1
|
Wang J, Han L, Teng M, Li Q, Zhou J, Li J, Du G, Zhang G. Maltose gradient-induced biosensor-based high-throughput screening for directed evolution of maltogenic amylase from Bacillus stearothermophilus. Int J Biol Macromol 2024; 281:136586. [PMID: 39419146 DOI: 10.1016/j.ijbiomac.2024.136586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Maltogenic amylase is a starch-hydrolyzing enzyme commonly used in bread baking and high-concentration maltose syrup production. However, low catalytic activity limits its industrial application. Improving catalytic activity based on molecular modification and directed evolution requires a High-Throughput Screening (HTS) method. In this study, a maltose gradient-induced (MaGI) biosensor was designed and applied for the directed evolution of maltogenic amylase AmyM, showing a good positive correlation between enzyme activity and fluorescence. The MaGI biosensor detected maltose and maltogenic amylase activity efficiently and specifically. Two mutants, Q440N and S442N/Q661L, were identified through the screening of 3000 mutants using the MaGI biosensor, showing a significant increase in catalytic activity of 35.56 % and 24.51 %, respectively, compared to the wild-type. Meanwhile, the t1/2 of Q440N and S442N/Q661L at 60 °C increased by 58.53 % and 66.66 %, respectively. In industrial applications, the enhancement of catalytic activity and stability is conducive to improving production efficiency and reducing costs. MD simulation has found that when modifying multidomain enzymes, distal mutations can enhance catalytic activity. In conclusion, the developed MaGI biosensor is a promising tool for high-throughput and specific detection of maltose.
Collapse
Affiliation(s)
- Jiayuan Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Laichuang Han
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Maofang Teng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qinghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Kaptan Usul S, Binay B, Soydan AM, Aslan A. A newly synthesized magnetic nanoparticle coated with glycidyl methacrylate monomer and 1,2,4-Triazole: Immobilization of α-Amylase from Bacillus licheniformis for more reuse, stability, and activity in the presence of H 2O 2. Bioorg Chem 2024; 143:107068. [PMID: 38181659 DOI: 10.1016/j.bioorg.2023.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
α-Amylase is a secretory enzyme commonly found in nature. The α-Amylase enzyme catalyzes the hydrolysis of α-D-(1,4)-glucosidic bonds in starch, glycogen, and polysaccharides. The chemical characterization of the composite carrier and the immobilized enzyme was performed, and the accuracy of the immobilization was confirmed by FTIR, SEM, and EDS analyses. The X-ray diffraction (XRD) analysis indicates that the magnetic nanoparticle retained its magnetic properties following the modification process. Based on the Thermogravimetric Analysis (TGA) outcomes, it was evident that the structural integrity of the FPT nanocomposite remained unchanged at 200°C. The optimal pH was determined to be 5.5, and no alteration was observed following the immobilization process. Purified α-amylases usually lose their activity rapidly above 50°C. In this study, Bacillus licheniformis α-Amylase enzyme was covalently immobilized on the newly synthesized magnetic composite carrier having more azole functional group. For novelty-designed immobilized enzymes, while there is no change in the pH and optimum operating temperature of the enzyme with immobilization, two essential advantages are provided to reduce enzyme costs: the storage stability and reusability are increased. Furthermore, our immobilization technique enhanced enzyme stability when comparing our immobilized enzyme with the reference enzyme in industrial applications. The activity of the immobilized enzyme was higher in presence of 1-3% H2O2.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey; BAUZYME Biotechnology Co., Gebze Technical University Technopark, Gebze, 41400 Kocaeli, Turkey.
| | - Ali Murat Soydan
- Institute of Energy Technologies, Gebze Technical University, Kocaeli, Turkey.
| | - Ayşe Aslan
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey; Institute of Energy Technologies, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
3
|
Yu X, Zhang K, Zhu X, Lv H, Wu J. High level food-grade expression of maltogenic amylase in Bacillus subtilis through dal gene auxotrophic selection marker. Int J Biol Macromol 2024; 254:127372. [PMID: 37838136 DOI: 10.1016/j.ijbiomac.2023.127372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
As a food-safe microorganism, Bacillus subtilis has been widely utilized in the production of food enzyme, where a food-grade expression system without antibiotic is required. However, there is no mature system for such expression, since the recombinant plasmid in existing food-grade expression system is unstable especially in high-density fermentation. In this study, we constructed a food-grade expression system based on the dal gene auxotrophic selection marker. Specifically, maltogenic amylase (AmyM) was expressed in dal deletion strain without antibiotic, yielding an activity of 519 U/mL. To increase the expression of AmyM, the promoter of amyM (gene encoding AmyM) was optimized. Furthermore, we found that excessive expression of dal gene was detrimental to the stability of plasmid, and the ribosome binding site (RBS) of dal was mutated with the reduced synthesis of D-alanine. After that, AmyM activity increased to 1364 U/mL with the 100 % stability of plasmid. The 3-L fermentor cultivation was performed with the highest value ever reported in food-grade microorganisms, an activity of 2388 U/mL, showing the scale-up production capability of this system. Besides, it is also able to apply the system for other food enzymes, which indicating the great generalizability of this system for different application.
