1
|
Zhang M, Gu L, Chang C, Li J, Sun Y, Cai Y, Xiong W, Yang Y, Su Y. Evaluation of the composition of konjac glucomannan on the color changes during the deacetylation reaction. Int J Biol Macromol 2023; 228:242-250. [PMID: 36563814 DOI: 10.1016/j.ijbiomac.2022.12.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
As a newly superior konjac variety, the Amorphophallus bulbifer (A. bulbifer) has several unique advantages of high reproductive coefficient, short growth cycle, high disease resistance, high konjac glucomannan (KGM) content and climate adaption to hot or humid conditions. However, the gel formed by KGM from the A. bulbifer flour is easily browning during the alkali-induced process and the mechanism underlying them is still unclear. In order to explore the browning mechanisms, the changes of composition and color parameters of KGM were investigated during deacetylation in this research. The L*, h*, total phenols, total flavonoids, reducing sugars, and amino acids decreased along with the increase of deacetylation degree of KGM while a*, ΔЕ, and browning index increased. The results indicated that the oxidation or polymerization of polyphenols and flavones in alkaline circumstances, and the carbonyl ammonia reaction between reducing sugars and amino acids may be the main reasons for color changes of KGM flour during deacetylation. Hence, this study was expected to provide the theoretical basis for the inhibition of KGM gel browning and further broaden the application range of KGM in food and other industries.
Collapse
Affiliation(s)
- Mianzhang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yundan Cai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wen Xiong
- Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Moura MAF, Alves VS, Takahashi JA. Nutritional Quality, Techno-Functional Characteristics, and Safety of Biomass Powder and Protein Isolate Produced from Penicillium maximae. Foods 2022; 11:foods11223621. [PMID: 36429213 PMCID: PMC9689384 DOI: 10.3390/foods11223621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the suitability of Penicillium maximae biomass powder and protein isolate as a food product or food ingredient. The biomass powder is rich in proteins (34.8%) and insoluble fiber (36.2%) but poor in lipids (3.1%). Strong water hydration (8.3 g/g, 8.5 g/g) and oil holding (6.9 g/g, 16.3 g/g) capacity were observed in the biomass powder and protein isolate, respectively, besides 100% emulsion stability, indicating multiple applications in the food industry. No locomotor impairment was induced in Drosophila melanogaster flies after consuming extracts of P. maximae biomass powder. Furthermore, decreased production of reactive oxygen species and preservation of survival, viability, and fertility parameters were observed in the nematode Caenorhabditis elegans, which reinforces the potential of P. maximae biomass for human and animal consumption. Together, the results show the vast food applicability of P. maximae biomass and protein isolate as protein substitutes with several health and environmental benefits.
Collapse
Affiliation(s)
- Marília A. F. Moura
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
| | - Viviane S. Alves
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
| | - Jacqueline A. Takahashi
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Antonio Carlos Avenue, 6627, Belo Horizonte 31270-901, Brazil
- Correspondence:
| |
Collapse
|
3
|
Amaral De Faria Silva L, Ferreira Alves M, Florêncio Filho D, Aparecida Takahashi J, Soares Santos L, Almeida De Carvalho S. Pigment produced from Arcopilus aureus isolated from grapevines: Promising natural yellow colorants for the food industry. Food Chem 2022; 389:132967. [PMID: 35561512 DOI: 10.1016/j.foodchem.2022.132967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
Interest in the use of natural non-toxic pigments by the food industry has grown. Some filamentous fungi are producers of natural pigments that are more stable at temperature and pH than other pigments also classified as natural, such as those produced by plants. Production potential of natural pigments by endophytic fungi from grapevines was evaluated. Arcopilus aureus was selected as a potential source for a yellow pigment, which was characterized and tested for stability to variations in temperature and pH. Components, cochlioquinol II and riboflavin, were detected, which has not previously been reported in A. aureus. The pigment was stable and showed increased absorption at lower / acidic pH. These results provide information on the potential of this fungus and a yellow pigment for the first time, which can be used for further development and industrial application.
