1
|
Webster CE, Barker D, Deed RC, Pilkington LI. Mead production and quality: A review of chemical and sensory mead quality evaluation with a focus on analytical methods. Food Res Int 2025; 202:115655. [PMID: 39967139 DOI: 10.1016/j.foodres.2024.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 02/20/2025]
Abstract
Mead, an alcoholic beverage made from the fermentation of honey in water by yeast, has an expanding global market and popularity, and a concurrently broadening library of related scientific literature. Quality of mead can be evaluated using both sensory and physicochemical characteristics, with volatile aroma and phenolic profiles being of particular importance. Different mead-making techniques can have significant impact on these parameters and thus the overall mead quality. With the increasing prevalence of mead-quality related research, optimised analytical methodologies are of great relevance to research in this field. This review provides an overview and discussion of the relevant published literature regarding mead quality analysis, with a focus on the analytical methodologies used to evaluate the volatile and phenolic profiles of mead. In addition, the mead production process is outlined, and studies related to the sensory evaluation of mead are summarised. The state of the literature regarding mead quality has seen significant growth in recent years, including the development of improved and increasingly tailored analytical methodology, particularly GC and HPLC methods, although these have great scope to be further optimised for the mead matrix, particularly GC methods. Additionally, there is great scope for studies which integrate multiple aspects of mead quality such as sensory characteristics, volatile aroma components, and potentially bioactive compounds. This review will aid researchers looking to design and develop their own mead-related experimental and analytical methodologies, furthering high-quality research in the field, and contribute towards the advancement of the mead industry.
Collapse
Affiliation(s)
- Claire E Webster
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand.
| | - David Barker
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand; School of Biological Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland Waipapa Taumata Rau, Auckland 1010, New Zealand; Te Pūnaha Matatini, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Bischof G, Witte F, Januschewski E, Schilling F, Terjung N, Heinz V, Juadjur A, Gibis M. Authentication of aged beef in terms of aging time and aging type by 1H NMR spectroscopy. Food Chem 2024; 435:137531. [PMID: 37774627 DOI: 10.1016/j.foodchem.2023.137531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Meat authenticity addresses parameters such as species, breed, sex, housing system and postmortem treatment. Seventy-four beef backs from two breeds ('Fleckvieh' and 'Schwarzbunt') and three cattle types (heifer, cow, young bull) were dry-aged and wet-aged up to 28 days and analyzed by 1H NMR spectroscopy. Statistical models based on partial least squares regression and discriminant analysis were performed to classify the beef samples by breed, cattle type, aging time, and aging type based on their 1H NMR spectra. The aging time of beef samples can be predicted with an error ± 2.28 days. The cattle type model has an accuracy of cross-validation of 99.2 %, the breed models of 100 % and the aging type model for 28-days aged samples of 99.6 %. These models allow the authentication of beef samples in terms of breed, cattle type, aging time, and aging type with a single 1H NMR measurement.
Collapse
Affiliation(s)
- Greta Bischof
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany; Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Franziska Witte
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Edwin Januschewski
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Frank Schilling
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Nino Terjung
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Volker Heinz
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Andreas Juadjur
- German Institute of Food Technologies (DIL e.V.), Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Sęk A, Porębska A, Szczęsna T. Quality of Commercially Available Manuka Honey Expressed by Pollen Composition, Diastase Activity, and Hydroxymethylfurfural Content. Foods 2023; 12:2930. [PMID: 37569199 PMCID: PMC10417702 DOI: 10.3390/foods12152930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Manuka honey plays a significant role in modern medical applications as an antibacterial, antiviral, and antibiotic agent. However, although the importance of manuka honey is well documented in the literature, information regarding its physicochemical characteristics remains limited. Moreover, so far, only a few papers address this issue in conjunction with the examination of the pollen composition of manuka honey samples. Therefore, in this study, two parameters crucial for honey quality control-the diastase number (DN) and the hydroxymethylfurfural (HMF) content-as well as the melissopalynological analysis of manuka honey, were examined. The research found a large variation in the percentage of Leptospermum scoparium pollen in honeys labeled and sold as manuka honeys. Furthermore, a significant proportion of these honeys was characterized by a low DN. However, since low diastase activity was not associated with low HMF content, manuka honey should not be considered as a honey with naturally low enzymatic activity. Overall, the DN and HMF content results indicate that the quality of commercially available manuka honey is questionable.
Collapse
Affiliation(s)
- Alicja Sęk
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (A.P.); (T.S.)
| | | | | |
Collapse
|
4
|
Biswas A, Naresh KS, Jaygadkar SS, Chaudhari SR. Enabling honey quality and authenticity with NMR and LC-IRMS based platform. Food Chem 2023; 416:135825. [PMID: 36924528 DOI: 10.1016/j.foodchem.2023.135825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/22/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Honey has been known for economically motivated adulteration around the world, because of its high demand and short supply. As consequence increasing honey production using the deliberate addition of sugar syrups while claiming a fictitious origin and diversifying it to increase its value. Generally, honey testing is supervised by a set of guidelines and quality parameters to ensure its quality and authenticity. As per the many regulatory bodies, current honey scams have been challenging to identify with conventional methods, so quality control labs require sophisticated technology. With these paradigm shifts, the aim of the present review is focused on the authenticity of honey through two important cutting-edge methods viz LC-IRMS and NMR. The LC-IRMS aids in the detection of added C3 and C4 sugars. Whereas NMR has provided a potent solution by allowing the classification of botanical varieties and geographical origin along with the quantification of a set of quality parameters in a single experiment.
