavedra
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
21
|
Younis S, Usman M, Atta ul Haq, Akram N, Saeed M, Raza S, Siddiq M, Bukhtawar F. Solubilization of reactive dyes by mixed micellar system: Synergistic effect of nonionic surfactant on solubilizing power of cationic surfactant. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136890] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Ma Z, Wang N, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release 2019; 316:359-380. [DOI: 10.1016/j.jconrel.2019.10.053] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
|
23
|
Kharat M, McClements DJ. Recent advances in colloidal delivery systems for nutraceuticals: A case study - Delivery by Design of curcumin. J Colloid Interface Sci 2019; 557:506-518. [PMID: 31542691 DOI: 10.1016/j.jcis.2019.09.045] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023]
Abstract
Curcumin is a polyphenolic compound found in turmeric (Curcuma longa) rhizome that has potential biological benefits, including antioxidant, antimicrobial, anti-inflammatory, and anti-cancer activity. Incorporation of curcumin into functional food and beverage products, however, is challenging due to its low water-solubility, poor chemical stability, rapid metabolism, and low oral bioavailability. Researchers are, therefore developing a suite of particle-based delivery systems to maximize the potential health benefits of curcumin. Colloidal delivery systems, such as micelles, microemulsions, nanoemulsions, emulsions, solid lipid nanoparticles, nanostructured lipid carriers, biopolymer nanoparticles, and microgels have all been developed for this purpose. The functional performance of each of these delivery systems depends on its structure and physicochemical properties, such as particle composition, particle size, morphology, physicochemical stability, optical properties, rheology, and sensory attributes. As a result, each delivery system has its advantages and disadvantages for particular applications. Consequently, a delivery system must be specifically designed for the particular bioactive agent to be encapsulated, as well as the particular food matrix it will be incorporated into. In this review, we highlight the potential of the Delivery by Design (DbD) approach for identifying and selecting the most appropriate colloidal delivery system for a particular food application, using curcumin as a model bioactive agent.
Collapse
Affiliation(s)
- Mahesh Kharat
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | |
Collapse
|
24
|
Naumova KA, Dement’eva OV, Zaitseva AV, Rudoy VM. Solubilization as a Method for Creating Hybrid Micellar Templates for the Synthesis of Multifunctional Mesoporous Containers. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19040094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Gumireddy A, Christman R, Kumari D, Tiwari A, North EJ, Chauhan H. Preparation, Characterization, and In vitro Evaluation of Curcumin- and Resveratrol-Loaded Solid Lipid Nanoparticles. AAPS PharmSciTech 2019; 20:145. [PMID: 30887133 DOI: 10.1208/s12249-019-1349-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/23/2019] [Indexed: 12/16/2022] Open
Abstract
Curcumin and resveratrol are natural compounds with significant anticancer activity; however, their bioavailability is limited due to poor solubility. This study aimed to overcome the solubility problem by means of solid lipid nanoparticles (SLN). 2-Hydroxypropyl β-cyclodextrin (HPβCD) was selected from a range of polymers based on miscibility and molecular interactions. SLNs were obtained by probe sonication and freeze-drying curcumin-resveratrol with/without HPβCD incorporated in gelucire 50/13. SLNs were characterized by dynamic light scattering (DLS), zeta potential, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and physical stability. The in vitro release of drugs from the SLNs was performed by the direct dispersion method and analyzed using a validated UV-visible method. In vitro efficacy was tested using a colorectal cancer cell line. Curcumin-resveratrol-gelucire 50/13-HPβCD (CRG-CD) and curcumin-resveratrol-gelucire 50/13(CRG) SLNs showed a particle size from 100 to 150 nm and were not in the crystalline state per PXRD results. MDSC results complimented PXRD results by the absence of melting endotherm of curcumin; TGA showed no weight loss, confirming the absence of organic solvent residual, and the shape of the SLNs was confirmed as spherical by SEM. CRG SLNs were stable for 21 days with respect to particle size and zeta potential. MTT assay indicated better IC50 value for CRG as compared to CRG-CD. Hence, novel SLNs of curcumin and resveratrol incorporated in gelucire 50/13 and HPβCD were prepared and characterized to improve their bioavailability and anticancer activity.
