1
|
Huang S, Deng H, Wei X, Zhang J. Progress in application of terahertz time-domain spectroscopy for pharmaceutical analyses. Front Bioeng Biotechnol 2023; 11:1219042. [PMID: 37533693 PMCID: PMC10393043 DOI: 10.3389/fbioe.2023.1219042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
Terahertz time-domain spectroscopy is an analytical method using terahertz time-domain pulses to study the physical and chemical properties of substances. It has strong potential for application in pharmaceutical analyses as an original non-destructive, efficient and convenient technology for spectral detection. This review briefly introduces the working principle of terahertz time-domain spectroscopy technology, focuses on the research achievements of this technology in analyses of chemical drugs, traditional Chinese medicine and biological drugs in the past decade. We also reveal the scientific feasibility of practical application of terahertz time-domain spectroscopy for pharmaceutical detection. Finally, we discuss the problems in practical application of terahertz time-domain spectroscopy technology, and the prospect of further development of this technology in pharmaceutical analyses. We hope that this review can provide a reference for application of terahertz time-domain spectroscopy technology in pharmaceutical analyses in the future.
Collapse
Affiliation(s)
- Shuteng Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hanxiu Deng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xia Wei
- Shandong Institute for Food and Drug Control, Jinan, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Fu Y, Chen T, Chen L, Guo Y, Yang Z, Mu N, Feng H, Zhang M, Wang H. Terahertz time-domain attenuated total reflection spectroscopy integrated with a microfluidic chip. Front Bioeng Biotechnol 2023; 11:1143443. [PMID: 36994356 PMCID: PMC10040880 DOI: 10.3389/fbioe.2023.1143443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The integration of a microfluidic chip into terahertz time-domain attenuated total reflection (THz TD-ATR) spectroscopy is highly demanded for the accurate measurement of aqueous samples. Hitherto, however little work has been reported on this regard. Here, we demonstrate a strategy of fabricating a polydimethylsiloxane microfluidic chip (M-chip) suitable for the measurement of aqueous samples, and investigate the effects of its configuration, particularly the cavity depth of the M-chip on THz spectra. By measuring pure water, we find that the Fresnel formulae of two-interface model should be applied to analyze the THz spectral data when the depth is smaller than 210 μm, but the Fresnel formula of one-interface model can be applied when the depth is no less than 210 μm. We further validate this by measuring physiological solution and protein solution. This work can help promote the application of THz TD-ATR spectroscopy in the study of aqueous biological samples.
Collapse
Affiliation(s)
- Ying Fu
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ligang Chen
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Yuansen Guo
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhongbo Yang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingkun Zhang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Mingkun Zhang, ; Huabin Wang,
| | - Huabin Wang
- Center of Super-Resolution Optics & Chongqing Engineering Research Center of High-Resolution and Three-Dimensional Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Mingkun Zhang, ; Huabin Wang,
| |
Collapse
|
3
|
Ben Halima H, Baraket A, Vinas C, Zine N, Bausells J, Jaffrezic-Renault N, Teixidor F, Errachid A. Selective Antibody-Free Sensing Membranes for Picogram Tetracycline Detection. BIOSENSORS 2022; 13:71. [PMID: 36671906 PMCID: PMC9855611 DOI: 10.3390/bios13010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 06/12/2023]
Abstract
As an antibody-free sensing membrane for the detection of the antibiotic tetracycline (TC), a liquid PVC membrane doped with the ion-pair tetracycline/θ-shaped anion [3,3'-Co(1,2-C2B9H11)2]- ([o-COSAN]-) was formulated and deposited on a SWCNT modified gold microelectrode. The chosen transduction technique was electrochemical impedance spectroscopy (EIS). The PVC membrane was composed of: the tetracycline/[o-COSAN]- ion-pair, a plasticizer. A detection limit of 0.3 pg/L was obtained with this membrane, using bis(2-ethylhexyl) sebacate as a plasticizer. The sensitivity of detection of tetracycline was five times higher than that of oxytetracycline and of terramycin, and 22 times higher than that of demeclocycline. A shelf-life of the prepared sensor was more than six months and was used for detection in spiked honey samples. These results open the way to having continuous monitoring sensors with a high detection capacity, are easy to clean, avoid the use of antibodies, and produce a direct measurement.