Collapse
Affiliation(s)
- Anisha Biswas
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K S Naresh
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Sachin R Chaudhari
- Department of Plantation Products, Spice and Flavor Technology, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Díaz-Galiano FJ, Heinzen H, Gómez-Ramos MJ, Murcia-Morales M, Fernández-Alba AR. Identification of novel unique mānuka honey markers using high-resolution mass spectrometry-based metabolomics. Talanta 2023; 260:124647. [PMID: 37172434 DOI: 10.1016/j.talanta.2023.124647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Mānuka honey is a valuable commodity produced by bees foraging the flowers of Leptospermum scoparium, a bush native to New Zealand and Australia. Due to its high value and proven health benefits, authenticity fraud in the sale of this food is a significant risk, as recounted in the literature. Four compulsory natural products must be present at minimum concentrations to authenticate mānuka honey (3-phenyllactic acid, 2'-methoxyacetophenone, 2-methoxybenzoic acid, and 4-hydroxyphenyllactic acid). However, spiking other kinds of honey with these compounds and/or the dilution of mānuka honey with other varieties may result in fraud going undetected. In this work, liquid chromatography coupled with high-resolution mass spectrometry and a metabolomics-based strategy has allowed us to tentatively identify 19 natural products -putative mānuka honey markers-, nine of which are reported for the first time. Chemometric models applied to these markers allowed the detection of both spiking and dilution fraud attempts of mānuka honey, even at 75% mānuka honey purity. Thus, the herein-reported methodology can be employed in the prevention and detection of mānuka honey adulteration even at low levels, and the tentatively identified markers presented in this work proved valuable for mānuka honey authentication procedures.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Horacio Heinzen
- Pharmacognosy & Nat. Products, DQO, Facultad de Química Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay
| | - María José Gómez-Ramos
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Murcia-Morales
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Amadeo R Fernández-Alba
- University of Almería, Department of Physics and Chemistry, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
6
|
Zhang XW, Xu L, Wang SY, Wang L, Dunn DW, Yu X, Ye X. How to Effectively Reduce Honey Adulteration in China: An Analysis Based on Evolutionary Game Theory. Foods 2023; 12:1538. [PMID: 37048359 PMCID: PMC10094552 DOI: 10.3390/foods12071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Apiculture has been greatly developed in recent years in China. Beekeeping cooperatives and honey manufacturing enterprises have increased rapidly. As a result, a variety of honey products have entered the market, adding vitality to the food economy; however, the adulteration of honey products is on the rise in China. Previous attempts to control the adulteration of honey products mostly relied on technical, product-specific measures, and there was a lack of modeling research to guide the supervision of the honey product industry. In order to help local governments to better control the adulteration of honey products from a management perspective, this paper establishes an evolutionary game model composed of beekeeping cooperatives, honey product enterprises, and local governments. Through stability analysis and model simulation, we found that local government subsidies to cooperatives have little impact on the game system. Local government penalties to cooperatives and price adjustments of unadulterated raw honey by cooperatives are effective management tools to reduce the adulteration behavior of cooperatives. Local government penalties for enterprises are an effective management tool to reduce the adulteration behavior of enterprises. This research provides useful information for government agencies to design appropriate policies/business modes so as to promote sustainability and the healthy development of the honey product industry in China.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Si-Yi Wang
- School of Modern Posts, Xi’an University of Posts & Telecommunications, Xi’an 710061, China
| | - Lin Wang
- Ministry of Education’s Key Laboratory of Poyang Lake Wetland and Watershed Research, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Derek W. Dunn
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Xinping Ye
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
7
|
Burton IW, Kompany-Zareh M, Haverstock S, Haché J, Martinez-Farina CF, Wentzell PD, Berrué F. Analysis and Discrimination of Canadian Honey Using Quantitative NMR and Multivariate Statistical Methods. Molecules 2023; 28:molecules28041656. [PMID: 36838644 PMCID: PMC9959790 DOI: 10.3390/molecules28041656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
To address the growing concern of honey adulteration in Canada and globally, a quantitative NMR method was developed to analyze 424 honey samples collected across Canada as part of two surveys in 2018 and 2019 led by the Canadian Food Inspection Agency. Based on a robust and reproducible methodology, NMR data were recorded in triplicate on a 700 MHz NMR spectrometer equipped with a cryoprobe, and the data analysis led to the identification and quantification of 33 compounds characteristic of the chemical composition of honey. The high proportion of Canadian honey in the library provided a unique opportunity to apply multivariate statistical methods including PCA, PLS-DA, and SIMCA in order to differentiate Canadian samples from the rest of the world. Through satisfactory model validation, both PLS-DA as a discriminant modeling technique and SIMCA as a class modeling method proved to be reliable at differentiating Canadian honey from a diverse set of honeys with various countries of origins and floral types. The replacement method of optimization was successfully applied for variable selection, and trigonelline, proline, and ethanol at a lower extent were identified as potential chemical markers for the discrimination of Canadian and non-Canadian honeys.