Collapse
Affiliation(s)
- Xinrui Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xuyang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China; School of Bioengineering, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
4
|
The application of conventional or magnetic materials to support immobilization of amylolytic enzymes for batch and continuous operation of starch hydrolysis processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
In the production of ethanol, starches are converted into reducing sugars by liquefaction and saccharification processes, which mainly use soluble amylases. These processes are considered wasteful operations as operations to recover the enzymes are not practical economically so immobilizations of amylases to perform both processes appear to be a promising way to obtain more stable and reusable enzymes, to lower costs of enzymatic conversions, and to reduce enzymes degradation/contamination. Although many reviews on enzyme immobilizations are found, they only discuss immobilizations of α-amylase immobilizations on nanoparticles, but other amylases and support types are not well informed or poorly stated. As the knowledge of the developed supports for most amylase immobilizations being used in starch hydrolysis is important, a review describing about their preparations, characteristics, and applications is herewith presented. Based on the results, two major groups were discovered in the last 20 years, which include conventional and magnetic-based supports. Furthermore, several strategies for preparation and immobilization processes, which are more advanced than the previous generation, were also revealed. Although most of the starch hydrolysis processes were conducted in batches, opportunities to develop continuous reactors are offered. However, the continuous operations are difficult to be employed by magnetic-based amylases.
Collapse
|
5
|
Mondal S, Mondal K, Halder SK, Thakur N, Mondal KC. Microbial Amylase: Old but still at the forefront of all major industrial enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Silva-Salinas A, Rodríguez-Delgado M, Gómez-Treviño J, López-Chuken U, Olvera-Carranza C, Blanco-Gámez EA. Novel Thermotolerant Amylase from Bacillus licheniformis Strain LB04: Purification, Characterization and Agar-Agarose. Microorganisms 2021; 9:microorganisms9091857. [PMID: 34576752 PMCID: PMC8470300 DOI: 10.3390/microorganisms9091857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/17/2023] Open
Abstract
This study analyzed the thermostability and effect of calcium ions on the enzymatic activity of α-amylase produced by Bacillus licheniformis strain LB04 isolated from Espinazo Hot springs in Nuevo Leon, Mexico. The enzyme was immobilized by entrapment on agar-agarose beads, with an entrapment yield of 19.9%. The identification of the bacteria was carried out using 16s rDNA sequencing. The enzyme was purified through ion exchange chromatography (IEX) in a DEAE-Sephadex column, revealing a protein with a molecular weight of ≈130 kDa. The enzyme was stable at pH 3.0 and heat stable up to 80 °C. However, the optimum conditions were reached at 65 °C and pH 3.0, with a specific activity of 1851.7 U mg−1 ± 1.3. The agar-agarose immobilized α-amylase had a hydrolytic activity nearly 25% higher when compared to the free enzyme. This study provides critical information for the understanding of the enzymatic profile of B. licheniformis strain LB04 and the potential application of the microorganisms at an industrial level, specifically in the food industry.
Collapse
Affiliation(s)
- Anaid Silva-Salinas
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
| | - Melissa Rodríguez-Delgado
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
| | - Jesús Gómez-Treviño
- Laboratorio de Biología Molecular, CELAES, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico;
| | - Ulrico López-Chuken
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico;
| | - Edgar Allan Blanco-Gámez
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parquede Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico; (A.S.-S.); (M.R.-D.); (U.L.-C.)