Collapse
Affiliation(s)
- Hamdi Ben Halima
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Abdoullatif Baraket
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Clara Vinas
- Inorganic Materials Laboratory, Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Nadia Zine
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Joan Bausells
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Nicole Jaffrezic-Renault
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| | - Francesc Teixidor
- Inorganic Materials Laboratory, Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193 Barcelona, Spain
| | - Abdelhamid Errachid
- Institut de Sciences Analytiques (ISA)-UMR 5280, Université Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Lyon, France
| |
Collapse
|
4
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Terahertz spectroscopy of temperature-induced transformation between glutamic acid, pyroglutamic acid and racemic pyroglutamic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121150. [PMID: 35313170 DOI: 10.1016/j.saa.2022.121150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Under heating conditions, L-Glutamic acid (L-Glu) can be dehydrated to form L-pyroglutamic acid (L-PGA), and L-PGA can racemize to form DL-PGA. Here, we characterized this transformation at different temperatures and times by terahertz time domain spectroscopy (THz-TDS). By Powder X-ray diffraction (PXRD), the validity of THz spectroscopy is verified. The results prove that the reaction rate of dehydration and racemization is significantly affected by temperature. The THz spectra divided the reactions into three stages. At 150-155 °C, the reaction changes drastically. Furthermore, we found that the absorption intensity at 0.97 and 1.55 THz has a good dependence on the reaction temperature and time, showing a non-linear relationship (R2 > 0.98). Our findings suggest that the chemical transformation and reaction rate can be sensitively probed by terahertz spectroscopy, which provides a potential method for the quantitative analysis of reaction products.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
5
|
Yang R, Li Y, Qin B, Zhao D, Gan Y, Zheng J. Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy. RSC Adv 2022; 12:1769-1776. [PMID: 35425184 PMCID: PMC8979129 DOI: 10.1039/d1ra06905e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Feature extraction is a key factor to detect pesticides using terahertz spectroscopy. Compared to traditional methods, deep learning is able to obtain better insights into complex data features at high levels of abstraction. However, reports about the application of deep learning in THz spectroscopy are rare. The main limitation of deep learning to analyse terahertz spectroscopy is insufficient learning samples. In this study, we proposed a WGAN-ResNet method, which combines two deep learning networks, the Wasserstein generative adversarial network (WGAN) and the residual neural network (ResNet), to detect carbendazim based on terahertz spectroscopy. The Wasserstein generative adversarial network and pretraining model technology were employed to solve the problem of insufficient learning samples for training the ResNet. The Wasserstein generative adversarial network was used for generating more new learning samples. At the same time, pretraining model technology was applied to reduce the training parameters, in order to avoid residual neural network overfitting. The results demonstrate that our proposed method achieves a 91.4% accuracy rate, which is better than those of support vector machine, k-nearest neighbor, naïve Bayes model and ensemble learning. In summary, our proposed method demonstrates the potential application of deep learning in pesticide residue detection, expanding the application of THz spectroscopy.
Collapse
Affiliation(s)
- Ruizhao Yang
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| | - Yun Li
- College of Chemistry and Food Science, Yulin Normal University Yulin China
| | - Binyi Qin
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
- Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University Yulin China
| | - Di Zhao
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| | - Yongjin Gan
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| | - Jincun Zheng
- School of Physics and Telecommunication Engineering, Yulin Normal University Yulin China
| |
Collapse
|
6
|
Yu W, Qin Y, Fan Y, Wang Z, Cheng Z. A Fluorescent Probe Based on Polyethyleneimine Protected Copper Nanoclusters for the Assay of Tetracycline Hydrochloride and Vitamin B12. ChemistrySelect 2021. [DOI: 10.1002/slct.202102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weihua Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Yongjun Qin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Yucong Fan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
- Institute of Applied Chemistry China West Normal University Nanchong 637002 China
| |
Collapse
|
7
|
Lin X, Sun DW. Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Attenuated Total Reflection for Terahertz Modulation, Sensing, Spectroscopy and Imaging Applications: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Terahertz (THz) technique has become one of the most promising analytical methods and has been applied in many fields. Attenuated total reflection (ATR) technique applied in THz spectroscopy and imaging has been proven to be superior in functionalities such as modulation, sensing, analyzing, and imaging. Here, we first provide a concise introduction to the principle of ATR, discuss the factors that impact the ATR system, and demonstrate recent advances on THz wave modulation and THz surface plasmon sensing based on the THz-ATR system. Then, applications on THz-ATR spectroscopy and imaging are reviewed. Towards the later part, the advantages and limitations of THz-ATR are summarized, and prospects of modulation, surface plasmon sensing, spectroscopy and imaging are discussed.