Collapse
Affiliation(s)
- Ian W. Burton
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Mohsen Kompany-Zareh
- Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Sophie Haverstock
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Jonathan Haché
- Canadian Food Inspection Agency, 1400 Merivale Rd, Ottawa, ON K1A 0Y9, Canada
| | - Camilo F. Martinez-Farina
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
| | - Peter D. Wentzell
- Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS B3H 3Z1, Canada
- Correspondence: ; Tel.: +1-902-402-3995
| |
Collapse
|
8
|
Tarapoulouzi M, Mironescu M, Drouza C, Mironescu ID, Agriopoulou S. Insight into the Recent Application of Chemometrics in Quality Analysis and Characterization of Bee Honey during Processing and Storage. Foods 2023; 12:473. [PMID: 36766000 PMCID: PMC9914568 DOI: 10.3390/foods12030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The application of chemometrics, a widely used science in food studies (and not only food studies) has begun to increase in importance with chemometrics being a very powerful tool in analyzing large numbers of results. In the case of honey, chemometrics is usually used for assessing honey authenticity and quality control, combined with well-established analytical methods. Research related to investigation of the quality changes in honey due to modifications after processing and storage is rare, with a visibly increasing tendency in the last decade (and concentrated on investigating novel methods to preserve the honey quality, such as ultrasound or high-pressure treatment). This review presents the evolution in the last few years in using chemometrics in analyzing honey quality during processing and storage. The advantages of using chemometrics in assessing honey quality during storage and processing are presented, together with the main characteristics of some well-known chemometric methods. Chemometrics prove to be a successful tool to differentiate honey samples based on changes of characteristics during storage and processing.
Collapse
Affiliation(s)
- Maria Tarapoulouzi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Chryssoula Drouza
- Department of Agricultural Production, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol 3036, Cyprus
| | - Ion Dan Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| |
Collapse
|
9
|
García-Seval V, Martínez-Alfaro C, Saurina J, Núñez O, Sentellas S. Characterization, Classification and Authentication of Spanish Blossom and Honeydew Honeys by Non-Targeted HPLC-UV and Off-Line SPE HPLC-UV Polyphenolic Fingerprinting Strategies. Foods 2022; 11:foods11152345. [PMID: 35954111 PMCID: PMC9368295 DOI: 10.3390/foods11152345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Honey is a highly consumed natural product produced by bees which is susceptible to fraudulent practices, some of them regarding its botanical origin. Two HPLC-UV non-targeted fingerprinting approaches were evaluated in this work to address honey characterization, classification, and authentication based on honey botanical variety. The first method used no sample treatment and a universal reversed-phase chromatographic separation. On the contrary, the second method was based on an off-line SPE preconcentration method, optimized for the isolation and extraction of polyphenolic compounds, and a reversed-phase chromatographic separation optimized for polyphenols as well. For the off-line SPE method, the use of HLB (3 mL, 60 mg) cartridges, and 6 mL of methanol as eluent, allowed to achieve acceptable recoveries for the selected polyphenols. The obtained HPLC-UV fingerprints were subjected to an exploratory principal component analysis (PCA) and a classificatory partial least squares-discriminant analysis (PLS-DA) to evaluate their viability as sample chemical descriptors for authentication purposes. Both HPLC-UV fingerprints resulted to be appropriate to discriminate between blossom honeys and honeydew honeys. However, a superior performance was accomplished with off-line SPE HPLC-UV polyphenolic fingerprints, being able to differentiate among the different blossom honey samples under the study (orange/lemon blossom, rosemary, thyme, eucalyptus, and heather). In general, this work demonstrated the feasibility of HPLC-UV fingerprints, especially those obtained after off-line SPE polyphenolic isolation and extraction, to be employed as honey chemical descriptors to address the characterization and classification of honey samples according to their botanical origin.
