1
|
Changes in Lutein Status Markers (Serum and Faecal Concentrations, Macular Pigment) in Response to a Lutein-Rich Fruit or Vegetable (Three Pieces/Day) Dietary Intervention in Normolipemic Subjects. Nutrients 2021; 13:nu13103614. [PMID: 34684614 PMCID: PMC8538254 DOI: 10.3390/nu13103614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
Lutein is mainly supplied by dietary fruit and vegetables, and they are commonly jointly assessed in observational and interventional studies. Lutein bioavailability and health benefits depend on the food matrix. This study aimed to assess the effect of dietary intervention with lutein-rich fruit or vegetables on lutein status markers, including serum and faecal concentrations (by high pressure liquid chromatography), dietary intake (24 h recalls ×3), and macular pigment optical density (MPOD) and contrast threshold (CT) as visual outcomes. Twenty-nine healthy normolipemic subjects, aged 45–65 y, consumed 1.8 mg lutein/day supplied from fruits (14 subjects, 500 g/day of oranges, kiwi and avocados) or vegetables (15 subjects, 180 g/day of green beans, pumpkin, and sweet corn) for four weeks. Serum lutein concentration increased by 37%. The effect of the food group intervention was statistically significant for serum lutein+zeaxanthin concentration (p = 0.049). Serum α- and β-carotene were influenced by food type (p = 0.008 and p = 0.005, respectively), but not by time. Serum lutein/HDL-cholesterol level increased by 29% (total sample, p = 0.008). Lutein+zeaxanthin/HDL-cholesterol increased, and the intervention time and food group eaten had an effect (p = 0.024 and p = 0.010, respectively) which was higher in the vegetable group. The MPOD did not show variations, nor did it correlate with CT. According to correlation matrixes, serum lutein was mainly related to lutein+zeaxanthin expressed in relation to lipids, and MPOD with the vegetable group. In faecal samples, only lutein levels increased (p = 0.012). This study shows that a relatively low amount of lutein, supplied by fruit or vegetables, can have different responses in correlated status markers, and that a longer intervention period is needed to increase the MPOD. Therefore, further study with larger sample sizes is needed on the different responses in the lutein status markers and on food types and consumption patterns in the diet, and when lutein in a “pharmacological dose” is not taken to reduce a specific risk.
Collapse
|
2
|
Soni A, Samuelsson LM, Loveday SM, Gupta TB. Applications of novel processing technologies to enhance the safety and bioactivity of milk. Compr Rev Food Sci Food Saf 2021; 20:4652-4677. [PMID: 34427048 DOI: 10.1111/1541-4337.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Bioactive compounds in food can have high impacts on human health, such as antioxidant, antithrombotic, antitumor, and anti-inflammatory activities. However, many of them are sensitive to thermal treatments incurred during processing, which can reduce their availability and activity. Milk, including ovine, caprine, bovine, and human is a rich source of bioactive compounds, including immunoglobulins, vitamins, and amino acids. However, processing by various novel thermal and non-thermal technologies has different levels of impacts on these compounds, according to the studies reported in the literature, predominantly in the last 10 years. The reported effect of these technologies either covers microbial inactivation or the bioactive composition; however, there is a lack of comprehensive compilation of studies that compare the effect of these technologies on bioactive compounds in milk (especially, caprine and ovine) to microbial inactivation at similar settings. This research gap makes it challenging to conclude on the specific processing parameters that could be optimized to achieve targets of microbial safety and nutritional quality at the same time. This review covers the effect of a wide range of thermal and non-thermal processing technologies including high-pressure processing, pressure-assisted thermal sterilization, pulsed-electric field treatment, cold plasma, microwave-assisted thermal sterilization, ultra-high-pressure homogenization, ultrasonication, irradiation on the bioactive compounds as well as on microbial inactivation in milk. Although a combination of more than one technology could improve the reduction of bacterial contaminants to meet the required food safety standards and retain bioactive compounds, there is still scope for research on these hurdle approaches to simultaneously achieve food safety and bioactivity targets.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| | - Linda M Samuelsson
