1
|
Paesani C, Moiraghi M, Bustos MC, Navarro JL, Perez GT. Purple maize arabinoxylan could protect antioxidant compounds during digestion. Int J Food Sci Nutr 2024; 75:774-785. [PMID: 39351626 DOI: 10.1080/09637486.2024.2405117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024]
Abstract
Purple maize is a pigmented variety rich in antioxidants. Arabinoxylans (AX) are prebiotic compounds also found in the grain wall that can form gels. Recently, antioxidants have extensively been studied for their beneficial effects. However, these bioactive compounds do not easily reach the intestine in a stable form. These gels can protect certain compounds during in vitro digestion. This work aimed to extract the AX and simultaneously obtain the antioxidant compounds present in the external walls of the purple maize grain to produce gels with 2% and 4% AX to apply an in vitro digestion method. Popcorn maize (unpigmented) was used as a control. The amount of ferulic acid, polyphenols, and anthocyanins, and their antioxidative activity, were measured at in vitro digestion of the gels. This work highlights the ability of AX gels to enhance the potential bioavailability of antioxidant compounds including anthocyanins from purple maize after digestion.
Collapse
Affiliation(s)
- Candela Paesani
- ICYTAC, Instituto de Ciencia y Tecnología de Córdoba (CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, UNC, Córdoba, Argentina
| | - Malena Moiraghi
- ICYTAC, Instituto de Ciencia y Tecnología de Córdoba (CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, UNC, Córdoba, Argentina
| | - Mariela C Bustos
- ICYTAC, Instituto de Ciencia y Tecnología de Córdoba (CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, UNC, Córdoba, Argentina
| | - Jose L Navarro
- ICYTAC, Instituto de Ciencia y Tecnología de Córdoba (CONICET-UNC), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, UNC, Córdoba, Argentina
| | - Gabriela T Perez
- ICYTAC, Instituto de Ciencia y Tecnología de Córdoba (CONICET-UNC), Córdoba, Argentina
| |
Collapse
|
2
|
McClements DJ. Designing healthier and more sustainable ultraprocessed foods. Compr Rev Food Sci Food Saf 2024; 23:e13331. [PMID: 38517032 DOI: 10.1111/1541-4337.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
The food industry has been extremely successful in creating a broad range of delicious, affordable, convenient, and safe food and beverage products. However, many of these products are considered to be ultraprocessed foods (UPFs) that contain ingredients and are processed in a manner that may cause adverse health effects. This review article introduces the concept of UPFs and briefly discusses food products that fall into this category, including beverages, baked goods, snacks, confectionary, prepared meals, dressings, sauces, spreads, and processed meat and meat analogs. It then discusses correlations between consumption levels of UPFs and diet-related chronic diseases, such as obesity and diabetes. The different reasons for the proposed ability of UPFs to increase the risk of these chronic diseases are then critically assessed, including displacement of whole foods, high energy densities, missing phytochemicals, contamination with packaging chemicals, hyperpalatability, harmful additives, rapid ingestion and digestion, and toxic reaction products. Then, potential strategies to overcome the current problems with UPFs are presented, including reducing energy density, balancing nutritional profile, fortification, increasing satiety response, modulating mastication and digestion, reengineering food structure, and precision processing. The central argument is that it may be possible to reformulate and reengineer many UPFs to improve their healthiness and sustainability, although this still needs to be proved using rigorous scientific studies.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Dong Y, Yao X, Zhang W, Wu X. Development of Simultaneous Determination Method of Pesticide High Toxic Metabolite 3,4-Dichloroaniline and 3,5 Dichloroaniline in Chives Using HPLC-MS/MS. Foods 2023; 12:2875. [PMID: 37569143 PMCID: PMC10417142 DOI: 10.3390/foods12152875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
3,4-dichloroaniline (3,4-DCA) and 3,5-dichloroaniline (3,5-DCA) are, respectively, the primary metabolites deriving from the breakdown of phenylurea herbicides and dicarboximide fungicides in both soils and plants, whose residues in vegetable products have a heightened concern considering their higher health risks to humans and greater toxicity than the parent compounds in the environment. In this study, a sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the simultaneous determination of 3,4-DCA and 3,5-DCA residues in chive products based on the optimization of HPLC-MS/MS chromatographic and mass-spectrometric conditions using the standard substances and the modified QuEChERS preparation technique. The preparation efficiency of 3,4-DCA and 3,5-DCA from chive samples showed that acetonitrile was the best extractant. The combination of the purification agent graphite carbon black + primary secondary amine and the eluting agent acetonitrile + toluene (4:1, v/v) had a satisfactory purification effect. The linear