Collapse
Affiliation(s)
- Víctor García-Seval
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Clàudia Martínez-Alfaro
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E-08921 Barcelona, Spain
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E-08921 Barcelona, Spain
- Correspondence:
| | - Sònia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E-08921 Barcelona, Spain
- Serra Húnter Fellow, Generalitat de Catalunya, Rambla de Catalunya 19-21, E-08007 Barcelona, Spain
| |
Collapse
|
10
|
|
11
|
Zucchetta C, Tangohau W, McCallion A, Hardy DJ, Clavijo McCormick A. Exploring the Chemical Properties and Biological Activity of Four New Zealand Monofloral Honeys to Support the Māori Vision and Aspirations. Molecules 2022; 27:3282. [PMID: 35630758 PMCID: PMC9143981 DOI: 10.3390/molecules27103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
Honey production and export are significant contributors to the Aotearoa New Zealand economy, generating over 400 million dollars in revenue. Its main export is mānuka (Leptospermum scoparium) honey, which has a high commercial value due to its medicinal properties that are linked to its unique chemical composition. The compound methylglyoxal (MGO) has been identified as the main floral marker and is used as a quality indicator, often labelled as unique mānuka factor (UMF). However, the high demand for mānuka honey creates pressure on beekeepers and may have negative ecological consequences by favouring extensive mānuka monocultures to the detriment of other native species. There are other honeys native to New Zealand, such as kāmahi (Weinmannia racemosa), kānuka (Kunzea ericoides), rātā (Metrosideros robusta) and rewarewa (Knightia excelsa), that also have medicinal properties; however, they are less well known in the local and global market. Indigenous Māori communities envision the production and commercialization (locally and internationally) of these honeys as an opportunity to generate income and secure a sustainable future in alignment with their worldview (Te Ao Māori) and values (tikanga Māori). Diversifying the market could lead to a more sustainable income for beekeepers and reduce pressure on Māori and the conservation land, while supporting indigenous communities to realize their vision and aspirations. This manuscript provides an extensive review of the scientific literature, technical literature and traditional knowledge databases describing the plants of interest and their traditional medicinal uses (rongoā) and the chemical properties of each honey, potential floral markers and their biological activity. For each honey type, we also identify knowledge gaps and potential research avenues. This information will assist Māori beekeepers, researchers, consumers and other stakeholders in making informed decisions regarding future research and the production, marketing and consumption of these native monofloral honeys.
Collapse
Affiliation(s)
- Claire Zucchetta
- School of Agriculture and Environment, Massey University, Tennent Drive, Palmerston North 4474, New Zealand;
| | - Wally Tangohau
- Te Pumautanga o Te Arawa Trust, 1196 Haupapa Street, Rotorua 3010, New Zealand; (W.T.); (A.M.)
| | - Aaron McCallion
- Te Pumautanga o Te Arawa Trust, 1196 Haupapa Street, Rotorua 3010, New Zealand; (W.T.); (A.M.)
| | - Derrylea J. Hardy
- School of People, Environment and Planning, Massey University, Tennent Drive, Palmerston North 4474, New Zealand;
| | - Andrea Clavijo McCormick
- School of Agriculture and Environment, Massey University, Tennent Drive, Palmerston North 4474, New Zealand;
| |
Collapse
|
12
|
Study on stable carbon isotope fractionation of rape honey from rape flowers (Brassica napus L.) to its unifloral ripe honey. Food Chem 2022; 386:132754. [PMID: 35339084 DOI: 10.1016/j.foodchem.2022.132754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022]
Abstract
A new idea and strategy for honey traceability and identification was provided by studying the carbon isotope fractionation of rape honey and its components in the different ripening process, as well as the fractionation from rape flowers, stamens, nectar to rape honey. The results showed the moisture content of rape honey continued to decrease, and the glucose and fructose content continued to increase during the ripening process. The δ13C of rape honey and its protein were less affected by honey ripeness, while the δ13C of sugars in rape honey were greatly affected by this. At the same time, the fractionation of carbon isotope from rape flowers to honey was significant. The δ13C of rape honey and its protein, disaccharide, fructose, and glucose had a strong correlation, and the δ13C of rape honey and its components were mainly related to rape flowers and its stamens.
Collapse
|
13
|
QU Q, JIN L. Application of nuclear magnetic resonance in food analysis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Potential of FTIR- ATR diamond in discriminating geographical and botanical origins of honeys from France and Romania. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2020.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Hegazi NM, Elghani GEA, Farag MA. The super-food Manuka honey, a comprehensive review of its analysis and authenticity approaches. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 59:2527-2534. [DOI: 10.1007/s13197-021-05181-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
|
16
|
Hajjar G, Haddad L, Rizk T, Akoka S, Bejjani J. High-resolution 1H NMR profiling of triacylglycerols as a tool for authentication of food from animal origin: Application to hen egg matrix. Food Chem 2021; 360:130056. [PMID: 34020363 DOI: 10.1016/j.foodchem.2021.130056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
Metabolomics of complex biological matrices conducted by means of 1H NMR leads to spectra suffering from severe signal overlapping. Previously, we have developed a high-resolution spectral treatment method to help solving this issue in 1H NMR of triacylglycerols. In this work, we tested the potential of the developed method in the characterization and authentication of food products from animal origin using egg yolk as a model matrix. The approach consisted in a spectral deconvolution guided by the precision obtained on the deconvoluted peaks after reference lineshape adjustment of spectra. Thus, 135 peaks were quantitated and successfully used as biomarkers of origin, of hens breed, and of farming system. This required multivariate statistical analyses for classification. The same pool of variables allowed construction of multivariate quantitation models for individual fatty acids. Furthermore, minute amounts of conjugated fatty acids were quantitated and used as fingerprints of samples from backyard and free-range farming.