Collapse
|
26
|
Mixed micelles of the antihistaminic cationic drug diphenhydramine hydrochloride with anionic and non-ionic surfactants show improved solubility, drug release and cytotoxicity of ethenzamide. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Uchiyama H, Srivastava A, Fujimori M, Tomoo K, Nakanishi A, Tandia M, Kadota K, Tozuka Y. Investigation of Physiological Properties of Transglycosylated Stevia with Cationic Surfactant and Its Application To Enhance the Solubility of Rebamipide. J Phys Chem B 2018; 122:10051-10061. [PMID: 30299943 DOI: 10.1021/acs.jpcb.8b07515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The poor water solubility of rebamipide was enhanced by the mixed micelles of transglycosylated stevia (Stevia-G) and trimethylammonium chloride with varying carbon chain length (C nTAC, n = 14, 16, and 18). Fluorometry, isothermal titration calorimetry (ITC) and dynamic light scattering techniques examined the aggregation properties of Stevia-G and C nTAC. Synergism was found between Stevia-G and C nTAC using the approaches of Clint and Rubingh. The negative interaction parameter (average βm = -4.17, -5.47, and -7.07) and excess free energy (average ΔG°ex = -2.47, -3.06, and -3.88 kJ mol-1) increased with increasing chain length of C nTAC. The negative B1 values by the Maeda approach suggested that chain-chain interactions contribute to the formation of a mixed micelle. The solubilization of rebamipide in the mixed micelle was evaluated in the term of the molar solubilization ratio (MSR) and partition coefficient ( Km). The Km from the Stevia-G/C16TAC system was highest at a low mole fraction of C nTAC (0.2-0.6). In conclusion, the solubilization of rebamipide was more favorable between Stevia-G and C16TAC, although the stability of the mixed micelle was enhanced by an increase in hydrophobicity of the longer chain lengths used in C nTAC.
Collapse
Affiliation(s)
- Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara, Takatsuki , Osaka 569-1094 , Japan
| | - Anirudh Srivastava
- Department of Formulation Design and Pharmaceutical Technology , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara, Takatsuki , Osaka 569-1094 , Japan
| | - Miki Fujimori
- Department of Formulation Design and Pharmaceutical Technology , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara, Takatsuki , Osaka 569-1094 , Japan
| | - Koji Tomoo
- Department of Biophysical Chemistry , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara, Takatsuki , Osaka 569-1094 , Japan
| | - Akihito Nakanishi
- Toyo Sugar Refining Co., Ltd. , 18-20 Koami-Cho, Nihonbashi, Chuo-ku , Tokyo 103-0016 , Japan
| | - Mahamadou Tandia
- Toyo Sugar Refining Co., Ltd. , 18-20 Koami-Cho, Nihonbashi, Chuo-ku , Tokyo 103-0016 , Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara, Takatsuki , Osaka 569-1094 , Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology , Osaka University of Pharmaceutical Sciences , 4-20-1 Nasahara, Takatsuki , Osaka 569-1094 , Japan
| |
Collapse
|
28
|
Spontaneous vesicle formation by γ-aminobutyric acid derived steroidal surfactant: Curcumin loading, cytotoxicity and cellular uptake studies. J Colloid Interface Sci 2017; 507:1-10. [DOI: 10.1016/j.jcis.2017.07.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
|
29
|
Stanić Z. Curcumin, a Compound from Natural Sources, a True Scientific Challenge - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:1-12. [PMID: 27995378 DOI: 10.1007/s11130-016-0590-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Curcumin, a plant-derived polyphenolic compound, naturally present in turmeric (Curcuma longa), has been the subject of intensive investigations on account of its various activities. The implementation of safe, beneficial and highly functional compounds from natural sources in human nutrition/prevention/therapy requires some modifications in order to achieve their multi-functionality, improve their bioavailability and delivery strategies, with the main aim to enhance their effectiveness. The low aqueous solubility of curcumin, its rapid metabolism and elimination from the body, and consequently, poor bioavailability, constitute major obstacles to its application. The main objectives of this review are related to reported strategies to overcome these limitations and, thereby, improve the solubility, stability and bioavailability of curcumin. The effectiveness of curcumin could be greatly improved by using nanoparticle-based carriers. The significance of the quality of a substance delivery system is reflected in the fact that carrying curcumin as a food additive/nutrition also means carrying the active biological product/drug. This review summarizes the state of the art, and highlights some examples and the most significant advances in the field of curcumin research.
Collapse
Affiliation(s)
- Zorka Stanić
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, Kragujevac, 34000, Serbia.
| |
Collapse
|
30
|
Kadota K, Okamoto D, Sato H, Onoue S, Otsu S, Tozuka Y. Hybridization of polyvinylpyrrolidone to a binary composite of curcumin/α-glucosyl stevia improves both oral absorption and photochemical stability of curcumin. Food Chem 2016; 213:668-674. [DOI: 10.1016/j.foodchem.2016.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
|
31
|
Stability of trianionic curcumin enhanced by gemini alkyl O -Glucosides and alkyl trimethyl ammonium halides mixed micelles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Mondal S, Ghosh S, Moulik SP. Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:212-8. [DOI: 10.1016/j.jphotobiol.2016.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/30/2022]
|