1
|
Laina KT, Drosou C, Stergiopoulos C, Eleni PM, Krokida M. Optimization of Combined Ultrasound and Microwave-Assisted Extraction for Enhanced Bioactive Compounds Recovery from Four Medicinal Plants: Oregano, Rosemary, Hypericum, and Chamomile. Molecules 2024; 29:5773. [PMID: 39683930 DOI: 10.3390/molecules29235773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
This study presents the synergistic application of ultrasound- and microwave-assisted extraction (UAE-MAE) as a novel and efficient method for recovering bioactive compounds from the medicinal plants oregano, rosemary, Hypericum perforatum, and chamomile. Extraction parameters, including microwave (MW) power, ultrasound (US) power, and extraction time, were optimized using the response surface methodology (RSM), with ethanol as the solvent. Extracts were evaluated for total phenolic content (TPC) via the Folin-Ciocalteu method and antioxidant activity (IC50) using the DPPH assay. High-performance liquid chromatography with diode array detection (HPLC-DAD) identified the main bioactive compounds contributing to their antioxidant and therapeutic potential. The optimized UAE-MAE conditions enhanced phenolic recovery and antioxidant potential across all plants. Notably, Hypericum perforatum exhibited the highest TPC (53.7 mg GAE/g) and strongest antioxidant activity (IC50 29.8 mg extract/g) under 200 W MW, 450 W US, and 12 min, yielding 14.5%. Rosemary achieved the highest yield (23.36%) with a TPC of 26.35 mg GAE/g and an IC50 of 40.75 mg extract/g at 200 W MW, 700 W US, and 8 min. Oregano's optimal conditions (500 W MW, 700 W US, 12 min) produced a TPC of 34.99 mg GAE/g and an IC50 of 50.31 mg extract/g. Chamomile extracts demonstrated lower phenolic content and antioxidant activity but achieved significant yields under 500 W MW, 700 W US, and 5 min. This study highlights UAE-MAE's superior efficiency, showcasing its potential to maximize phenolic recovery sustainably, making it a promising technique for industrial and therapeutic applications.
Collapse
Affiliation(s)
- Konstantina Theodora Laina
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Christina Drosou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Chrysanthos Stergiopoulos
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Panagiota Maria Eleni
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
2
|
Disca V, Travaglia F, Carini C, Coïsson JD, Cravotto G, Arlorio M, Locatelli M. Improving the Extraction of Polyphenols from Cocoa Bean Shells by Ultrasound and Microwaves: A Comparative Study. Antioxidants (Basel) 2024; 13:1097. [PMID: 39334756 PMCID: PMC11428740 DOI: 10.3390/antiox13091097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The extraction of bioactive compounds from food by-products is one of the most important research areas for the nutraceutical, pharmaceutical, and food industries. This research aimed to evaluate the efficiency of Ultrasound-Assisted Extraction (UAE) and Microwave-Assisted Extraction (MAE), either alone or in combination, of phenolic compounds from cocoa bean shells (CBSs). These extraction techniques were compared with conventional methods, such as under simple magnetic stirring and the Soxhlet apparatus. After the preliminary characterization of the gross composition of CBSs, the total polyphenol content and radical scavenging of extracts obtained from both raw and defatted cocoa bean shells were investigated. Quantification of the main polyphenolic compounds was then performed by RP-HPLC-DAD, identifying flavonoids and phenolic acids, as well as clovamide. The application of MAE and UAE resulted in a similar or superior extraction of polyphenols when compared with traditional methods; the concentration of individual polyphenols was variously influenced by the extraction methods employed. Combining MAE and UAE at 90 °C yielded the highest antiradical activity of the extract. Spectrophotometric analysis confirmed the presence of high-molecular-weight melanoidins, which were present in higher concentrations in the extracts obtained using MAE and UAE, especially starting from raw material. In conclusion, these results emphasize the efficiency of MAE and UAE techniques in obtaining polyphenol-rich extracts from CBS and confirm this cocoa by-product as a valuable biomass for the recovery of antioxidant compounds, with a view to possible industrial scale-up.