Collapse
Affiliation(s)
| | - Mariana Ferreira Alves
- Postgraduate in Food Engineering and Science, State University of Southwest Bahia, CEP 45700-000, Brazil
| | - Daniel Florêncio Filho
- Postgraduate in Chemistry, State University of Southwest of Bahia, CEP 45700-000, Brazil
| | | | - Leandro Soares Santos
- Department of Rural and Animal Technology, State University of Southwest Bahia, CEP 45700-000, Brazil
| | | |
Collapse
|
4
|
Liu L, Wang Z. Azaphilone alkaloids: prospective source of natural food pigments. Appl Microbiol Biotechnol 2021; 106:469-484. [PMID: 34921328 DOI: 10.1007/s00253-021-11729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023]
Abstract
Azaphilone, biosynthesized by polyketide synthase, is a class of fungal metabolites. In this review, after brief introduction of the natural azaphilone diversity, we in detail discussed azaphilic addition reaction involving conversion of natural azaphilone into the corresponding azaphilone alkaloid. Then, setting red Monascus pigments (a traditional food colorant in China) as example, we presented a new strategy, i.e., interfacing azaphilic addition reaction with living microbial metabolism in a one-pot process, to produce azaphilone alkaloid with a specified amine residue (red Monascus pigments) during submerged culture. Benefit from the red Monascus pigments with a specified amine residue, the influence of primary amine on characteristics of the food colorant was highlighted. Finally, the progress for screening of alternative azaphilone alkaloids (production from interfacing azaphilic addition reaction with submerged culture of Talaromyces sp. or Penicillium sp.) as natural food colorant was reviewed. KEY POINTS: • Azaphilic addition reaction of natural azaphilone is biocompatible • Red Monascus pigment is a classic example of azaphilone alkaloids • Azaphilone alkaloids are alterative natural food colorant.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Safety Evaluation of Fungal Pigments for Food Applications. J Fungi (Basel) 2021; 7:jof7090692. [PMID: 34575730 PMCID: PMC8466146 DOI: 10.3390/jof7090692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Pigments play a major role in many industries. Natural colors are usually much safer when compared to synthetic colors and may even possess some medicinal benefits. Synthetic colors are economical and can easily be produced compared to natural colors. In addition, raw plant materials for natural colors are limited and season dependent. Microorganisms provide an alternative source for natural colors and, among them, fungi provide a wide range of natural colorants that could easily be produced cheaply and with high yield. Along with pigment, some microbial strains are also capable of producing a number of mycotoxins. The commercial use of microbial pigments relies on the safety of colorants. This review provides a toxicity evaluation of pigments from fungal origins for food application.
Collapse
|
6
|
Pimenta LPS, Gomes DC, Cardoso PG, Takahashi JA. Recent Findings in Azaphilone Pigments. J Fungi (Basel) 2021; 7:541. [PMID: 34356920 PMCID: PMC8307326 DOI: 10.3390/jof7070541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/23/2022] Open
Abstract
Filamentous fungi are known to biosynthesize an extraordinary range of azaphilones pigments with structural diversity and advantages over vegetal-derived colored natural products such agile and simple cultivation in the lab, acceptance of low-cost substrates, speed yield improvement, and ease of downstream processing. Modern genetic engineering allows industrial production, providing pigments with higher thermostability, water-solubility, and promising bioactivities combined with ecological functions. This review, covering the literature from 2020 onwards, focuses on the state-of-the-art of azaphilone dyes, the global market scenario, new compounds isolated in the period with respective biological activities, and biosynthetic pathways. Furthermore, we discussed the innovations of azaphilone cultivation and extraction techniques, as well as in yield improvement and scale-up. Potential applications in the food, cosmetic, pharmaceutical, and textile industries were also explored.
Collapse
Affiliation(s)
- Lúcia P. S. Pimenta
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| | - Dhionne C. Gomes
- Department of Food Science, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| | - Patrícia G. Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, Lavras CEP 37200-900, MG, Brazil;
| | - Jacqueline A. Takahashi
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, 6627, Belo Horizonte CEP 31270-901, MG, Brazil;
| |
Collapse
|
7
|
Wu S, Liu L, Zhang X, Wang Z. Submerged culture of Penicillium sclerotiorum for production of rotiorin alkaloids by using biosynthetic and chemical catalytic cascade reactions. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Lebeau J, Petit T, Fouillaud M, Dufossé L, Caro Y. Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Talaromyces sp. 30570 Strain with Industrial Relevance. Microorganisms 2020; 8:E1920. [PMID: 33287158 PMCID: PMC7761761 DOI: 10.3390/microorganisms8121920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
Many species of Talaromyces of marine origin could be considered as non-toxigenic fungal cell factory. Some strains could produce water-soluble active biopigments in submerged cultures. These fungal pigments are of interest due to their applications in the design of new pharmaceutical products. In this study, the azaphilone red pigments and ergosterol derivatives produced by a wild type of Talaromyces sp. 30570 (CBS 206.89 B) marine-derived fungal strain with industrial relevance were described. The strain was isolated from the coral reef of the Réunion island. An alternative extraction of the fungal pigments using high pressure with eco-friendly solvents was studied. Twelve different red pigments were detected, including two pigmented ergosterol derivatives. Nine metabolites were identified using HPLC-PDA-ESI/MS as Monascus-like azaphilone pigments. In particular, derivatives of nitrogen-containing azaphilone red pigment, like PP-R, 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V, N-threonine-monascorubramin, N-glutaryl-rubropunctamin, monascorubramin, and presumed N-threonyl-rubropunctamin (or acid form of the pigment PP-R) were the major pigmented compounds produced. Interestingly, the bioproduction of these red pigments occurred only when complex organic nitrogen sources were present in the culture medium. These findings are important for the field of the selective production of Monascus-like azaphilone red pigments for the industries.