Collapse
Affiliation(s)
- Ghina Hajjar
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon; Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Lenny Haddad
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon; Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Toufic Rizk
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon
| | - Serge Akoka
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Joseph Bejjani
- Laboratory of Metrology and Isotopic Fractionation, Research Unit: Technologies et Valorisation Agroalimentaire (TVA), Faculty of Science, Saint Joseph University of Beirut, P.O. Box 17-5208 Mar Mikhael, Beirut 1104 2020, Lebanon.
| |
Collapse
|
17
|
Koulis GA, Tsagkaris AS, Aalizadeh R, Dasenaki ME, Panagopoulou EI, Drivelos S, Halagarda M, Georgiou CA, Proestos C, Thomaidis NS. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules 2021; 26:2769. [PMID: 34066694 PMCID: PMC8125859 DOI: 10.3390/molecules26092769] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Honey consumption is attributed to potentially advantageous effects on human health due to its antioxidant capacity as well as anti-inflammatory and antimicrobial activity, which are mainly related to phenolic compound content. Phenolic compounds are secondary metabolites of plants, and their content in honey is primarily affected by the botanical and geographical origin. In this study, a high-resolution mass spectrometry (HRMS) method was applied to determine the phenolic profile of various honey matrices and investigate authenticity markers. A fruitful sample set was collected, including honey from 10 different botanical sources (n = 51) originating from Greece and Poland. Generic liquid-liquid extraction using ethyl acetate as the extractant was used to apply targeted and non-targeted workflows simultaneously. The method was fully validated according to the Eurachem guidelines, and it demonstrated high accuracy, precision, and sensitivity resulting in the detection of 11 target analytes in the samples. Suspect screening identified 16 bioactive compounds in at least one sample, with abscisic acid isomers being the most abundant in arbutus honey. Importantly, 10 markers related to honey geographical origin were revealed through non-targeted screening and the application of advanced chemometric tools. In conclusion, authenticity markers and discrimination patterns were emerged using targeted and non-targeted workflows, indicating the impact of this study on food authenticity and metabolomic fields.
Collapse
Affiliation(s)
- Georgios A. Koulis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Aristeidis S. Tsagkaris
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6—Dejvice, 16628 Prague, Czech Republic
| | - Reza Aalizadeh
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
| | - Marilena E. Dasenaki
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Eleni I. Panagopoulou
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
| | - Spyros Drivelos
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (S.D.); (C.A.G.)
| | - Michał Halagarda
- Department of Food Product Quality, Cracow University of Economics, ul. Sienkiewicza 5, 30033 Krakow, Poland;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (S.D.); (C.A.G.)
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Nikolaos S. Thomaidis
- Analytical Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (G.A.K.); (A.S.T.); (R.A.); (E.I.P.); (N.S.T.)
| |
Collapse
|
18
|
Wang Z, Ren P, Wu Y, He Q. Recent advances in analytical techniques for the detection of adulteration and authenticity of bee products - A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:533-549. [PMID: 33705260 DOI: 10.1080/19440049.2020.1871081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bee products have been considered as functional foods for a long time in China because of their wide range of biological activity. China has the largest number of bee colonies and the highest production of bee products in the world. Major bee products include honey, royal jelly, propolis and bee pollen. In recent years, consumption of bee products in China has been increasing due to an increased public awareness of their nutritional and health benefits. With the development of the Chinese economy and the improvement of people's living standards, high-end and gift-oriented products have become more popular and bee products are one of the options. However, the production of bee products cannot increase rapidly in short term and this is a driver for substantial economic-motivated adulteration. This is compounded by globalisation of supply chains which has also resulted in a rise in bee products fraud. These illicit products are eroding market prices and consumer trust, causing significant damage to the beekeeping industry. In order to provide information or solutions for regulators and consumers, in this article, we review he characteristics of bee products in China and the current situation regarding adulteration and authenticity of bee products. Moreover, advances in analytical techniques for detection of adulteration and authenticity of bee products including sensory techniques, DNA methods, isotope ratio mass spectrometry, spectroscopic techniques and mass spectrometry are reviewed. Finally, the applications and limitations of analytical methods in authentication are critically assessed. Suggestions are also put forward for the future management of China's bee products industry.
Collapse
Affiliation(s)
- Ziying Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Pingping Ren
- Applied, Industrial and Clinical Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
19
|
Cao R, Liu X, Liu Y, Zhai X, Cao T, Wang A, Qiu J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 2020; 342:128258. [PMID: 33508899 DOI: 10.1016/j.foodchem.2020.128258] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Due to a number of unparalleled advantages such as fastness, accuracy, intactness, nuclear magnetic resonance spectroscopy (NMR) has fulfilled a significant role in determining structures and dynamics of various physical, chemical and biological systems in the field of food analysis. This study introduced the principle of NMR, key NMR techniques such as 1H NMR, DOSY, NOESY, HSQC, etc., and the knowledge of NMR applications on the evaluation of complex food system, especially the interactions of food components. The reviewed research work provides sufficient evidence that NMR spectroscopy has been an invaluable tool and will play an increasingly important role in specific technical support for food assessment. In addition, NMR combined with various other technologies could give a complete picture of the mechanism of the performance of functional food compounds, which are vital for human health and influence the intrinsic food properties during processing, storage and transportation at the molecular level.