Collapse
Affiliation(s)
- Vincenzo Disca
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Fabiano Travaglia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Chiara Carini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Jean Daniel Coïsson
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
3
|
Li Z, Cao Q, Chen H, Yang J, Wang Z, Qu X, Yao Y, Zhou Z, Zhang W. Dual Phytochemical/Activity-Guided Optimal Preparation and Bioactive Material Basis of Orthosiphon Stamineus Benth. (Shen Tea) against Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18561-18572. [PMID: 39121367 DOI: 10.1021/acs.jafc.4c05125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Orthosiphon stamineus Benth. (OSB) is a popular plant used for making "Shen tea" or "Java tea". It has been demonstrated with antioxidant, anti-inflammatory, and hepatoprotective activities. However, its potential beneficial effects and bioactive material basis for nonalcoholic fatty liver disease (NAFLD) has not been convincingly studied. In the present work, we conducted dual phytochemical/activity-guided extraction optimization and component fractionation of OSB, and evaluated its beneficial effects on NAFLD. Flavonoids and polyphenols (caffeic acid/protocatechuic acid derivatives) were determined as the dominant phytochemicals in OSB. The extraction process for these phytochemicals was optimized by using response surface methodology. Noticeably, flavonoids showed a stronger correlation with the antioxidant activities of OSB than polyphenols. Likewise, the flavonoid-rich fraction of OSB exerted antioxidant activities stronger than those of other fractions. As expected, in vitro and in vivo studies demonstrated that the flavonoid-rich fraction effectively attenuated weight increase, improved lipid metabolism, alleviated hepatic steatosis, and reversed hepatic inflammation. Importantly, this fraction showed equivalent beneficial effects to the total extract of OSB, suggesting that flavonoids were the main bioactive constituents of OSB. The action mechanism was indicated as direct antioxidant effect through chemical interaction with free radicals and indirect mitochondria-mediated antioxidant defense. Our research offers bioactive substances for further exploitation and expands the potential application of OSB.
Collapse
Affiliation(s)
- Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| | - Qiongyue Cao
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Haoyu Chen
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Junyi Yang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhihao Wang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiangquan Qu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yuqin Yao
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Zhengkun Zhou
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, P. R. China
| |
Collapse
|
4
|
Emilio C, Tomas R, Adelaide G, Andrea N. High power ultrasound treatment of crushed grapes: Beyond the extraction phenomena. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235602011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The treatment of white and red crushed grapes by high power ultrasounds (US) represents an emerging technology in winemaking. In 2019, it was officially recognized by OIV through the resolution n°616-2019, and it was also approved by European Union in January 2022. The US effect on extraction mechanisms was widely studied, but more researches are needed to better understand the ultrasound effect on some specific classes of grape compounds. This research aimed to highlight at laboratory scale some specific effects of ultrasounds on some key compounds of white and red grapes. The samples were sonicated at different frequency (20-30 kHz), time (1-10 min), and power (30-90%) technological conditions used in maceration, to obtain valuable information on potential technological transferability. Valuable results were obtained regarding the release of thiols from their precursors, and the reactivity changes of unstable proteins of white wines. The experimental trails on red grape varieties allowed a maintenance of free anthocyanins and no degradative effects were highlighted. Significant and valuable effects were determined also on the tannin polymerization, with an astringency decrease.
The sonication treatment of crushed grapes showed several chemical effects that contribute to decreasing the winemaking inputs and preserving the wine quality. The process conditions must be managed related to grape variety and ripeness for a precision winemaking.