Collapse
Affiliation(s)
- Juliana Lebeau
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, CHEMBIOPRO, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France; (J.L.); (T.P.); (M.F.); (L.D.)
| | - Thomas Petit
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, CHEMBIOPRO, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France; (J.L.); (T.P.); (M.F.); (L.D.)
- Département Hygiène Sécurité Environnement (HSE), IUT La Réunion, Université de La Réunion, 40 Avenue de Soweto, BP 373, F-97455 Saint-Pierre, France
| | - Mireille Fouillaud
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, CHEMBIOPRO, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France; (J.L.); (T.P.); (M.F.); (L.D.)
| | - Laurent Dufossé
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, CHEMBIOPRO, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France; (J.L.); (T.P.); (M.F.); (L.D.)
| | - Yanis Caro
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels, CHEMBIOPRO, Université de La Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis, France; (J.L.); (T.P.); (M.F.); (L.D.)
- Département Hygiène Sécurité Environnement (HSE), IUT La Réunion, Université de La Réunion, 40 Avenue de Soweto, BP 373, F-97455 Saint-Pierre, France
| |
Collapse
|
9
|
He S, Wang Y, Xie J, Gao H, Li X, Huang Z. 1H NMR-based metabolomic study of the effects of flavonoids on citrinin production by Monascus. Food Res Int 2020; 137:109532. [PMID: 33233162 DOI: 10.1016/j.foodres.2020.109532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Monascus comprises purple-red molds. Various compounds can be obtained from these species, including statins and food-safe yellow, red, and orange pigments. However, the secondary metabolite citrinin, a mycotoxin, is produced during the late stages of growth. Citrinin biosynthesis should be reduced to apply Monascus pigments safely. Fortunately, this can be achieved by the addition of flavonoids (genistein, daidzein, apigenin, and kaempferol). However, the effects of these flavonoids on other metabolites remain unknown. Here, we report a 1H NMR-based multivariate metabolomic analysis of the effects of flavonoids on mycotoxin citrinin production by Monascus. Fifteen metabolites involved in lysine and arginine biosynthesis and alanine, aspartate, glutamate, biotin, arginine, proline, and glutathione metabolism were detected. The reduction in glutamate, aspartate, biotin, and 2-phosphoglycerate content suggested their association with the citrinin reduction mechanism. This study identifies the citrinin production pathway in Monascus and will aid in the development of citrinin-control methods.
Collapse
Affiliation(s)
- Shanshan He
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yanling Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Heng Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiujiang Li
- The First Affiliated Hospital of Nanchang University, Nanchang University, No.17 Yongwai Main Street, Nanjing West Road, Nanchang 330006, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
10
|
de Oliveira F, Lima CDA, Lopes AM, Marques DDAV, Druzian JI, Pessoa Júnior A, Santos-Ebinuma VC. Microbial Colorants Production in Stirred-Tank Bioreactor and Their Incorporation in an Alternative Food Packaging Biomaterial. J Fungi (Basel) 2020; 6:E264. [PMID: 33147713 PMCID: PMC7712370 DOI: 10.3390/jof6040264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
Natural colorants from microbial fermentation have gained significant attention in the market to replace the synthetic ones. Talaromyces spp. produce yellow-orange-red colorants, appearing as a potential microorganism to be used for this purpose. In this work, the production of natural colorants by T. amestolkiae in a stirred-tank bioreactor is studied, followed by its application as additives in bio-based films. The effect of the pH-shift control strategy from 4.5 to 8.0 after 96 h of cultivation is evaluated at 500 rpm, resulting in an improvement of natural colorant production, with this increase being more significant for the orange and red ones, both close to 4-fold. Next, the fermented broth containing the colorants is applied to the preparation of cassava starch-based films in order to incorporate functional activity in biodegradable films for food packaging. The presence of fermented broth did not affect the water activity and total solids of biodegradable films as compared with the standard one. In the end, the films are used to pack butter samples (for 45 days) showing excellent results regarding antioxidant activity. It is demonstrated that the presence of natural colorants is obtained by a biotechnology process, which can provide protection against oxidative action, as well as be a functional food additive in food packing biomaterials.
