1
|
Chen X, Zhang X, Wu Y, Tong P, Gao J, Chen H. Effects of Iron Saturations on the Physicochemical Properties and Potential Physiological Functions of Ovotransferrin: Based on Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25648-25660. [PMID: 39527035 DOI: 10.1021/acs.jafc.4c06821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ovotransferrin (OVT) is a multifunctional protein related to lactoferrin (LF), sharing similar characteristics and considered a cost-effective alternative. Researchers were intrigued by the differences in iron saturation between native-LF and native-OVT, but whether iron saturation affected the cost-effectiveness of the ligand of OVT compared to LF was still uncertain. This study investigated the structure, physicochemical properties, and potential functions of an OVT with varying iron saturation levels, aiming to clarify the impact of iron saturation on an OVT. The findings showed that increased iron saturation altered the structure of an OVT, leading to changes in its physicochemical properties, such as larger particle size and better thermal stability. The findings from peptidomics indicated that iron saturation affects the resistance of OVT to digestion, resulting in the generation of peptides with distinct molecular weights and diverse potential functionalities. Overall, this study provided evidence to support that iron saturation was a limiting factor for the functional performance of the OVT.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
Cao H, Wang X, Shi M, Guan X, Zhang C, Wang Y, Qiao L, Song H, Zhang Y. Influence of physicochemical changes and aggregation behavior induced by ultrasound irradiation on the antioxidant effect of highland barley β-glucan. Food Chem X 2023; 19:100793. [PMID: 37780315 PMCID: PMC10534095 DOI: 10.1016/j.fochx.2023.100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 10/03/2023] Open
Abstract
The effect of ultrasonic treatment on the structure, morphology and antioxidant activity of highland barley β-glucan (HBG) was investigated. Ultrasonic treatment for 30 min was demonstrated to improve the aqueous solubility of HBG, leading to a decrease in turbidity. Meanwhile, moderate ultrasound was found to obviously reduce the particle size distribution of HBG, and transform the entangled HBG molecules into flexible and extended chains, which reaggregated to form larger aggregates under long-time ultrasonication. The in vitro antioxidant capacity of HBG treated by ultrasonic first increased and then decreased compared to native HBG. Congo red complexation analysis indicated the existence of helix structure in HBG, which was untwisted after ultrasonic treatment. Furthermore, ultrasound treatment influenced the glucopyranose on HBG, which weakened the intramolecular hydrogen bond of HBG. The microscopic morphology showed that the spherical aggregates in native HBG solution were disaggregated and the untangled HBG chains reaggregated with excessive ultrasonication.
Collapse
Affiliation(s)
- Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiaoxue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Mengmeng Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Chunhong Zhang
- Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Yueqin Wang
- Tibet Himalayan Ecological Technology Co., Ltd., Tibet, PR China
| | - Linnan Qiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
3
|
Mechanism of viscosity reduction of okra pectic polysaccharide by ascorbic acid. Carbohydr Polym 2022; 284:119196. [DOI: 10.1016/j.carbpol.2022.119196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022]
|
4
|
Kanno T, Nakazawa S, Harada E, Kameya H, Miyake Y, Sato K, Takui T, Osawa T. Electron spin resonance analysis of different mushroom parts and their hydroxyl radical scavenging activities assessed by spin trapping method. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tomomi Kanno
- Faculty of Health and Medical Sciences, Aichi Shukutoku University
| | - Shigeaki Nakazawa
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
| | | | - Hiromi Kameya
- Food Research Institute, National Agriculture and Food Research Organization
| | - Yoshiaki Miyake
- Faculty of Health and Medical Sciences, Aichi Shukutoku University
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University
- Research Support/URA Center, University Administration Division, Osaka City University
| | - Toshihiko Osawa
- Faculty of Psychological and Physical Sience, Aichi Gakuin University
| |
Collapse
|
5
|
Yang W, Deng C, Xu L, Jin W, Zeng J, Li B, Gao Y. Protein-neutral polysaccharide nano- and micro-biopolymer complexes fabricated by lactoferrin and oat β-glucan: Structural characteristics and molecular interaction mechanisms. Food Res Int 2020; 132:109111. [DOI: 10.1016/j.foodres.2020.109111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/06/2019] [Accepted: 02/18/2020] [Indexed: 01/19/2023]
|
6
|