Collapse
|
5
|
Influence of Ultrasound Application in Fermented Pineapple Peel on Total Phenolic Content and Antioxidant Activity. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antioxidant phenolic compounds were extracted from fermented samples of Golden pineapple peels via an ultrasound method. The fermentation conditions to maximize the production of phenolic content and antioxidant activity were previously determined (pH: 5.5, T: 37.3 °C and 85% moisture content). A central composite design with 20 treatments was applied to evaluate the effect of the ethanol concentration, time, and temperature on the production of phenolic compounds and antioxidant activity of the extracts. The statistical analysis showed that the optimal conditions to produce extracts with high phenolic content and antioxidant activity were: 62 °C, 30 min and 58% ethanol. We obtained 866.26 mg gallic acid equivalents (GAE)/g d.m in total phenolic content and for antioxidant activity expressed as percentage inhibition, 80.06 ± 1.02% for ABTS and 63.53 ± 2.02% for DPPH, respectively. The bioactive compound profile in the extracts was identified and quantified using ultra-high performance liquid chromatography (UHPLC), this method showed the presence of rosmarinic acid, caffeic acid, vanillic acid, p-coumaric acid, ferulic acid, quercetin-3 glucoside, rutine, quercetin, kaempherol-3 glucoside and gallic acid, demonstrating the great potential of these by-products to obtain components that can benefit the consumer’s health.
Collapse
|
6
|
Optimization of Subcritical Fluid Extraction for Total Saponins from Hedera nepalensis Leaves Using Response Surface Methodology and Evaluation of Its Potential Antimicrobial Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10071268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Hedera nepalensis (Araliaceae) is a recognized medicinal plant founded in Asia that has been reported to work in antioxidant, antifungal, antimicrobial, and antitumor capacities. (2) Methods: The subcritical fluid extraction of saponin from Hedera nepalensis leaves and the optimum of the extraction process based on yield of saponin contents (by calculating the hederacoside C contents in dried Hedera nepalensis leaves) are examined by response surface methodology (RSM). Furthermore, the antimicrobial activity of the extract is tested for potential drug applications in the future. (3) Results: Based upon RSM data, the following parameters are optimal: extraction time of 3 min, extraction temperature of 150 °C, and a sample/solvent ratio of 1:55 g/mL. Under such circumstances, the achieved yield of saponin is 1.879%. Moreover, the extracts inhibit the growth of some bacterial strains (Streptococcus pneumoniae, Streptococcus pyogenes, Haemophilus influenza) at a moderate to strong level with inhibition zone diameter values ranging from 12.63 to 19.50 mm. (4) Conclusions: The development of such a model provides a robust experimental process for optimizing the extraction factors of saponin contents from Hedera nepalensis extract using subcritical fluid extraction and RSM. Moreover, the current work reveals that saponin extracts of Hedera nepalensis leaves exhibit a potential antimicrobial activity, which can be used as scientific evidence for further study.
Collapse
|
7
|
Enhanced recovery of bioactive compounds from Trigonella-foenum graecum seeds by ultrasonic-assisted extraction. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01240-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Effect of Radiofrequency Pre-treatment on the Extraction of Bioactives from Clitoria ternatea and Hibiscus rosa sinensis and Insights to Enzyme Inhibitory Activities. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02770-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ultrasound treatment of red wine: Effect on polyphenols, mathematical modeling, and scale-up considerations. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS. Antioxidants (Basel) 2021; 10:antiox10101612. [PMID: 34679747 PMCID: PMC8533610 DOI: 10.3390/antiox10101612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Acacia Seyal gum (ASG), also known as gum Arabic, is an antioxidant-rich soluble fiber. ASG has been reported to have many biological activities, including anticancer, antidiabetic, antiulcer, and immunomodulatory activity. Extraction of bioactive compounds from ASG is commonly performed using conventional extraction methods. However, these techniques have certain limitation in terms of extraction time, energy, and solvent requirements. Ultrasound-assisted extraction (UAE) could be used as an alternative technique to extract bioactive compounds in less time, at low temperature, and with less energy and solvent requirements. In this study, the UAE extraction of ASG was optimized using response surface methodology (RSM). A face-centered central composite design (FCCCD) was used to monitor the effect of different independent factors of ultrasound operation (sonication time, temperature, and solvent ratio) on ASG extraction yield. In addition, screening and characterization of phytochemicals in 60% ethanol ASG extract was carried out using Raman microscopy, Fourier transform infrared spectroscopy (FTIR), and gas chromatography time-of-flight mass spectroscopy (GC-TOFMS) analysis. The results indicated that, under optimal conditions (extraction time 45 min, extraction temperature 40 °C, and solid–liquid ratio of 1:25 g/mL), the yield of ASG was 75.87% ± 0.10. This yield was reasonably close to the predicted yield of 75.39% suggested by the design of experiment. The ANOVA revealed that the model was highly significant due to the low probability value (p < 0.0001). Raman spectrum fingerprint detected polysaccharides, such as galactose and glucose, and protein like lysine and proline, while FTIR spectrum revealed the presence of functional groups peaks value of alkanes, aldehydes, aliphatic amines, and phenol. GC-TOFMS spectroscopic detected the presence of strong d-galactopyranose, carotenoid, and lycopene antioxidant compounds. In conclusion, this study demonstrated that the UAE technique is an efficient method to achieve a high yield of ASG extracts. The selected model is adequate to optimize the extraction of several chemical compounds reported in this study.
Collapse
|
11
|
Li Z, Qu B, Zhou L, Chen H, Wang J, Zhang W, Chen C. A New Strategy to Investigate the Efficacy Markers Underlying the Medicinal Potentials of Orthosiphon stamineus Benth. Front Pharmacol 2021; 12:748684. [PMID: 34630118 PMCID: PMC8497827 DOI: 10.3389/fphar.2021.748684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Orthosiphon stamineus Benth. (OSB) is a well-known herbal medicine exerting various pharmacological effects and medicinal potentials. Owing to its complex of phytochemical constituents, as well as the ambiguous relationship between phytochemical constituents and varied bioactivities, it is a great challenge to explore which constituents make a core contribution to the efficacy of OSB, making it difficult to determine the efficacy makers underlying the varied efficacies of OSB. In our work, a new strategy was exploited and applied for investigating efficacy markers of OSB consisting of phytochemical analysis, in vivo absorption analysis, bioactive compound screening, and bioactive compound quantification. Using liquid chromatography coupled with mass spectrometry, a total of 34 phytochemical components were detected in the OSB extract. Subsequently, based on in vivo absorption analysis, 14 phytochemical constituents in the form of prototypes were retained as potential bioactive compounds. Ten diseases were selected as the potential indications of OSB based on previous reports, and then the overall interaction between compounds, action targets, action pathways, and diseases was revealed based on bioinformatic analysis. After refining key pathways and targets, the interaction reversing from pathways, targets to constituents was deduced, and the core constituents, including tanshinone IIA, sinensetin, salvianolic acid B, rosmarinic acid, and salvigenin, were screened out as the efficacy markers of OSB. Finally, the contents of these five constituents were quantified in three different batches of OSB extracts. Among them, the content of salvianolic acid B was the highest while the content of tanshinone IIA was the lowest. Our work could provide a promising direction for future research on the quality control and pharmacological mechanism of OSB.