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Simon M Loveday
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B Gupta
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
3
|
Oshima T, Takahashi K, Inada A, Yamasaki M, Yamasaki Y, Eto N. Enhanced water dispersibility and permeability through a Caco-2 cell monolayer of β-cryptoxanthin extracted from kumquats by complexation with casein. Food Chem 2021; 360:129822. [PMID: 33984564 DOI: 10.1016/j.foodchem.2021.129822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
β-Cryptoxanthin (BCX) possesses potential therapeutic and health benefits. However, BCX absorption is low because of its poor aqueous solubility. In this study, a complex between BCX and casein (Cas) was prepared to improve the water dispersibility and bioavailability of BCX. BCX was recovered quantitatively from freeze-dried kumquat powder through solid-liquid extraction and saponification. The complexation significantly improved the apparent solubility of BCX under acidic and neutral conditions. A cell membrane permeation test using a Caco-2 cell monolayer was performed to evaluate the bioavailability of the BCX-Cas complex. This complex and a blank sample were digested in vitro and added to the apical side of the Caco-2 cell membrane. The quantity of BCX that permeated using the BCX-Cas complex after 24 h was 22.7 times greater than that of the blank. Thus, complexation of BCX with Cas improved dramatically the bioavailability of BCX from a kumquat extract.
Collapse
Affiliation(s)
- Tatsuya Oshima
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan.
| | - Koki Takahashi
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Asuka Inada
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Masao Yamasaki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Yumi Yamasaki
- Faculty of Regional Innovation, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Nozomu Eto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
4
|
do Nascimento TC, Pinheiro PN, Fernandes AS, Murador DC, Neves BV, de Menezes CR, de Rosso VV, Jacob-Lopes E, Zepka LQ. Bioaccessibility and intestinal uptake of carotenoids from microalgae Scenedesmus obliquus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Rodríguez-Rodríguez E, Beltrán-de-Miguel B, Samaniego-Aguilar KX, Sánchez-Prieto M, Estévez-Santiago R, Olmedilla-Alonso B. Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults. Antioxidants (Basel) 2020; 9:E484. [PMID: 32503206 PMCID: PMC7346146 DOI: 10.3390/antiox9060484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Carotenoids are bioactive compounds with widely accepted health benefits. Their quantification in human faeces can be a useful non-invasive approach to assess their bioavailability. Identification and quantification of major dietary carotenoids in human faeces was the aim of the present study. Faeces and dietary intake were obtained from 101 healthy adults (45-65 years). Carotenoid concentrations were determined by HPLC in faeces and by 3-day food records in dietary intake. Carotenoids quantified in faeces (µg/g dry weight, median) were: β-carotene (39.5), lycopene (20), lutein (17.5), phytoene (11.4), zeaxanthin (6.3), β-cryptoxanthin (4.5), phytofluene (2.9). α-carotene (5.3) and violaxanthin were found 75.5% and 7.1% of the faeces. The carotenoids found in the highest concentrations corresponded to the ones consumed in the greatest amounts (µg/d): lycopene (13,146), phytoene (2697), β-carotene (1812), lutein+zeaxanthin (1148). Carotenoid concentration in faeces and in dietary intake showed correlation for the total non-provitamin A carotenoids (r = 0.302; p = 0.003), phytoene (r = 0.339; p = 0.001), phytofluene (r = 0.279; p = 0.005), lycopene (0.223; p = 0.027), lutein+zeaxanthin (r = 0.291; p = 0.04) and β-cryptoxanthin (r = 0.323; p = 0.001). A high proportion of dietary carotenoids, especially those with provitamin A activity and some of their isomers, reach the large intestine, suggesting a low bioavailability of their intact forms.