correlation coefficients (R2) were more than 0.996 with the six concentration range of 0.001-1.000 mg/L for 3,4-DCA and 3,5-DCA. The limit of detection and limit of quantitation of this method was 0.6 and 2.0 µg/kg for 3,4-DCA, as well as 1.0 and 3.0 µg/kg for 3,5-DCA, respectively. The matrix effect range of 3,4-DCA and 3,5-DCA in chive tissues was from -9.0% to -2.6% and from -4.4% to 2.3%, respectively. The fortified recovery of 3,4-DCA and 3,5-DCA in chive samples at four spiked levels of 0.001-1.000 mg/kg was 75.3-86.0% and 78.2-98.1%, with the relative standard deviation of 2.1-8.5% and 1.4-11.9%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) of the method were 0.6, 2.0, and 1.0, 3.03 for 4-DCA and 3,5-DCA, respectively. This study highlights that the analytical method established here can efficiently and sensitively detect residues of 3,4-DCA and 3,5-DCA residues for monitoring chive products. The method was successfully applied to 60 batches of actual vegetable samples from different regions.
Collapse
Affiliation(s)
- Yibo Dong
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; (Y.D.); (X.Y.)
| | - Xiaolong Yao
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; (Y.D.); (X.Y.)
| | - Wanping Zhang
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, China
| | - Xiaomao Wu
- Institute of Crop Protection, Guizhou University, Guiyang 550025, China; (Y.D.); (X.Y.)
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, China
- Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Marszałek K, Trych U, Bojarczuk A, Szczepańska J, Chen Z, Liu X, Bi J. Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:antiox12020451. [PMID: 36830008 PMCID: PMC9951998 DOI: 10.3390/antiox12020451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
In the current work, the influence of high-pressure homogenization (HPH) (200, 250, and 300 MPa) on pH, Brix, turbidity, viscosity, particle size distribution (PSD), zeta potential, color, polyphenol oxidase (PPO), peroxidase (POD), polyphenol profile and bioaccessibility of total phenolic compounds was studied. The results show no change in the apple juice's pH, TSS and density. In contrast, other physiochemical properties of apple juice treated with HPH were significantly changed. Besides total phenolic content (15% degradation) in the HPH-treated apple juice at 300 MPa, the PPO and POD activities were reduced by a maximum of 70 and 35%, respectively. Furthermore, among different digestion stages, various values corresponding to PSD and zeta potential were recorded; the total phenolic content was gradually reduced from the mouth to the intestine stage. The polyphenol bioaccessibility of HPH-treated apple juice was 17% higher compared to the untreated apple juice.
Collapse
Affiliation(s)
- Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
- Department of Food Technology and Human Nutrition, Institute of Food Technology and Nutrition, University of Rzeszow, 2D Zelwerowicza St., 35601 Rzeszow, Poland
- Correspondence:
| | - Urszula Trych
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Adrianna Bojarczuk
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Justyna Szczepańska
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Zhe Chen
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St., 02532 Warsaw, Poland
| | - Xuan Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jinfeng Bi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
5
|
Nistor M, Pop R, Daescu A, Pintea A, Socaciu C, Rugina D. Anthocyanins as Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022; 27:molecules27134254. [PMID: 35807504 PMCID: PMC9268666 DOI: 10.3390/molecules27134254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Anthocyanins are water-soluble pigments present in fruits and vegetables, which render them an extensive range of colors. They have a wide distribution in the human diet, are innocuous, and, based on numerous studies, have supposed preventive and therapeutical benefits against chronic affections such as inflammatory, neurological, cardiovascular, digestive disorders, diabetes, and cancer, mostly due to their antioxidant action. Despite their great potential as pharmaceutical applications, they have a rather limited use because of their rather low stability to environmental variations. Their absorption was noticed to occur best in the stomach and small intestine, but the pH fluctuation of the digestive system impacts their rapid degradation. Urine excretion and tissue distribution also occur at low rates. The aim of this review is to highlight the chemical characteristics of anthocyanins and emphasize their weaknesses regarding bioavailability. It also targets to deliver an update on the recent advances in the involvement of anthocyanins in different pathologies with a focus on in vivo, in vitro, animal, and human clinical trials.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Roxana Pop
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Daescu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Adela Pintea
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmen Socaciu
- Department of Agricultural Egineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania; (M.N.); (R.P.); (A.D.); (C.S.)