Collapse
Affiliation(s)
- Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Biao Qu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Lei Zhou
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Caifa Chen
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
12
|
Ultrasonic microwave-assisted micellar extraction and purification of flavonoids from licorice by metal complex and antisolvent recrystallization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Chan HP, Chua LS, Abdullah FI. Ultrasound assisted extraction and solvent partition for polyhydroxylated and polymethoxylated flavones and phenolic acids from
Orthosiphon aristatus. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui Peng Chan
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Lee Suan Chua
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
- Institute of Bioproduct Development Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Farah Izana Abdullah
- Institute of Bioproduct Development Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| |
Collapse
|
14
|
Wang C, Yang H, Li J. Combination of Microwave, Ultrasonic, Enzyme Assisted Method for Curcumin Species Extraction from Turmeric (Curcuma Longa L.) and Evaluation of their Antioxidant Activity. EFOOD 2021. [DOI: 10.2991/efood.k.210329.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
15
|
Sarkar R, Bhowmik A, Kundu A, Dutta A, Nain L, Chawla G, Saha S. Inulin from Pachyrhizus erosus root and its production intensification using evolutionary algorithm approach and response surface methodology. Carbohydr Polym 2021; 251:117042. [PMID: 33142600 PMCID: PMC7480738 DOI: 10.1016/j.carbpol.2020.117042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
The ultrasound assisted extraction of inulin from Pachyrhizus erosus roots. Compared with microwave assisted and conventional extraction technique. Optimization the extraction by RSM and genetic algorithm. Purity profiling and degree of polymerization of extracted inulin. Significant prebiotic activity recorded using Lactobacillus fermentum.
Production of inulin from yam bean tubers by ultrasonic assisted extraction (UAE) was optimized by using response surface methodology (RSM) and genetic algorithms (GA). Yield of inulin was obtained between 11.97%–12.15% for UAE and 11.21%–11.38% for microwave assisted extraction (MAE) using both the methodologies, significantly higher than conventional method (9.9 %) using optimized conditions. Under such optimized condition, SEM image of root tissues before and extraction showed disruption and microfractures over surface. UAE provided a shade better purity of extracted inulin than other two techniques. Degree of polymerization in inulin was also recorded to be better, might be due lesser degradation during extraction. Significant prebiotic activity was recorded while evaluation using Lactobacillus fermentum and it was 36 % more than glucose treatment. Energy density by UAE was few fold lesser than MAE. Carbon emission was far more less in both these methods than the conventional one.
Collapse
Affiliation(s)
- Rohan Sarkar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arpan Bhowmik
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
16
|
Optimization of Microwave and Ultrasound Extraction Methods of Açai Berries in Terms of Highest Content of Phenolic Compounds and Antioxidant Activity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid technological progress focuses on lowering costs, labor and time. Thus, in order to minimize the expenses of bioactive compound production, great effort is undertaken to optimize the extraction of these compounds. Green extraction is popular and relatively inexpensive. However, the same extraction method does not always work for all types of matrixes due to the biological diversity of the tissue. Therefore, the purpose of this study was to identify the optimal green extraction method of açai berries (ultrasound or microwaves) able to isolate extracts containing the highest possible number of phenolic compounds with the highest antioxidant activity. The results show that the highest content of total phenolic compounds in the extracts was obtained after the application of a temperature of 45 °C, using ultrasound for 25 min and 45 min, microwaves for 3.16 min and a water bath for 25 min. Ultrasound turned out to be the most effective method of flavonoid extraction. In turn, the highest anthocyanin content was obtained for microwave extraction. Additionally, the application of microwaves for 4.33 min (45 °C) guaranteed the highest ferric-reducing antioxidant activity (FRAP) among the extracts. The results show that the use of microwaves shortens the açai extraction time and ensures both a high content of total phenolic compounds and strong antioxidant activity in the extract.