Collapse
Affiliation(s)
- Elena Rodríguez-Rodríguez
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.R.-R.); (B.B.-d.-M.)
| | - Beatriz Beltrán-de-Miguel
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.R.-R.); (B.B.-d.-M.)
| | - Kerly X. Samaniego-Aguilar
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| | - Milagros Sánchez-Prieto
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| | - Rocío Estévez-Santiago
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Begoña Olmedilla-Alonso
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| |
Collapse
|
6
|
Phytosterol vehicles used in a functional product modify carotenoid/cholesterol bioaccessibility and uptake by Caco-2 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Petry FC, Mercadante AZ. Bile amount affects both the degree of micellarization and the hydrolysis extent of carotenoid esters during in vitro digestion. Food Funct 2020; 10:8250-8262. [PMID: 31720652 DOI: 10.1039/c9fo01453e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carotenoid esters are present in considerable amounts in most fruits, such as in citrus. Although the bioavailability of carotenoid esters is similar or even higher compared to that of free carotenoids, these molecules are generally detected only in the free form in human plasma, suggesting that hydrolysis of carotenoid esters occurs in vivo. However, the available in vitro digestion methods were not able to achieve satisfactory carotenoid ester hydrolysis so far. As bile salts play an essential role in the hydrolytic action of lipolytic enzymes from pancreatin, we evaluated the effect of increasing the bile extract/food ratio from 0.045 to 0.12 (g g-1) on the hydrolysis of β-cryptoxanthin esters from mandarin pulp during in vitro digestion. Additionally, considering the positive effect of lipids on carotenoid bioavailability, the impact of soybean oil addition on carotenoid ester hydrolysis was studied. Finally, bioaccessibility and recovery of 33 carotenoids were assessed by LC-DAD-MS. The hydrolysis extent of β-cryptoxanthin esters enhanced from 29% to 55% by increasing the bile extract/food ratio, but reduced respectively to 28% and 11% by the addition of 1% and 10% oil (p < 0.05). The bioaccessibility of overall carotenoids improved from 19% to 35% by increasing the bile extract/food ratio, along with that of (all-E)-β-carotene (from 19 to 31%) and total (all-E)-β-cryptoxanthin (17% to 49%). Soybean oil addition reduced carotenoid micellarization, regardless of the concentration (p < 0.05). Irrespective of the bile extract amount and oil addition, the bioaccessibility of carotenoids was inversely related to its hydrophobicity, with respect to the following ranking: free xanthophylls > carotenes ≥ xanthophyll esters. Altogether, these results indicate that increasing the bile extract amount is a simple and inexpensive option to improve carotenoid ester hydrolysis in in vitro digestion protocols. Additionally, the constant amounts of bile (and possibly enzymes) of static methods, such as INFOGEST, should be further optimized for experiments involving lipid addition in which carotenoid bioaccessibility is evaluated.
Collapse
Affiliation(s)
- Fabiane Cristina Petry
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil, Campinas, SP, Brazil.
| | | |
Collapse
|
8
|
Xavier AAO, Garrido-López JE, Aguayo-Maldonado J, Garrido-Fernández J, Fontecha J, Pérez-Gálvez AA. In Vitro Digestion of Human Milk: Influence of the Lactation Stage on the Micellar Carotenoids Content. Antioxidants (Basel) 2019; 8:E291. [PMID: 31394852 PMCID: PMC6720515 DOI: 10.3390/antiox8080291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/27/2022] Open
Abstract
Human milk is a complex fluid with nutritive and non-nutritive functions specifically structured to cover the needs of the newborn. The present study started with the study of carotenoid composition during progress of lactation (colostrum, collected at 3-5 d postpartum; mature milk, collected at 30 d postpartum) with samples donated from full-term lactating mothers (women with no chronic diseases, nonsmokers on a regular diet without supplements, n = 30). Subsequently, we applied an in vitro protocol to determine the micellarization efficiency of the carotenoids, which were separated by HPLC and quantified by the external standard method. That in vitro protocol is tailored for the biochemistry of the digestive tract of a newborn. To the best of our knowledge, the present study is the first report of carotenoids micellar contents, obtained in vitro. This study reveals, from the in vitro perspective, that colostrum and mature milk produce significant micellar contents of carotenoids despite lipids in milk are within highly complex structures. Indeed, the lactation period develops some influence on the micellarization efficiency, influence that might be attributed to the dynamics of the milk fat globule membrane (MFGM) during the progress of lactation.