Collapse
Affiliation(s)
- Fernanda de Oliveira
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista—UNESP, Araraquara 14800-903, Brazil; (F.d.O.); (C.d.A.L.)
| | - Caio de Azevedo Lima
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista—UNESP, Araraquara 14800-903, Brazil; (F.d.O.); (C.d.A.L.)
| | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas—FCF/UNICAMP, Campinas 13083-859, Brazil;
| | - Daniela de Araújo Viana Marques
- Laboratory of Biotechnology Applied to Infectious and Parasitic Diseases, Biological Science Institute, University of Pernambuco-ICB/UPE, Recife 50100-130, Brazil;
| | - Janice Izabel Druzian
- Department of Bromatological Analysis, Faculty of Pharmacy, Postgraduate Program in Science of Food, Federal University of Bahia, Salvador 40170-115, Brazil;
| | - Adalberto Pessoa Júnior
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Valéria Carvalho Santos-Ebinuma
- Department of Engineering Bioprocess and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista—UNESP, Araraquara 14800-903, Brazil; (F.d.O.); (C.d.A.L.)
| |
Collapse
|
11
|
de Oliveira F, Ferreira LC, Neto ÁB, Simas Teixeira MF, de Carvalho Santos Ebinuma V. Biosynthesis of natural colorant by Talaromyces amestolkiae: Mycelium accumulation and colorant formation in incubator shaker and in bioreactor. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Wang Y, Gao H, Xie J, Li X, Huang Z. Effects of some flavonoids on the mycotoxin citrinin reduction by Monascus aurantiacus Li AS3.4384 during liquid-state fermentation. AMB Express 2020; 10:26. [PMID: 32016571 PMCID: PMC6997324 DOI: 10.1186/s13568-020-0962-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023] Open
Abstract
Monascus can produce many beneficial metabolites; however, it can simultaneously also produce citrinin, which seriously limits its application. Therefore, reducing the production of citrinin is of great interest. Herein, Monascus aurantiacus Li AS3.4384 (MAL) was used to optimize the liquid-state fermentation process and investigate the effects of genistein and other flavonoids on citrinin, pigments, and biomass of MAL. Results showed that citrinin decreased by 80%, pigments and biomass increased by approximately 20% in 12 days with addition of 20.0 g/L rice powder as a carbon source and 2.0 g/L genistein during shaking liquid-state fermentation. Further, genistein, daidzein, luteolin, apigenin, quercetin, baicalein, kaempferol myricetin, and genistin exerted different effects on citrinin production by MAL, with genistein causing the highest reduction in citrinin production during liquid-state fermentation, possibly due to the presence of C5-OH, C4′-OH, and C7-OH. Therefore, genistein can be added to the fermentation process of Monascus to reduce citrinin.