| | - Dumitrita Rugina
- Department of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Manastur Street 3-5, 400372 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
6
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Rubio FTV, Haminiuk CWI, Santos PDDF, Martelli-Tosi M, Thomazini M, Balieiro JCDC, Makimori GYF, Favaro-Trindade CS. Investigation of brewer’s spent yeast as a bio-vehicle for encapsulation of natural colorants from pumpkin (Cucurbita moschata) peels. Food Funct 2022; 13:10096-10109. [DOI: 10.1039/d2fo00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brewer’s spent yeast (BSY) Saccharomyces cerevisiae has been currently explored as a bio-vehicle for encapsulation of bioactive compounds and as a delivery system. The main objectives of this work were...
Collapse
|
8
|
Prado G, Pierattini I, Villarroel G, Fuentes F, Silva A, Echeverria F, Valenzuela R, Bustamante A. Bioaccessibility of Anthocyanins on in vitro Digestion Mmodels: Factors Implicated and Role in Functional Foods Development. Curr Med Chem 2021; 29:1124-1141. [PMID: 34814808 DOI: 10.2174/0929867328666211123102536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Worldwide, the prevalence of obesity and related non-communicable chronic diseases is high and continues to grow. In that sense, anthocyanins (ANC) have shown beneficial health effects in preventing obesity and metabolic risk factors. Moreover, the demand for functional foods incorporating these compounds has risen significantly in the past years. Thus, there is a need for validations of the functional properties of these formulations; nevertheless, in vivo assays are complex and require a lot of resources. One approach for estimating bioactive compounds' functionality and health benefits is to evaluate their bioaccessibility on a specific food matrix, determined by various factors. This article aims to review different factors influencing the bioaccessibility of ANC evaluated on in vitro digestion models as a functionality parameter, elucidating the effect of chemical composition, raw materials, food matrices, and vehicles for the delivery of ANC. METHODS Study searches were performed using PubMed, Web of Science, Scopus, and Science Direct databases. RESULTS Different factors influenced bioaccessibility and stability of ANC studied by in vitro digestion which are: i) the raw material used for ANC obtention; ii) food processing; iii) other food components; iv) the extraction method and solvents used; v) the structure of ANC; vi) delivery system (e.g., microencapsulation); vii) pH of the medium; viii) the digestion stage. CONCLUSION Simulated digestion systems allow to determine free or encapsulated ANC bioaccessibility in different food matrices, which offers advantages in determining the potential functionality of a food product.
Collapse
Affiliation(s)
- Gabriel Prado
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| | - Isidora Pierattini
- Nutrition and Dietetic School, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| | - Guiselle Villarroel
- Nutrition and Dietetic School, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| | - Fernanda Fuentes
- Nutrition and Dietetic School, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| | - Alejandra Silva
- Nutrition and Dietetic School, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| | - Francisca Echeverria
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| | - Andres Bustamante
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000. Chile
| |
Collapse
|
9
|
Langston FMA, Nash GR, Bows JR. The retention and bioavailability of phytochemicals in the manufacturing of baked snacks. Crit Rev Food Sci Nutr 2021; 63:2141-2177. [PMID: 34529547 DOI: 10.1080/10408398.2021.1971944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a growing body of evidence supporting the role that phytochemicals play in reducing the risk of various chronic diseases. Although there has been a rise in health products marketed as being "supergrains," "superfood," or advertising their abundance in antioxidants, these food items are often limited to powdered blends, dried fruit, nuts, or seeds, rarely intercepting the market of baked snacks. This is in part due to the still limited understanding of the impact that different industrial processes have on phytochemicals in a complex food matrix and their corresponding bioavailability. This review brings together the current data on how various industrial dehydration processes influence the retention and bioaccessibility of phytochemicals in baked snacks. It considers the interplay of molecules in an intricate snack matrix, limitations of conventional technologies, and constraints with consumer acceptance preventing wider utilization of novel technologies. Furthermore, the review takes a holistic approach, encompassing each stage of production-discussing the potential for inclusion of by-products to promote a circular economy and the proposal for a shift in agriculture toward biofortification or tailored growing of crops for their nutritional and post-harvest attributes.