Collapse
Affiliation(s)
- Ruge Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinru Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuqing Zhai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianya Cao
- Institute of Food Science and Technology, Henan Agricultural University, Zhengzhou 450000, China
| | - Aili Wang
- Key laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture, Haidian, Beijing 100081, China.
| |
Collapse
|
20
|
Magdas DA, Guyon F, Puscas R, Vigouroux A, Gaillard L, Dehelean A, Feher I, Cristea G. Applications of emerging stable isotopes and elemental markers for geographical and varietal recognition of Romanian and French honeys. Food Chem 2020; 334:127599. [PMID: 32711278 DOI: 10.1016/j.foodchem.2020.127599] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
The research towards the identification of new authenticity markers is crucial to fight against fraudulent activities on honey, one of the top ten most falsified food commodities. This work proposes an association of stable isotopes and elemental content as markers for honey authentication, with respect to its floral and geographical origin. Emerging markers like isotopic signature of honey water alongside with carbon and hydrogen isotopic ratios of ethanol obtained from honey fermentation and Rare Earth Elements, were used to develop new recognition models. Thus, the efficiency of the discrimination potential of these emerging markers was discussed individually and in association. This approach proved its effectiveness for geographical differentiation (>98%) and the role of the emerging markers in these classifications was an essential one, especially of: (D/H)I, δ2H, δ18O, La, Ce and Pr. Floral recognition was realized in a lower percentage revealing the suitability of these markers mainly for geographical classification.
Collapse
Affiliation(s)
- Dana Alina Magdas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| | - Francois Guyon
- Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, 33608 Pessac, France.
| | - Romulus Puscas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Audrey Vigouroux
- Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, 33608 Pessac, France
| | - Laetitia Gaillard
- Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, 33608 Pessac, France
| | - Adriana Dehelean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ioana Feher
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Gabriela Cristea
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Sichilongo K, Padiso T, Turner Q. AMDIS-Metab R data manipulation for the geographical and floral differentiation of selected honeys from Zambia and Botswana based on volatile chemical compositions using SPME–GC–MS. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03523-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Luong DV, Tam NQ, Xuan DTT, Tai NT. NMR based metabolomic approach for evaluation of Vietnamese honey. VIETNAM JOURNAL OF CHEMISTRY 2020. [DOI: 10.1002/vjch.2019000101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dang Vu Luong
- Institute of Chemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay Hanoi 10000 Viet Nam
| | - Nguyen Quang Tam
- Institute of Chemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay Hanoi 10000 Viet Nam
| | - Do Thi Thanh Xuan
- Institute of Chemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay Hanoi 10000 Viet Nam
| | - Nguyen Tien Tai
- Institute of Chemistry, Vietnam Academy of Science and Technology; 18, Hoang Quoc Viet, Cau Giay Hanoi 10000 Viet Nam
| |
Collapse
|
23
|
Compositional identification and authentication of Chinese honeys by 1H NMR combined with multivariate analysis. Food Res Int 2019; 130:108936. [PMID: 32156383 DOI: 10.1016/j.foodres.2019.108936] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Honey authentication has been becoming more and more important and necessary to the honey producers, the consumers and the market regulatory authority due to its favorite organoleptic and healthy properties, high value and increasing export but prevalent falsification practice for economic motivation in China and the potential health risk of adulterated honey. In this study, we obtained the spectral profiles of 90 authentic and 75 adulterated Chinese honey samples by means of high resolution nuclear magnetic resonance (NMR) spectroscopy, and 65 kinds of major and minor components in honey were identified and quantified from their NMR spectra. Combining with the multivariate statistical analyses including principal component analysis (PCA), linear discriminant analysis (LDA), and orthogonal partial least squared-discriminant analysis (OPLS-DA), the discrimination models were successfully established to identify the adulterated honeys from the authentic ones with an accurate rate of 97.6%. Furthermore, the corresponding volcano plot was used to screen out 8 components including proline, xylobiose, uridine, β-glucose, melezitose, turanose, lysine and an unknown component, which are responsible for the differentiation between the authentic and adulterated honeys and will help to control Chinese domestic honey market.