Collapse
|
13
|
Liu L, Zheng J, Zhang X, Wang Z. Interfacing a phosphate catalytic reaction with a microbial metabolism for the production of azaphilone alkaloids. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00355g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring PO43− as a Brønsted acid catalyst, a biocompatible amination reaction was successfully interfaced with the Penicillium sp. metabolism to produce sclerotiorin alkaloids.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Jiawei Zheng
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism
- Engineering Research Center of Cell & Therapeutic Antibody
- Ministry of Education
- School of Pharmacy
- Shanghai Jiao Tong University
| |
Collapse
|
14
|
Agboyibor C, Kong WB, Zhang AM, Niu SQ. Nutrition regulation for the production of Monascus red and yellow pigment with submerged fermentation by Monascus purpureus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Efficient accumulation of sclerotiorin via overcoming low pH caused by overflow carbon metabolism during cell suspension culture of Penicillium sclerotiorum. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Xin Q, Pan T, Zhang WM, Wang Z. Submerged culture of marine-derived Penicillium sclerotiorum FS50 to produce sclerotiorin. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Huang Z, Zhang L, Wang Y, Gao H, Li X, Huang X, Huang T. Effects of rutin and its derivatives on citrinin production by Monascus aurantiacus Li AS3.4384 in liquid fermentation using different types of media. Food Chem 2019; 284:205-212. [PMID: 30744847 DOI: 10.1016/j.foodchem.2019.01.109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
The mycotoxin citrinin is often produced during fermentation of Monascus products. We studied the effects of flavonoids on citrinin production by Monascus aurantiacus Li AS3.4384 (MALA) by adding rutin, α-glucosylrutin, or troxerutin to the fermentation medium, in a first-of-its-kind study. Appropriate amounts of rutin, α-glucosylrutin, or troxerutin did not affect normal mycelial growth. Addition of 5.0 g/l of rutin only weakly reduced (29.2%) citrinin production, relative to inhibition by 5 g/l α-glucosylrutin or troxerutin (by 54.7% and 40.6%, respectively). In starch inorganic liquid culture media, addition of 20.0 g/l of troxerutin, followed by fermentation for 12 days, reduced citrinin yield by 75.26%. Addition of 15.0 g/l of troxerutin to low-starch peptone liquid fermentation media reduced citrinin yield by 87.9% after 14 days of fermentation, and addition of 30.0 g/l troxerutin to yeast extract sucrose liquid media for 12 days reduced citrinin yield by 53.7%.
Collapse
Affiliation(s)
- Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Lijuan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yanling Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Heng Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xiujiang Li
- The First Affiliated Hospital of Nanchang University, Nanchang University, No. 17 Yongwai Main Street, Nanjing West Road, Nanchang 330006, China
| | - Xinyu Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ting Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
18
|
Liu L, Zhao J, Huang Y, Xin Q, Wang Z. Diversifying of Chemical Structure of Native Monascus Pigments. Front Microbiol 2018; 9:3143. [PMID: 30622522 PMCID: PMC6308397 DOI: 10.3389/fmicb.2018.03143] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Red Yeast Rice, produced by solid state fermentation of Monascus species on rice, is a traditional food additive and traditional Chinese medicine. With the introduction of modern microbiology and biotechnology to the traditional edible filamentous fungi Monascus species, it has been revealed that the production of red colorant by fermentation of Monascus species involves the biosynthesis of orange Monascus pigments and further chemical modification of orange Monascus pigments into the corresponding derivates with various amine residues. Further study indicates that non-Monascus species also produce Monascus pigments as well as Monascus-like pigments. Based on the chemical modification of orange Monascus pigments, the diversification of native Monascus pigments, including commercial food additives of Red Monascus Pigments® and Yellow Monascus Pigments® in Chinese market, was reviewed. Furthermore, Monascus pigments as well as their derivates as enzyme inhibitors for anti-obesity, hyperlipidemia, and hyperglycemia was also summarized.
Collapse
Affiliation(s)
- Lujie Liu
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jixing Zhao
- Shandong Zhonghui Biotechnology Co., Ltd., Binzhou, China
| | - Yaolin Huang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiao Xin
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Xie L, Zhang L, Wang C, Wang X, Xu YM, Yu H, Wu P, Li S, Han L, Gunatilaka AAL, Wei X, Lin M, Molnár I, Xu Y. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E4980-E4989. [PMID: 29760061 PMCID: PMC5984488 DOI: 10.1073/pnas.1716046115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is a prominent strategy to optimize the pharmacokinetic and pharmacodynamic properties of drug-like small-molecule scaffolds by modulating their solubility, stability, bioavailability, and bioactivity. Glycosyltransferases applicable for "sugarcoating" various small-molecule acceptors have been isolated and characterized from plants and bacteria, but remained cryptic from filamentous fungi until recently, despite the frequent use of some fungi for whole-cell biocatalytic glycosylations. Here, we use bioinformatic and genomic tools combined with heterologous expression to identify a glycosyltransferase-methyltransferase (GT-MT) gene pair that encodes a methylglucosylation functional module in the ascomycetous fungus Beauveria bassiana The GT is the founding member of a family nonorthologous to characterized fungal enzymes. Using combinatorial biosynthetic and biocatalytic