Collapse
|
17
|
Kamarudin N, Jusoh R, Sukor N, Jalil A, Setiabudi H. Intensified photocatalytic degradation of 2, 4–dicholorophenoxyacetic acid using size-controlled silver nanoparticles: Effect of pre-synthesis extraction. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Plazzotta S, Ibarz R, Manzocco L, Martín-Belloso O. Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. ULTRASONICS SONOCHEMISTRY 2020; 63:104954. [PMID: 31945560 DOI: 10.1016/j.ultsonch.2019.104954] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 05/27/2023]
Abstract
The possibility to valorize peach juice waste, either frozen or air-dried, through microwave (MAE) and ultrasound assisted extraction (UAE) was evaluated. MAE power, UAE amplitude and time were optimized using a 22-factorial design. For frozen waste, optimal MAE (540 W, 50 s) and UAE (23%, 120 s) processes gave extracts presenting analogous content (on 100 g dry matter) of polyphenols (309-317 mg GAE), flavonoids (94-120 mg QE), anthocyanins (8-9 mg CGE), and similar antioxidant activity (2.1-2.2 mg TE). Extracts from dried waste resulted higher in polyphenols (630-670 mg GAE) but lower in flavonoids (75-90 mg QE), anthocyanins and vitamin C (not detectable). Although developing an energy density 2-fold higher than that of UAE, MAE more efficaciously extracted vitamin C (108 mg/100 g dm) and required half extraction time (50 s). MAE would also be less impactful than UAE in terms of greenhouse gas emission and energy requirements on industrial scale. The industrial valorization of peach waste through the application of microwave or ultrasound assisted extraction requires quantitative data, able to encourage company interest and investment. This study not only identifies optimal MAE and UAE parameters to assist the extraction of peach waste bioactive compounds but also provides a preliminary estimation of the potential economic and environmental impact on an industrial scale of these technologies.
Collapse
Affiliation(s)
- S Plazzotta
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - R Ibarz
- Department of Food Technology, University of Lleida, Agrotecnio Center, Spain
| | - L Manzocco
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - O Martín-Belloso
- Department of Food Technology, University of Lleida, Agrotecnio Center, Spain.
| |
Collapse
|
19
|
Wong ST, Tan MC, Geow CH. Optimization of ultrasound‐assisted ethanol extraction of hazelnut oil. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shi Ting Wong
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment UCSI University Kuala Lumpur Malaysia
| | - Mei Ching Tan
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment UCSI University Kuala Lumpur Malaysia
| | - Chin Hong Geow
- Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment UCSI University Kuala Lumpur Malaysia
| |
Collapse
|
20
|
Siva SP, Kow KW, Chan CH, Tang SY, Ho YK. Prediction of droplet sizes for oil-in-water emulsion systems assisted by ultrasound cavitation: Transient scaling law based on dynamic breakup potential. ULTRASONICS SONOCHEMISTRY 2019; 55:348-358. [PMID: 30871878 DOI: 10.1016/j.ultsonch.2018.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The dynamics of droplet breakup during emulsification is a complicated process due to the interplay between multiple physico-chemical and hydrodynamic factors, especially in an energy-intensive ultrasound-assisted emulsification process. In this work, by mapping the physical processing parameters of ultrasound emulsification into a reduced domain that is governed by the power density and the initial average droplet diameter, a dimensionless parameter that resembles the dynamic breakup potential (η) was established via dimensional analysis. In addition to shedding important insights into the emulsification process, η further facilitates the establishment of a transient scaling relationship that is a function of the characteristic value (a) of the emulsion system. Experimental case study on a cellulose nanocrystals (CNC)-based olein-in-water emulsion system prepared via ultrasound cavitation confirmed the validity of the scaling relationship and sub-universal self-similarity was observed. Using the proposed model, good predictions of the transient of droplet size evolution were attained where the value of η, i.e. the proportionality constant, can be conveniently computed using data from a single time point. Application on other emulsion systems further suggested that the value of a possibly indicates the relative minimum size limit of a particular fluids-emulsifier system. Our approach is general, which encourages widespread adoption for emulsification related studies.