Ascorbic acid induced degradation of polysaccharide from natural products: a review. Int J Biol Macromol 2020; 151:483-491. [DOI: 10.1016/j.ijbiomac.2020.02.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
|
7
|
Yang W, Liang X, Xu L, Deng C, Jin W, Wang X, Kong Y, Duan M, Nei Y, Zeng J, Li B. Structures, fabrication mechanisms, and emulsifying properties of self-assembled and spray-dried ternary complexes based on lactoferrin, oat β-glucan and curcumin: A comparison study. Food Res Int 2020; 131:109048. [PMID: 32247490 DOI: 10.1016/j.foodres.2020.109048] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
Abstract
Protein-polyphenol-polysaccharide non-covalent ternary complexes possess many unique structural and functional properties. However, rare work is available to fabricate the neutral polysaccharide-based ternary complexes. Herein, the ternary complexes composed of lactoferrin (LF), oat β-glucan (OG), and curcumin (Cur) with three binding sequences were successfully developed through self-assembly technique and spray drying technique, respectively. Spray drying could enhance the extent of the intermolecular associations among LF, OG, and Cur, leading to the formation of ternary complexes with smaller particle sizes and lower turbidities. Cur can be loaded in LF-OG complexes to form an amorphous complex through the intermolecular interactions (mainly hydrophobic interactions and hydrogen bonding). The ternary complexes can be used as potential emulsifiers to stabilize oil-in-water Pickering emulsions. The emulsifying capacity (to enhance physical stability) of the complexes was in the order as follows: the spray-dried ternary complexes > the spray-dried LF-OG complexes > the self-assembled ternary complexes > the self-assembled LF-OG complexes. The structural and functional properties (e.g., emulsifying property) of OG-based ternary complexes can be controlled by adjusting the binding sequences. These results will broaden our current understanding of protein-polyphenol-polysaccharide ternary complexes and provide more applications of OG in food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Wei Yang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Xinhong Liang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Linshuang Xu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Chujun Deng
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Xiaohui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yaru Kong
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Mengge Duan
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yuanyang Nei
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Jie Zeng
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Bo Li
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
8
|
Wei Z, Zhu P, Huang Q. Investigation of ovotransferrin conformation and its complexation with sugar beet pectin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Nakazawa S, Kanno T, Sugisaki K, Kameya H, Matsui M, Ukai M, Sato K, Takui T. Fe-transferrins or their homologues in ex-vivo mushrooms as identified by ESR spectroscopy and quantum chemical calculations: A full spin-Hamiltonian approach for the ferric sextet state with intermediate zero-field splitting parameters. Food Chem 2018; 266:24-30. [PMID: 30381181 DOI: 10.1016/j.foodchem.2018.05.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/26/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Fe-transferrins/their homologues in ex-vivo mushrooms were identified by ESR spectroscopy at liquid helium temperature, 4 K. The ESR fine-structure signals from Grifola frondosa were analyzed by spectral simulation with a full spin-Hamiltonian approach, determining the spin Hamiltonian parameters of the ferric iron species bound in the biological environment: S = 5/2, g = (2.045, 2.01, 2.235), |D| = 0.28 cm-1, |E/D| = 0.05. The zero-field splitting (ZFS) parameters, D- and E-values, are very close to the reported values, |D| = 0.25 cm-1 and |E/D| = 0.06, for an Fe-transferrin with oxalate anion, and to |D| = 0.25 cm-1 and |E/D| = 0.04 for one with malonate anion in human sera, suggesting that the Fe3+ species are from Fe-transferrins or their homologues. Quantum chemical calculations of the ZFS tensors for Fe-transferrins were carried out. Fe-transferrins/homologues have been identified for all the mushrooms under study, suggesting that such Fe3+ enzymes are widely distributed in mushrooms.
Collapse
Affiliation(s)
- Shigeaki Nakazawa
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| | - Tomomi Kanno
- Department of Health and Nutritional Sciences, Faculty of Health and Medical Sciences, Aichi Shukutoku University, Aichi 480-1197, Japan.
| | - Kenji Sugisaki
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Hiromi Kameya
- Food Research Institute, National Agriculture and Food Research Organization, Ibaraki 305-8642, Japan
| | - Miki Matsui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Mitsuko Ukai
- Hakodate Campus, Hokkaido University of Education, Hakodate 040-8567, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan.
| |
Collapse
|