- Correspondence:
| |
Collapse
|
7
|
Zhang C, Li J, Chen L, Shi X, Chen B, Lv X, Ni L. Effects of alkali, enzymes, and ultrasound on monosodium glutamate byproduct for a sustainable production of Bacillus subtilis. Food Chem 2021; 360:129967. [PMID: 33984562 DOI: 10.1016/j.foodchem.2021.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
Due to the hindrance of flocculated polymers and bacterial cell wall, the production of Bacillus subtilis using monosodium glutamate byproduct (MSGB) was low. With the assistance of scanning electron microscope images, effects of alkali, lysozyme, papain, ultrasound, and their combinations on MSGB were evaluated using the results of soluble protein, carbohydrate, monosaccharides and peptidoglycans. Alkali could dissolve flocculated polymers increasing 21% soluble MSGB, and thus enhanced the subsequent treatments (ultrasound, lysozyme, or papain) to increase 14-17% soluble MSGB. As ultrasound mainly released intercellular components (mannose, and glucose) while lysozyme or papain mainly released cell wall components (peptidoglycans), the combination of alkali, ultrasound, and enzymes led to a highest soluble MSGB (78%), yielding a maximal B. subtilis production of 6.6 × 109 colony-forming units mL-1. This yield was about 33 times that of using untreated MSGB, and the key to improve B. subtilis production was the release of carbohydrate.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Jingjing Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China
| | - Li Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Xiangzhu Shi
- Fujian Xinminke Biotechnology Development Company, 350018 Fuzhou, China
| | - Bingdian Chen
- Institute of Animal Husbandry and Veterinary Medicine, FAAS, 350018 Fuzhou, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| |
Collapse
|
8
|
New poly(urethane-urea) microcapsules from PVA modified with APTES: preparation, characterization and enzyme encapsulation. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
α-Amylase Immobilized Composite Cryogels: Some Studies on Kinetic and Adsorption Factors. Appl Biochem Biotechnol 2021; 193:2483-2496. [PMID: 33779933 DOI: 10.1007/s12010-021-03559-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Stability of enzymes is a significant factor for their industrial feasibility. α-Amylase is an important enzyme for some industries, i.e., textile, food, paper, and pharmaceutics. Pumice particles (PPa) are non-toxic, natural, and low-cost alternative adsorbents with high adsorption capacity. In this study, Cu2+ ions were attached to pumice particles (Cu2+-APPa). Then, Cu2+-APPa embedded composite cryogel was synthesized (Cu2+-APPaC) via polymerization of gel-forming agents at minus temperatures. Characterization studies of the Cu2+-APPaC cryogel column were performed by X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM), and Brunauer, Emmett, Teller (BET) method. The experiments were carried out in a continuous column system. α-Amylase was adsorbed onto Cu2+-APPaC cryogel with maximum amount of 858.7 mg/g particles at pH 4.0. Effects of pH and temperature on the activity profiles of the free and the immobilized α-amylase were investigated, and results indicate that immobilization did not alter the optimum pH and temperature values. kcat value of the immobilized α-amylase is higher than that of the free α-amylase while KM value increases by immobilization. Storage and operational stabilities of the free and the immobilized α-amylase were determined for 35 days and for 20 runs, respectively.
Collapse
|
10
|
Effect of graphene oxide with different morphological characteristics on properties of immobilized enzyme in the covalent method. Bioprocess Biosyst Eng 2020; 43:1847-1858. [PMID: 32448987 DOI: 10.1007/s00449-020-02375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Although graphene oxide (GO) has great potential in the field of immobilized enzyme catalysts, the detailed effects of GO with different morphological structures on immobilized enzyme are not well understood. GOs were prepared from 8000 mesh and nanoscale graphite at different reaction temperatures, and used as carriers to immobilize alpha-amylase by cross-linking method. The properties of GOs were characterized through Atomic force microscope, Fourier-transformed infrared, X-ray photoelectron spectroscopy, Raman and UV-Vis. Furthermore, the dosage of cross-linking agent, cross-linking time, optimum temperature/pH, thermal/pH/storage stability, reusability and kinetic parameters of immobilized enzymes were investigated. The results showed that the loading of alpha-amylase on GOs was 162.3-274.2 mg g-1. The reusability experiments revealed high activity maintenance of immobilized alpha-amylase even after seven reaction cycles. Moreover, the storage stability of immobilized enzyme improved via immobilization in comparison with free one and it maintained over 70% of their initial activity after 20 days storage at 4 °C.
Collapse
|
11
|
Nawawi NN, Hashim Z, Rahman RA, Murad AMA, Bakar FDA, Illias RM. Entrapment of porous cross-linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1 into calcium alginate for maltooligosaccharides synthesis. Int J Biol Macromol 2020; 150:80-89. [DOI: 10.1016/j.ijbiomac.2020.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/20/2023]
|
12
|
Starch hydrolysis using maltogenase immobilized via different techniques. Int J Biol Macromol 2020; 144:544-552. [DOI: 10.1016/j.ijbiomac.2019.12.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 01/15/2023]
|
13
|
Purification and immobilization of α-amylase in one step by gram-positive enhancer matrix (GEM) particles from the soluble protein and the inclusion body. Appl Microbiol Biotechnol 2019; 104:643-652. [PMID: 31788710 DOI: 10.1007/s00253-019-10252-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Immobilization of the enzyme benefits the catalytic industry a lot. The gram-positive enhancer matrix (GEM) particles could purify and immobilize the recombinant α-amylase in one step without changing the enzymatic character. The enzyme immobilized by GEM particles exhibited good reusability and storage stability. The denaturants dissolved some of the GEM particles and a part of the GEM particles could bear the denaturants. The GEM particles had strong binding ability to the recombination protein with the AcmA tag even when the denaturants existed. The inclusion body was dissolved by urea and then bound by the GEM particles. The GEM particles binding the recombination protein were separated by centrifugation and resuspended in the renaturation solution. GEM particles were recycled by repeating the boiling procedure used in preparing them. The recombination α-amylase without any tag was obtained by digestion and separated via centrifugation. Altogether, our findings suggest that GEM particles have the potential to function as both immobilization and purification materials to bind the soluble recombinant protein with the AcmA tag and the inclusion body dissolved in the denaturants.