Collapse
|
24
|
A Contribution to the Harmonization of Non-targeted NMR Methods for Data-Driven Food Authenticity Assessment. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01664-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Consonni R, Cagliani LR. The potentiality of NMR-based metabolomics in food science and food authentication assessment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:558-578. [PMID: 30447115 DOI: 10.1002/mrc.4807] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
In the last years, there was an increasing interest on nuclear magnetic resonance (NMR) spectroscopy, whose applications experienced an exponential growth in several research fields, particularly in food science. NMR was initially developed as the elective technique for structure elucidation of single molecules and nowadays is playing a dominant role in complex mixtures investigations. In the era of the "omics" techniques, NMR was rapidly enrolled as one of the most powerful methods to approach metabolomics studies. Its use in analytical routines, characterized by rapid and reproducible measurements, would provide the identification of a wide range of chemical compounds simultaneously, disclosing sophisticated frauds or addressing the geographical origin, as well as revealing potential markers for other authentication purposes. The great economic value of high-quality or guaranteed foods demands highly detailed characterization to protect both consumers and producers from frauds. The present scenario suggests metabolomics as the privileged approach of modern analytical studies for the next decades. The large potentiality of high-resolution NMR techniques is here presented through specific applications and using different approaches focused on the authentication process of some foods, like tomato paste, saffron, honey, roasted coffee, and balsamic and traditional balsamic vinegar of Modena, with a particular focus on geographical origin characterization, ageing determination, and fraud detection.
Collapse
Affiliation(s)
- Roberto Consonni
- National Research Council, Institute for Macromolecular Studies (ISMAC), Lab. NMR, v. Corti 12, Milan, 20133, Italy
| | - Laura Ruth Cagliani
- National Research Council, Institute for Macromolecular Studies (ISMAC), Lab. NMR, v. Corti 12, Milan, 20133, Italy
| |
Collapse
|
26
|
|
27
|
Wyss KM, Llivina GC, Calderón AI. Biochemometrics and Required Tools in Botanical Natural Products Research: A Review. Comb Chem High Throughput Screen 2019; 22:290-306. [DOI: 10.2174/1386207322666190704094003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
Abstract
This review serves to highlight the role of chemometrics and biochemometrics in recent
literature as well as including a perspective on the current state of the field, as well as the future needs and
possible directions. Specifically examining the analytical methods and statistical tools that are available to
chemists, current applications of QTOF-MS, Orbitrap-MS, LC with PDA/UV detectors, NMR, and IMS
coupled MS are detailed. Of specific interest, these techniques can be applied to botanical dietary
supplement quality, efficacy, and safety. Application in natural products drug discovery, industrial quality
control, experimental design, and more are also discussed.
Collapse
Affiliation(s)
- Kevin M. Wyss
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Graham C. Llivina
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Angela I. Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
28
|
Abstract
Honey-rich composition in biologically active compounds makes honey a food products highly appreciated due to the nutritional and healthy properties. Food-manufacturing is very prone to different types of adulterations and fraudulent labelling making it urgent to establish accurate, fast and cost-effective analytical techniques for honey assessment. In addition to the classical techniques (e.g., physicochemical analysis, microscopy, chromatography, immunoassay, DNA metabarcoding, spectroscopy), electrochemical based-sensor devices have arisen as reliable and green techniques for food analysis including honey evaluation, allowing in-situ and on-line assessment, being a user-friendly procedure not requiring high technical expertise. In this work, the use of electronic tongues, also known as taste sensor devices, for honey authenticity and assessment is reviewed. Also, the versatility of electronic tongues to qualitative (e.g., botanical and/or geographical origin assessment as well as detection of adulteration) and quantitative (e.g., assessment of adulterants levels, determination of flavonoids levels or antibiotics and insecticides residues, flavonoids) honey analysis is shown. The review is mainly focused on the research outputs reported during the last decade aiming to demonstrate the potentialities of potentiometric and voltammetric multi-sensor devices, pointing out their main advantages and present and future challenges for becoming a practical quality analytical tool at industrial and commercial levels.
Collapse
|
29
|
Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS, Cruz AGD, Jarvis B, Rodionova OY, Pomerantsev A. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr Rev Food Sci Food Saf 2018; 17:663-677. [PMID: 33350122 DOI: 10.1111/1541-4337.12341] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 11/27/2022]
Abstract
In the last decade, the use of multivariate statistical techniques developed for analytical chemistry has been adopted widely in food science and technology. Usually, chemometrics is applied when there is a large and complex dataset, in terms of sample numbers, types, and responses. The results are used for authentication of geographical origin, farming systems, or even to trace adulteration of high value-added commodities. In this article, we provide an extensive practical and pragmatic overview on the use of the main chemometrics tools in food science studies, focusing on the effects of process variables on chemical composition and on the authentication of foods based on chemical markers. Pattern recognition methods, such as principal component analysis and cluster analysis, have been used to associate the level of bioactive components with in vitro functional properties, although supervised multivariate statistical methods have been used for authentication purposes. Overall, chemometrics is a useful aid when extensive, multiple, and complex real-life problems need to be addressed in a multifactorial and holistic context. Undoubtedly, chemometrics should be used by governmental bodies and industries that need to monitor the quality of foods, raw materials, and processes when high-dimensional data are available. We have focused on practical examples and listed the pros and cons of the most used chemometric tools to help the user choose the most appropriate statistical approach for analysis of complex and multivariate data.