Collapse
|
9
|
Feng CH, Otani C. Terahertz spectroscopy technology as an innovative technique for food: Current state-of-the-Art research advances. Crit Rev Food Sci Nutr 2020; 61:2523-2543. [PMID: 32584169 DOI: 10.1080/10408398.2020.1779649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
With the dramatic development of source and detector components, terahertz (THz) spectroscopy technology has recently shown a renaissance in various fields such as medical, material, biosensing and pharmaceutical industry. As a rapid and noninvasive technology, it has been extensively exploited to evaluate food quality and ensure food safety. In this review, the principles and processes of THz spectroscopy are first discussed. The current state-of-the-art applications of THz and imaging technologies focused on foodstuffs are then discussed. The advantages and challenges are also covered. This review offers detailed information for recent efforts dedicated to THz for monitoring the quality and safety of various food commodities and the feasibility of its widespread application. THz technology, as an emerging and unique method, is potentially applied for detecting food processing and maintaining quality and safety.
Collapse
Affiliation(s)
- Chao-Hui Feng
- RIKEN Centre for Advanced Photonics, RIKEN, Sendai, Japan
| | - Chiko Otani
- RIKEN Centre for Advanced Photonics, RIKEN, Sendai, Japan.,Department of Physics, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Wang C, Huang Y, Zhou R, Xie L, Ying Y. Rapid analysis of a doxycycline hydrochloride solution by metallic mesh device-based reflection terahertz spectroscopy. OPTICS EXPRESS 2020; 28:12001-12010. [PMID: 32403701 DOI: 10.1364/oe.389517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Terahertz (THz) spectroscopy has the advantages of non-ionization and spectroscopic fingerprint, which can be used for biological and chemical compound analysis. However, because of the strong absorption of water in the THz region, it is still a challenge for THz waves to realize aqueous solution detection. In this study, taking a doxycycline hydrochloride (DCH) aqueous solution as the target, we proposed a THz metallic mesh device (MMD) based reflection platform for the first time for sensing. The angle characteristics of the THz MMD was investigated through numerical simulations and experimental measurements to get an optimized configuration for the platform. When the projection of THz electric field polarization onto the MMD plane gets parallel to latitudinal direction of the MMD apertures, a strong resonant surface mode can be achieved, and our proposed platform can be successfully used to detect the DCH solution with a concentration as low as 1 mg L-1. The sensing mechanism of our platform was also explored by analyzing the influences of the immersion depth into the MMD holes and the extinction coefficient of droplets on the reflection spectra. Our work presents a rapid, low-cost, and practical platform for antibiotic solution sensing using THz radiation, which opens new avenues for the microanalysis of chemicals or biomolecules in strongly absorptive solutions in the THz region.
Collapse
|
11
|
Cao Y, Huang P, Chen J, Ge W, Hou D, Zhang G. Qualitative and quantitative detection of liver injury with terahertz time-domain spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:982-993. [PMID: 32133233 PMCID: PMC7041463 DOI: 10.1364/boe.381660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 05/05/2023]
Abstract
Terahertz technology has been widely used as a nondestructive and effective detection method. Herein, terahertz time-domain spectroscopy was used to detect drug-induced liver injury in mice. Firstly, the boxplots were used to detect abnormal data. Then the maximal information coefficient method was used to search for the features strongly correlated with the degree of injury. After that, the liver injury model was built using the random forests method in machine learning. The results show that this method can effectively identify the degree of liver injury and thus provide an auxiliary diagnostic method for detecting minor liver injury.
Collapse
Affiliation(s)
- Yuqi Cao
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Pingjie Huang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Dibo Hou
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Guangxin Zhang
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Liang QI, Maocheng ZHAO, Jie ZHAO, Yuweiyi TANG. Preliminary investigation of Terahertz spectroscopy to predict pork freshness non-destructively. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.25718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- QI Liang
- Nanjing Forestry University, China; Nanjing Normal University, China
| | - ZHAO Maocheng
- Nanjing Forestry University, China; Taizhou University, China
| | - ZHAO Jie
- Nanjing Forestry University, China; Nanjing Institute of Industrial Professional Technology, China
| | | |
Collapse
|
13
|
Afsah-Hejri L, Hajeb P, Ara P, Ehsani RJ. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr Rev Food Sci Food Saf 2019; 18:1563-1621. [PMID: 33336912 DOI: 10.1111/1541-4337.12490] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
Food product safety is a public health concern. Most of the food safety analytical and detection methods are expensive, labor intensive, and time consuming. A safe, rapid, reliable, and nondestructive detection method is needed to assure consumers that food products are safe to consume. Terahertz (THz) radiation, which has properties of both microwave and infrared, can penetrate and interact with many commonly used materials. Owing to the technological developments in sources and detectors, THz spectroscopic imaging has transitioned from a laboratory-scale technique into a versatile imaging tool with many practical applications. In recent years, THz imaging has been shown to have great potential as an emerging nondestructive tool for food inspection. THz spectroscopy provides qualitative and quantitative information about food samples. The main applications of THz in food industries include detection of moisture, foreign bodies, inspection, and quality control. Other applications of THz technology in the food industry include detection of harmful compounds, antibiotics, and microorganisms. THz spectroscopy is a great tool for characterization of carbohydrates, amino acids, fatty acids, and vitamins. Despite its potential applications, THz technology has some limitations, such as limited penetration, scattering effect, limited sensitivity, and low limit of detection. THz technology is still expensive, and there is no available THz database library for food compounds. The scanning speed needs to be improved in the future generations of THz systems. Although many technological aspects need to be improved, THz technology has already been established in the food industry as a powerful tool with great detection and quantification ability. This paper reviews various applications of THz spectroscopy and imaging in the food industry.