Collapse
Affiliation(s)
- Faye M A Langston
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | - Geoff R Nash
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | | |
Collapse
|
10
|
de Souza Mesquita LM, Murador DC, Neves BV, Braga ARC, Pisani LP, de Rosso VV. Bioaccessibility and Cellular Uptake of Carotenoids Extracted from Bactris gasipaes Fruit: Differences between Conventional and Ionic Liquid-Mediated Extraction. Molecules 2021; 26:3989. [PMID: 34208810 PMCID: PMC8272118 DOI: 10.3390/molecules26133989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, on an industrial scale, synthetic colorants are used in many fields, as well as those extracted with conventional organic solvents (COSs), leading to several environmental issues. Therefore, we developed a sustainable extraction and purification method mediated by ionic liquids (IL), which is considered an alternative high-performance replacement for COSs. Carotenoids are natural pigments with low bioaccessibility (BCT) and bioavailability (BV) but with huge importance to health. To investigate if the BCT and cellular uptake of the carotenoids are modified by the extraction method, we conducted a comparison assay between both extraction procedures (IL vs. COS). For this, we used the Amazonian fruit Bactris gasipaes, a rich source of pro-vitamin A carotenoids, to obtain the extract, which was emulsified and subjected to an in vitro digestion model followed by the Caco-2 cell absorption assay. The bioaccessibility of carotenoids using IL was better than those using COS (33.25%, and 26.84%, respectively). The cellular uptake of the carotenoids extracted with IL was 1.4-fold higher than those extracted using COS. Thus, IL may be a feasible alternative as extraction solvent in the food industry, replacing COS, since, in this study, no IL was present in the final extract.
Collapse
Affiliation(s)
- Leonardo M. de Souza Mesquita
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Daniella Carisa Murador
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Bruna Vitória Neves
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Department of Exact and Earth Sciences, Campus Diadema, Federal University of São Paulo (UNIFESP), Diadema, SP 09972-270, Brazil
| | - Luciana Pellegrini Pisani
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
| | - Veridiana Vera de Rosso
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Vila Mathias, Santos, SP 11015-020, Brazil; (L.M.d.S.M.); (D.C.M.); (B.V.N.); (A.R.C.B.); (L.P.P.)
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Silva Jardim Street 136, Santos, SP 11015-020, Brazil
| |
Collapse
|
11
|
Teribia N, Buvé C, Bonerz D, Aschoff J, Goos P, Hendrickx M, Van Loey A. The effect of thermal processing and storage on the color stability of strawberry puree originating from different cultivars. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
López-Gámez G, Elez-Martínez P, Quiles-Chuliá A, Martín-Belloso O, Hernando-Hernando I, Soliva-Fortuny R. Effect of pulsed electric fields on carotenoid and phenolic bioaccessibility and their relationship with carrot structure. Food Funct 2021; 12:2772-2783. [PMID: 33687388 DOI: 10.1039/d0fo03035j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phenolic compounds (PC) and carotenoids from carrots are bound to dietary fibre or stored in vacuoles and chromoplasts, respectively. To exert their antioxidant effects these compounds must be released during digestion, which is hindered by such barriers. Pulsed electric fields (PEF) modify cell membrane permeability, thus enhancing their bioaccessibility. The effect of PEF on the carrot carotenoid and PC content and bioaccessibility was investigated. With this purpose, PEF-treated carrots (5 pulses of 3.5 kV cm-1) were stored for 24 h at 4 °C and microstructure was evaluated before subjecting them to in vitro digestion. PEF did not affect carotenoid content, whereas their bioaccessibility improved (11.9%). Likewise, PEF increased the content of some PC, e.g. coumaric acid (163.2%), probably caused by their better extractability. Conversely, caffeic acid derivatives decreased, which may be associated to greater contact with oxidative enzymes. Total PC bioaccessibility (20.8%) and some derivatives increased, e.g. caffeoylshikimic (68.9%), whereas some decreased (e.g. ferulic acid). Structural changes caused by PEF may improve bioaccessibility of carotenoids and PC by favouring their release and easy access to digestive enzymes. However, other antioxidants may be further degraded or entrapped during digestion. Therefore, PEF is an effective technology for obtaining carrots with enhanced carotenoids and phenolic bioaccessibility.