Collapse
Affiliation(s)
- Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Kien-Woh Kow
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Chung-Hung Chan
- Advanced Oleochemical Technology Division, Malaysian Palm Oil Board, 43000 Kajang, Selangor, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Yong Kuen Ho
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia; Monash-Industry Palm Oil Education and Research Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
| |
Collapse
|
21
|
Supercritical Fluid Extraction of Fat and Caffeine with Theobromine Retention in the Cocoa Shell. Processes (Basel) 2019. [DOI: 10.3390/pr7060385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cocoa shell is a residue of low commercial value, which represents an alternative for obtaining substances of added value for the food and pharmaceutical industry. Substances of interest in the shell include fat and methylxanthines (theobromine and caffeine). In order to obtain the extraction behavior with supercritical CO2, a 23 factorial design was proposed with six central points, taking dynamic extraction into consideration. The following factors were involved: pressure (2,000–6,000 psi), temperature (313–333 K), and time (30–90 min). The obtained yield was between 3.66% and 15.30%. Fat was the substance that was extracted most effectively (94.73%). Caffeine demonstrated variability in the residue, with at least six treatments that exceeded a removal rate of more than 90%, while it was practically impossible to extract theobromine. The difference with regard to the extraction of theobromine may be attributed to its low solubility. Characterization using FT–IR showed the modifications before and after the process, providing clear evidence of the changes corresponding to the fat at 2,924, 2,854 and 1,745 cm−1. The results presented establish the basis for the extraction of substances such as fats and methylxanthines from a cocoa shell with the use of CO2.
Collapse
|
22
|
Pettinato M, Casazza AA, Perego P. The role of heating step in microwave-assisted extraction of polyphenols from spent coffee grounds. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Preliminary Phytochemical Analysis of Berberis goudotii Triana & Planch. ex Wedd. (Berberidaceae) with Anticariogenic and Antiperiodontal Activities. Sci Pharm 2019. [DOI: 10.3390/scipharm87010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Berberis goudotii is an endemic Colombian plant found in the paramo ecosystem. It has been used in food preparation and as a medicinal plant for diverse treatments. Additionally, it is used as a mouthwash to strengthen the gums and combat throat irritations and periodontitis. The present research evaluated Berberis goudotii aerial parts extract and fractions antimicrobial activities. Ultrasonic-assisted extraction was used to attain total ethanol-water extract. Solid-liquid fractionation was used to obtain hexane fraction. The residue was dispersed in water and liquid-liquid fractionation was carried-out to acquire dichloromethane, butanol and water fractions. Preliminary phytochemical analysis was performed on total extract and phenol, polyphenol, flavonoid, and proanthocyanidin, while tannin content was quantified. Antimicrobial activity assessment was performed by agar diffusion method using disks and wells employing Ceftazidime as a positive control against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus casei, Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Antimicrobial activity was determined as relative percentage inhibition (RPI), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Phenols (92.5 ± 7.7 mg GA/10 g), polyphenols (87.7 ± 8.1 mg PG/10 g) and tannins (44.1 ± 4.3 mg PG/10 g) were among the highest secondary metabolites observed. Total extract presented an MBC of 1.0 µg/µL against cariogenic bacteria (Streptococcus mutans and Streptococcus sobrinus) and 0.12 µg/µL against bacteria associated with periodontal disease (Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum). Butanol and hexane fractions showed antiperiodontal activity with MBC of 0.12 and 1.0 µg/µL, respectively. In conclusion, Berberis goudotii total extract demonstrated antimicrobial activity against cariogenic and periodontal microorganisms, on the other hand, hexane and butanol fractions displayed antiperiodontal activity.
Collapse
|
24
|
Extraction and incorporation of bioactives into protein formulations for food and biomedical applications. Int J Biol Macromol 2018; 120:2094-2105. [DOI: 10.1016/j.ijbiomac.2018.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
|
25
|
Effect of ultrasounds and high pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
See TY, Yusoff R, Chan CH, Ngoh GC. A solid-state microwave method to disrupt biomass microstructure for natural product extraction. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Khan MK, Ahmad K, Hassan S, Imran M, Ahmad N, Xu C. Effect of novel technologies on polyphenols during food processing. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Chen L, Yang M, Mou H, Kong Q. Ultrasound-assisted extraction and characterization of anthocyanins from purple corn bran. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liyuan Chen
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Min Yang
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Haijin Mou
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| | - Qing Kong
- College of Food Science and Engineering; Ocean University of China; Qingdao China
| |
Collapse
|