Collapse
Affiliation(s)
- Leili Afsah-Hejri
- Mechanical Engineering Dept., School of Engineering, Univ. of California, Merced, 5200 N. Lake Rd., Merced, CA, 95343
| | - Parvaneh Hajeb
- Dept. of Environmental Science, Aarhus Univ., Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Parsa Ara
- College of Letters and Sciences, Univ. of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Reza J Ehsani
- Mechanical Engineering Dept., School of Engineering, Univ. of California, Merced, 5200 N. Lake Rd., Merced, CA, 95343
| |
Collapse
|
14
|
El Alami El Hassani N, Baraket A, Boudjaoui S, Taveira Tenório Neto E, Bausells J, El Bari N, Bouchikhi B, Elaissari A, Errachid A, Zine N. Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical Bio-MEMS. Biosens Bioelectron 2019; 130:330-337. [DOI: 10.1016/j.bios.2018.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023]
|
15
|
Liu H, Wang Y, Xu D, Jiang Z, Li J, Wu L, Yan C, Tang L, He Y, Yan D, Ding X, Feng H, Yao J. Optimization for vertically scanning terahertz attenuated total reflection imaging. OPTICS EXPRESS 2018; 26:20744-20757. [PMID: 30119380 DOI: 10.1364/oe.26.020744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Terahertz attenuated total reflection imaging has been used to develop preliminary applications without any in-depth analysis of the nature of present systems. Based on our proposed vertically scanning imaging system, an analysis of optimum prism design and polarization selection for error reduction is presented theoretically and experimentally, showing good agreement. By taking the secondary reflection inside the prism and the prism deflection into consideration, p-polarized terahertz waves are recommended for prisms with a base angle below 31°, leading to minimum error. This work will contribute to the development of more practical application of terahertz attenuated total reflection scanning imaging in various fields with enhanced performance.
Collapse
|
16
|
Design Considerations for Integration of Terahertz Time-Domain Spectroscopy in Microfluidic Platforms. PHOTONICS 2018. [DOI: 10.3390/photonics5010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microfluidic platforms have received much attention in recent years. In particular, there is interest in combining spectroscopy with microfluidic platforms. This work investigates the integration of microfluidic platforms and terahertz time-domain spectroscopy (THz-TDS) systems. A semiclassical computational model is used to simulate the emission of THz radiation from a GaAs photoconductive THz emitter. This model incorporates white noise with increasing noise amplitude (corresponding to decreasing dynamic range values). White noise is selected over other noise due to its contributions in THz-TDS systems. The results from this semiclassical computational model, in combination with defined sample thicknesses, can provide the maximum measurable absorption coefficient for a microfluidic-based THz-TDS system. The maximum measurable frequencies for such systems can be extracted through the relationship between the maximum measurable absorption coefficient and the absorption coefficient for representative biofluids. The sample thickness of the microfluidic platform and the dynamic range of the THz-TDS system play a role in defining the maximum measurable frequency for microfluidic-based THz-TDS systems. The results of this work serve as a design tool for the development of such systems.
Collapse
|
17
|
Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Yang X, Yang K, Zhao X, Lin Z, Liu Z, Luo S, Zhang Y, Wang Y, Fu W. Terahertz spectroscopy for the isothermal detection of bacterial DNA by magnetic bead-based rolling circle amplification. Analyst 2017; 142:4661-4669. [PMID: 29119154 DOI: 10.1039/c7an01438d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A terahertz biosensor based on rolling circle amplification was developed for the isothermal detection of bacterial DNA.
Collapse
Affiliation(s)
- Xiang Yang
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Ke Yang
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Xiang Zhao
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Zhongquan Lin
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Zhiyong Liu
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Sha Luo
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Yang Zhang
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Yunxia Wang
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| | - Weiling Fu
- Department of Laboratory Medicine
- Southwest Hospital
- Third Military Medical University
- Chongqing 400038
- China
| |
Collapse
|