Collapse
Affiliation(s)
- Daniel Granato
- Dept. of Food Engineering, State Univ. of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Brazil
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, Univ. of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Jânio Sousa Santos
- Dept. of Food Engineering, State Univ. of Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Brazil
| | - Verônica Calado
- School of Chemistry, Federal Univ. of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ramon Silva Rocha
- Dept. de Alimentos, Inst. Federal de Educação, Ciência e Tecnologia (IFRJ), 20270-021, Rio de Janeiro, Brazil
| | - Adriano Gomes Da Cruz
- Dept. de Alimentos, Inst. Federal de Educação, Ciência e Tecnologia (IFRJ), 20270-021, Rio de Janeiro, Brazil
| | - Basil Jarvis
- Dept. of Food and Nutrition Sciences, School of Chemistry, Food and Pharmacy, The Univ. of Reading, Whiteknights, Reading, Berkshire RG6 6AP, U.K
| | - Oxana Ye Rodionova
- Semenov Inst. of Chemical Physics RAS, Kosygin str. 4, 119991, Moscow, Russia
| | - Alexey Pomerantsev
- Semenov Inst. of Chemical Physics RAS, Kosygin str. 4, 119991, Moscow, Russia
| |
Collapse
|
30
|
1H-NMR Profiling and Chemometric Analysis of Selected Honeys from South Africa, Zambia, and Slovakia. Molecules 2018; 23:molecules23030578. [PMID: 29510542 PMCID: PMC6017463 DOI: 10.3390/molecules23030578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Honey is the natural sweet substance produced by honeybee from nectar or honeydew, exhibiting several nutritional and health benefits. It contains a complex mixture of compounds in different proportions, with sugars being the main component. The physicochemical characteristics of ten honeys were evaluated; represented by five, three, and two from South Africa, Slovakia, and Zambia, respectively. The range of values for the pH (3.75–4.38), electrical conductivity (99–659 µS/cm), and moisture content (14.2–17.7%) are within the recommended limits for quality honeys. 1H-NMR (Nuclear Magnetic Resonance) profiling of the honeys in D2O was determined, and the data were analysed by chemometrics. This method is fast, reproducible, and sample pre-treatment is not necessary. The 1H-NMR fingerprints of various chemical shift regions showed similarity or dissimilarity across geographical origins that are useful for identification, detection of adulteration, and quality control. The principal component analysis PCA and partial linear square discriminant analysis PLS-DA of the 1H-NMR profiles successively categorises the honeys into two chemically related groups. The R2 values are higher than the corresponding Q2 values for all samples, confirming the reliability of the model. Honeys in the same cluster contain similar metabolites and belong to the same botanic or floral origin.
Collapse
|
31
|
Burns DT, Dillon A, Warren J, Walker MJ. A Critical Review of the Factors Available for the Identification and Determination of Mānuka Honey. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1154-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Rückriemen J, Henle T. Pilot study on the discrimination of commercial Leptospermum honeys from New Zealand and Australia by HPLC–MS/MS analysis. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3036-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Kortesniemi M, Rosenvald S, Laaksonen O, Vanag A, Ollikka T, Vene K, Yang B. Sensory and chemical profiles of Finnish honeys of different botanical origins and consumer preferences. Food Chem 2017; 246:351-359. [PMID: 29291860 DOI: 10.1016/j.foodchem.2017.10.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 12/01/2022]
Abstract
The sensory-chemical profiles of Finnish honeys (labeled as buckwheat, cloudberry-bog, lingonberry, sweet clover, willowherb and multifloral honeys) were investigated using a multi-analytical approach. The sensory test (untrained panel, n = 62) was based on scaling and check-all-that-apply (CATA) methods accompanied with questions on preference and usage of honey. The results were correlated with corresponding profiles of odor-active compounds, determined using gas chromatography coupled with mass spectrometry/olfactometry (GC-MS/O). Botanical origins and chemical compositions including sugars were evaluated using NMR spectroscopy. A total of 73 odor-active compounds were listed based on GC-O. Sweet and mild honeys with familiar sensory properties were preferred by the panelists (PCA, R2X(1) = 0.7) while buckwheat and cloudberry-bog honeys with strong odor, flavor and color were regarded as unfamiliar and unpleasant. The data will give the honey industry novel information on honey properties in relation to the botanical origin, and consumer preference.
Collapse
Affiliation(s)
- Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Sirli Rosenvald
- Center of Food and Fermentation Technologies (CFFT), EE-12618 Tallinn, Estonia
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Anita Vanag
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Tarja Ollikka
- Finnish Beekeepers' Association, FI-00130 Helsinki, Finland
| | - Kristel Vene
- Center of Food and Fermentation Technologies (CFFT), EE-12618 Tallinn, Estonia; Institute of Chemistry and Biotechnology, Tallinn University of Technology, EE-12618 Tallinn, Estonia
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
34
|
Sobolev AP, Circi S, Capitani D, Ingallina C, Mannina L. Molecular fingerprinting of food authenticity. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|