Collapse
Affiliation(s)
- Ana A O Xavier
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Juan E Garrido-López
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | | | - Juan Garrido-Fernández
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain
| | - Javier Fontecha
- Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - And Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Campus Universitario, Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
9
|
Cuevas-Tena M, Bermúdez JD, Silvestre RDLÁ, Alegría A, Lagarda MJ. Impact of colonic fermentation on sterols after the intake of a plant sterol-enriched beverage: A randomized, double-blind crossover trial. Clin Nutr 2019; 38:1549-1560. [DOI: 10.1016/j.clnu.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022]
|
10
|
Xavier AAO, Mercadante AZ. The bioaccessibility of carotenoids impacts the design of functional foods. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Stinco CM, Benítez-González AM, Meléndez-Martínez AJ, Hernanz D, Vicario IM. Simultaneous determination of dietary isoprenoids (carotenoids, chlorophylls and tocopherols) in human faeces by Rapid Resolution Liquid Chromatography. J Chromatogr A 2019; 1583:63-72. [DOI: 10.1016/j.chroma.2018.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
|
12
|
Wen X, Hempel J, Schweiggert RM, Wang Y, Ni Y, Carle R. Screening of critical factors influencing the efficient hydrolysis of zeaxanthin dipalmitate in an adapted in vitro- digestion model. Food Chem 2018; 257:36-43. [PMID: 29622222 DOI: 10.1016/j.foodchem.2018.02.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 02/05/2023]
Abstract
As hydrolysis of carotenoid esters is believed to be highly efficient in vivo, their insufficient hydrolysis in in vitro-digestion models, particularly, regarding zeaxanthin diesters, is a current issue. Therefore, in this study, several factors related to the enzymatic hydrolysis were investigated in an adapted version of the standardized INFOGEST in vitro-digestion model, using zeaxanthin dipalmitate (ZDP) as a substrate. The results showed that pancreatic lipase was able to hydrolyze ZDP, whereas carboxyl ester lipase (CEL) substantially contributed to ZDP cleavage. Replacement of commonly used porcine with bovine bile extracts and the substitution of coffee creamer for soybean oil at identical fat contents both significantly improved hydrolysis efficiency and bioaccessibility of total zeaxanthin to better mimic in vivo conditions. Thus, bile and lipids selection for in vitro digestion of carotenoid esters was crucial. The combined use of coffee creamer, pancreatin, CEL, and bovine bile led to the highest hydrolysis efficiency of 29.5%.
Collapse
Affiliation(s)
- Xin Wen
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China; Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; National Engineering Research Center for Fruit and Vegetable Processing, 100083 Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China
| | - Judith Hempel
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ralf M Schweiggert
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Yuxiao Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, 100083 Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China
| | - Yuanying Ni
- College of Food Science & Nutritional Engineering, China Agricultural University, 100083 Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, 100083 Beijing, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, 100083 Beijing, China.
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany; Biological Science Department, King Abdulaziz University, P. O. Box 80257, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Hamdan IJA, Sanchez-Siles LM, Garcia-Llatas G, Lagarda MJ. Sterols in Infant Formulas: A Bioaccessibility Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1377-1385. [PMID: 29369630 DOI: 10.1021/acs.jafc.7b04635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design of infant formulas (IFs) seeks to resemble human milk (HM) composition and functionality. The fat sources used usually comprise vegetable oil blends to mimic the fatty acid composition of HM and introduce changes in the animal/plant sterol ratio. In contrast, the use of milk fat globule membrane (MFGM)-rich ingredients could improve this aspect by increasing the ratio. The present study evaluates the bioaccessibility (BA) of sterols (cholesterol, desmosterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol) in three IFs (with or without MFGM) using an in vitro digestion method simulating infant conditions. Analytical parameters confirmed the suitability of the method for all of these sterols. Results showed the presence of MFGM to increase cholesterol content (6-7 vs 2 mg/100 mL), this being the most bioaccessible sterol in the IFs. Although the BA of cholesterol was reduced in MFGM-enriched IF (65.6-80.4% vs 99.7%), the intake of bioaccessible cholesterol from these IFs was higher.