Collapse
Affiliation(s)
- Gloria López-Gámez
- Department of Food Technology, Agrotecnio Centre, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Matrix- and Technology-Dependent Stability and Bioaccessibility of Strawberry Anthocyanins during Storage. Antioxidants (Basel) 2020; 10:antiox10010030. [PMID: 33396664 PMCID: PMC7824345 DOI: 10.3390/antiox10010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Anthocyanins are often associated with health benefits. They readily degrade during processing and storage but are also dependent on the matrix conditions. This study investigated how strawberry anthocyanins are affected by preservation technologies and a relatively protein-rich kale juice addition during storage. A strawberry–kale mix was compared to a strawberry–water mix (1:2 wt; pH 4), untreated, thermally, pulsed electric fields (PEF) and high-pressure processing (HPP) treated, and evaluated for anthocyanin stability and bioaccessibility during refrigerated storage. The degradation of strawberry anthocyanins during storage followed first-order kinetics and was dependent on the juice system, preservation technology and anthocyanin structure. Generally, the degradation rate was higher for the strawberry–kale mix compared to the strawberry–water mix. The untreated sample showed the highest degradation rate, followed by HPP, PEF and, then thermal. The relative anthocyanin bioaccessibility after gastric digestion was 10% higher for the thermally and PEF treated samples. Anthocyanin bioaccessibility after intestinal digestion was low due to instability at a neutral pH, especially for the strawberry–kale mix, and after thermal treatment. The storage period did not influence the relative bioaccessibility; yet, the absolute content of bioaccessible anthocyanins was decreased after storage. This research further presents that processing and formulation strongly affect the stability and bioaccessibility of anthocyanins during storage.
Collapse
|
14
|
Co-Ingestion of Black Carrot and Strawberry. Effects on Anthocyanin Stability, Bioaccessibility and Uptake. Foods 2020; 9:foods9111595. [PMID: 33153068 PMCID: PMC7692923 DOI: 10.3390/foods9111595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022] Open
Abstract
Although the fate of anthocyanins along digestion has been a matter of research over the last decade, their bioaccessibility so far has been mainly assessed for single administered fruits or vegetables, which is far from the real scenario where they are co-ingested in a meal. Accordingly, the aim of this study was to evaluate the effect of simultaneous intake of fruit and vegetable on in vitro stability, bioaccessibility and uptake of anthocyanins. Black carrot and strawberry were used as food sources of anthocyanins. Anthocyanin identification and quantification were performed using HPLC-Qtof/HPLC-UV. Single matrices and mixtures thereof, were submitted to a standardized in vitro digestion procedure. Anthocyanin uptake was evaluated through an intestinal Caco-2 cell model. Our results showed an increased intestinal stability for specific anthocyanins as a consequence of co-digestion. The presence of the strawberry food matrix positively affected the bioaccessibility of the carrot associated cyanidin-based anthocyanins, whereas no reciprocal effect was observed for pelargonidin-based derivatives in the presence of the black carrot food matrix. Anthocyanin transport was maintained after co-administration. Overall, co-ingestion of black carrot and strawberry did not negatively affect the stability, bioaccessibility or uptake of cyanidin-based anthocyanins, although the effect on pelargonidin-based anthocyanins depended on the type of pelargonidin derivative.