Collapse
|
14
|
Zhao F, Song Q, Wang B, Du R, Han Y, Zhou Z. Secretion of the recombination α-amylase in Escherichia coli and purification by the gram-positive enhancer matrix (GEM) particles. Int J Biol Macromol 2019; 123:91-96. [PMID: 30423395 DOI: 10.1016/j.ijbiomac.2018.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022]
Abstract
α-Amylases are important enzymes in industry. A recombinant α-amylase with a secretion signal peptide and an AcmA tag was expressed in Escherichia coli to improve the yield. The induction concentrations were optimized, and the temperature had a significant influence on soluble expression and secretion. A visible band could be obtained when the induction was conducted at 16 °C. The gram-positive enhancer matrix (GEM) particles could separate and purify the recombinant α-amylase with the AcmA tag, and no visible band could be seen in the culture even after the culture was concentrated ten times. The solution and concentration of the recombinant α-amylase could be adjusted by GEM particles. The recombinant untagged α-amylase was obtained after digestion. The α-amylase was characterized. The recombinant α-amylase was a thermophilic enzyme with a broad pH tolerance. In addition, the enzyme activity of the recombinant α-amylase was independent of Ca2+. The recombinant α-amylase contained the OmpA signal peptide and the AcmA tag and was expressed and purified quickly and easily.
Collapse
Affiliation(s)
- Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qiaozhi Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
15
|
Kołodziejczak-Radzimska A, Zdarta J, Ciesielczyk F, Jesionowski T. An organofunctionalized MgO∙SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0146-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S. Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem 2018; 77:494-506. [PMID: 29454827 DOI: 10.1016/j.bioorg.2018.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 12/13/2022]
Abstract
The marine bacterial strain Bacillus cereus was used to produce amylase enzyme and has excellent alkali-stable and thermostable enzymatic activity. The combined effects of pH, temperature and incubation time on amylase activity were studied using response surface methodology. The amylase enzyme activity was also determined in the presence of various metal ions, chelating agents, detergents and the results showed that the maximum enzyme activity was observed in the presence of calcium chloride (96.1%), EDTA (63.4%) and surf excel (90.6%). The amylase enzyme exhibited excellent antibiofilm activity against marine derived biofilm forming bacteria Pseudomonas aeruginosa and Staphylococcus aureus in microtiter plate assay and congo red assay. Light and confocal laser scanning microscopic (CLSM) analysis were also used to confirm the potential biofilm activity of amylase enzyme. The CLSM analysis showed the inhibition of complete biofilm formation on amylase enzyme treated glass surface. Further in vivo toxicity analysis of amylase enzyme was determined against marine organisms Dioithona rigida and Artemia salina. The results showed that there is no morphological changes were observed due to the minimal toxicity of amylase enzyme. Overall these findings suggested that marine bacterial derived amylase enzyme could be developed as potential antibiofilm agent.
Collapse
Affiliation(s)
- Ramalingam Vaikundamoorthy
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rajaram Rajendran
- DNA Barcoding and Marine Genomics Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Ananth Selvaraju
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Kaviyarasan Moorthy
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Santhanam Perumal
- Marine Planktonology and Aquaculture Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
17
|
Klapiszewski Ł, Zdarta J, Jesionowski T. Titania/lignin hybrid materials as a novel support for α-amylase immobilization: A comprehensive study. Colloids Surf B Biointerfaces 2018; 162:90-97. [DOI: 10.1016/j.colsurfb.2017.11.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/05/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
|
18
|
Immobilization of Cellulase on a Functional Inorganic–Organic Hybrid Support: Stability and Kinetic Study. Catalysts 2017. [DOI: 10.3390/catal7120374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
19
|
Kochane T, Budriene S, Miasojedovas S, Ryskevic N, Straksys A, Maciulyte S, Ramanaviciene A. Polyurethane-gold and polyurethane-silver nanoparticles conjugates for efficient immobilization of maltogenase. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Singh K, Ahmad F, Singh VK, Kayastha K, Kayastha AM. Purification, biochemical characterization and Insilico modeling of α-amylase from Vicia faba. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|