Collapse
Affiliation(s)
- Islam J A Hamdan
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avenida Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Luis Manuel Sanchez-Siles
- R&D Department, Institute of Infant Nutrition, Hero Group , Avenida Murcia 1, Alcantarilla , Murcia 30820, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avenida Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - María Jesús Lagarda
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avenida Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| |
Collapse
|
14
|
Rodrigues DB, Chitchumroonchokchai C, Mariutti LRB, Mercadante AZ, Failla ML. Comparison of Two Static in Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11220-11228. [PMID: 29205039 DOI: 10.1021/acs.jafc.7b04854] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vitro digestion methods are routinely used to assess the bioaccessibility of carotenoids and other dietary lipophilic compounds. Here, we compared the recovery of carotenoids and their efficiency of micellarization in digested fruits, vegetables, egg yolk, and salmon and also in mixed-vegetable salads with and without either egg yolk or salmon using the static INFOGEST method22 and the procedure of Failla et al.16 Carotenoid stability during the simulated digestion was ≥70%. The efficiencies of the partitioning of carotenoids into mixed micelles were similar when individual plant foods and salad meals were digested using the two static methods. Furthermore, the addition of cooked egg or salmon to vegetable salads increased the bioaccessibility of some carotenoids. Our findings showed that the two methods of in vitro digestion generated similar estimates of carotenoid retention and bioaccessibility for diverse foods.
Collapse
Affiliation(s)
- Daniele B Rodrigues
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | | | - Lilian R B Mariutti
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Adriana Z Mercadante
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Mark L Failla
- Human Nutrition Program, Department of Human Sciences, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
López-García G, Cilla A, Barberá R, Alegría A. Protective effect of antioxidants contained in milk-based fruit beverages against sterol oxidation products. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Alvarez-Sala A, Garcia-Llatas G, Cilla A, Barberá R, Sánchez-Siles LM, Lagarda MJ. Impact of Lipid Components and Emulsifiers on Plant Sterols Bioaccessibility from Milk-Based Fruit Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5686-5691. [PMID: 27329567 DOI: 10.1021/acs.jafc.6b02028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sterol bioaccessibility (BA) of three plant sterol (PS)-enriched milk-based fruit beverages (MFb) with different fat contents (1.1-2.4%), lipid sources (animal or vegetable), and without or with emulsifiers (whey proteins enriched with milk fat globule membrane (MFGM) or soy lecithin) was evaluated after simulated gastrointestinal digestion. The BA of total PS followed the order 31.4% (MFbM containing milk fat and whey proteins enriched with MFGM) = 28.2% (MFbO containing extra virgin olive oil and soy lecithin) > 8.7% (MFb without fat addition). Total and individual PS content in the bioaccessible fractions followed the order MFbM > MFbO > MFb. Consequently, formulation with MFGM is proposed in beverages of this kind to ensure optimum bioavailability of PS. Our results suggest that the BA of PS is influenced by the type and quantity of fat and the emulsifier type involved.
Collapse
Affiliation(s)
- Andrea Alvarez-Sala
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, 46100 - Burjassot (Valencia), Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, 46100 - Burjassot (Valencia), Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, 46100 - Burjassot (Valencia), Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, 46100 - Burjassot (Valencia), Spain
| | - Luis Manuel Sánchez-Siles
- Research and Development Department, Hero Institute for Nutrition , Avda. Murcia 1, 30820 - Alcantarilla (Murcia), Spain
| | - María Jesús Lagarda
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, 46100 - Burjassot (Valencia), Spain
| |
Collapse
|