platforms, we reveal that this GT is a promiscuous enzyme that efficiently modifies a broad range of drug-like substrates, including polyketides, anthraquinones, flavonoids, and naphthalenes. It yields both O- and N-glucosides with remarkable regio- and stereospecificity, a spectrum not demonstrated for other characterized fungal enzymes. These glucosides are faithfully processed by the dedicated MT to afford 4-O-methylglucosides. The resulting "unnatural products" show increased solubility, while representative polyketide methylglucosides also display increased stability against glycoside hydrolysis. Upon methylglucosidation, specific polyketides were found to attain cancer cell line-specific antiproliferative or matrix attachment inhibitory activities. These findings will guide genome mining for fungal GTs with novel substrate and product specificities, and empower the efficient combinatorial biosynthesis of a broad range of natural and unnatural glycosides in total biosynthetic or biocatalytic formats.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Xiaojing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Ya-Ming Xu
- Natural Products Center, University of Arizona, Tucson, AZ 85706
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Ping Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Shenglan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, 100069 Beijing, People's Republic of China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China
| | | | - Xiaoyi Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, People's Republic of China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| | - István Molnár
- Natural Products Center, University of Arizona, Tucson, AZ 85706;
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 100081 Beijing, People's Republic of China;
| |
Collapse
|
20
|
Li TX, Liu RH, Wang XB, Luo J, Luo JG, Kong LY, Yang MH. Hypoxia-Protective Azaphilone Adducts from Peyronellaea glomerata. JOURNAL OF NATURAL PRODUCTS 2018; 81:1148-1153. [PMID: 29738260 DOI: 10.1021/acs.jnatprod.7b00663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peyronellones A and B (1 and 2), a pair of rare tetracyclic caged adducts of azaphilone with pyruvic acid, along with four new analogues (3-6), were isolated from solid cultures of the endophytic fungus Peyronellaea glomerata. Their structures were elucidated through spectroscopic analysis, and their absolute configurations were unambiguously determined by a combination of single-crystal X-ray crystallography, Rh2(OCOCF3)4-induced ECD experiments, ECD calculations, and modified Mosher methods. Compound 2 (5 μM) was found to have a significant hypoxia-protective effect that improved the survival rate of hypoxia/reoxygenation-treated human umbilical vein endothelial cells from 35% to 70%, which was equal to the potency of the positive control, verapamil. Flow cytometry analysis suggested 2 could inhibit H/R-induced late-stage apoptosis of this cell line.
Collapse
Affiliation(s)
- Tian-Xiao Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Rui-Huan Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , People's Republic of China
| |
Collapse
|
21
|
Lu F, Liu L, Huang Y, Zhang X, Wang Z. Production of Monascus pigments as extracellular crystals by cell suspension culture. Appl Microbiol Biotechnol 2017; 102:677-687. [PMID: 29177624 DOI: 10.1007/s00253-017-8646-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 02/02/2023]
Abstract
It is generally accepted that Monascus pigments are predominantly cell-bound, including both intracellular and surface-bound pigments. This long-term misconception was corrected in the present work. Production of extracellular crystal pigments by submerged culture of Monascus sp. was confirmed by microscopic observation and collection of Monascus pigments from extracellular broth by direct membrane filtration. Following up the new fact, the bioactivity of mycelia as whole-cell biocatalyst for biosynthesis and biodegradation of Monascus pigments had been detailedly examined in both an aqueous solution and a nonionic surfactant micelle aqueous solution. Based on those experimental results, cell suspension culture in an aqueous medium was developed as a novel strategy for accumulation of high concentration of Monascus pigments. Thus, glucose feeding during submerged culture in the aqueous medium was carried out successfully and high orange Monascus pigments concentration of near 4 g/L was achieved.
Collapse
Affiliation(s)
- Fengling Lu
- School of Pharmacy, State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lujie Liu
- School of Pharmacy, State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yaolin Huang
- School of Pharmacy, State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xuehong Zhang
- School of Life Science and Biotechnology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhilong Wang
- School of Pharmacy, State Key Laboratory of Microbial Metabolism, and Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
22
|
Lv J, Zhang BB, Liu XD, Zhang C, Chen L, Xu GR, Cheung PCK. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: The relationship between fermentation conditions and mycelial morphology. J Biosci Bioeng 2017. [DOI: 10.1016/j.jbiosc.2017.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Chen S, Wang J, Wang Z, Lin X, Zhao B, Kaliaperumal K, Liao X, Tu Z, Li J, Xu S, Liu Y. Structurally diverse secondary metabolites from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001 and their biological evaluation. Fitoterapia 2017. [DOI: 10.1016/j.fitote.2017.01.005 pmid: 28108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
24
|
Structurally diverse secondary metabolites from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001 and their biological evaluation. Fitoterapia 2017; 117:71-78. [DOI: 10.1016/j.fitote.2017.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Accepted: 01/14/2017] [Indexed: 11/24/2022]
|