Collapse
|
15
|
Verkempinck S, Pallares Pallares A, Hendrickx M, Grauwet T. Processing as a tool to manage digestive barriers in plant-based foods: recent advances. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Wellala CKD, Bi J, Liu X, Liu J, Lyu J, Zhou M, Marszałek K, Trych U. Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Jiang X, Guan Q, Feng M, Wang M, Yan N, Wang M, Xu L, Gui Z. Preparation and pH Controlled Release of Fe 3O 4/Anthocyanin Magnetic Biocomposites. Polymers (Basel) 2019; 11:E2077. [PMID: 31842398 PMCID: PMC6960501 DOI: 10.3390/polym11122077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022] Open
Abstract
Anthocyanins are a class of antioxidants extracted from plants, with a variety of biochemical and pharmacological properties. However, the wide and effective applications of anthocyanins have been limited by their relatively low stability and bioavailability. In order to expand the application of anthocyanins, Fe3O4/anthocyanin magnetic biocomposite was fabricated for the storage and release of anthocyanin in this work. The magnetic biocomposite of Fe3O4 magnetic nanoparticle-loaded anthocyanin was prepared through physical intermolecular adsorption or covalent cross-linking. Scanning electron microscopy (SEM), Dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and thermal analysis were used to characterize the biocomposite. In addition, the anthocyanin releasing experiments were performed. The optimized condition for the Fe3O4/anthocyanin magnetic biocomposite preparation was determined to be at 60 °C for 20 h in weak alkaline solution. The smooth surface of biocomposite from SEM suggested that anthocyanin was coated on the surface of the Fe3O4 particles successfully. The average size of the Fe3O4/anthocyanin magnetic biocomposite was about 222 nm. Under acidic conditions, the magnetic biocomposite solids could be repeatable released anthocyanin, with the same chemical structure as the anthocyanin before compounding. Therefore, anthocyanin can be effectively adsorbed and released by this magnetic biocomposite. Overall, this work shows that Fe3O4/anthocyanin magnetic biocomposite has great potential for future applications as a drug storage and delivery nanoplatform that is adaptable to medical, food and sensing.
Collapse
Affiliation(s)
- Xizhi Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
| | - Min Feng
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Mengyang Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Nina Yan
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Min Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Lei Xu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (M.F.); (M.W.); (N.Y.); (M.W.)
- Key Laboratory for Protected Agricultural Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China;
| |
Collapse
|
18
|
Gao X, Zhu D, Liu Y, Zha L, Chen D, Guo H. Physicochemical properties and anthocyanin bioaccessibility of downy rose-myrtle powder prepared by superfine grinding. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1702999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xuebin Gao
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Dinghe Zhu
- Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan, China
| | - Yongji Liu
- Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan, China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dixin Chen
- Forestry College, Henan University of Science and Technology, Luoyang, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China
- Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan, China
| |
Collapse
|
19
|
Moscovici Joubran A, Katz IH, Okun Z, Davidovich-Pinhas M, Shpigelman A. The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Briones-Labarca V, Giovagnoli-Vicuña C, Chacana-Ojeda M. High pressure extraction increases the antioxidant potential and in vitro bio-accessibility of bioactive compounds from discarded blueberries. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1624622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Vilbett Briones-Labarca
- Department of Food Engineering, Universidad de La Serena. Av. Raúl, Bitrán Nachary 1305, La Serena, Chile
| | - Claudia Giovagnoli-Vicuña
- Department of Food Engineering, Universidad de La Serena. Av. Raúl, Bitrán Nachary 1305, La Serena, Chile
| | - Marcelo Chacana-Ojeda
- Centro de Investigación y Modelación de negocios CIMON, Facultad de Economía y Negocios, Universidad Santo Tomás, La Serena, Chile
| |
Collapse
|
21
|
Kim JH, Kim HY, Jin CH. Mechanistic investigation of anthocyanidin derivatives as α-glucosidase inhibitors. Bioorg Chem 2019; 87:803-809. [DOI: 10.1016/j.bioorg.2019.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
|
22
|
Jakobek L, Matić P. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Ha HK, Lee MR, Lee WJ. Bioaccessibility of β-Lactoglobulin Nanoemulsions Containing Coenzyme Q 10: Impact of Droplet Size on the Bioaccessibility of Coenzyme Q 10. Korean J Food Sci Anim Resour 2018; 38:1294-1304. [PMID: 30675122 PMCID: PMC6335127 DOI: 10.5851/kosfa.2018.e65] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
The aims of this research were to examine the effect of heating temperature (65, 75, and 85℃) and CaCl2 concentration level (3, 4, and 5 mM) on the physicochemical properties of β-lactoglobulin (β-lg) nanoemulsions (NEs) and to study how the droplet size of NEs affects the bioaccessibility (BA) of coenzyme Q10 (CoQ10). The droplet size of NEs and BA of CoQ10 was assessed by particle size analyzer and UV-Vis spectrophotometer, respectively. An increase in heating temperature and CaCl2 concentration level resulted in a significant (p<0.05) increase in the droplet size of NEs while there were no significant differences in polydispersity index and zeta-potential of NEs. When NEs containing CoQ10 were incubated in simulated small intestinal phases, an increase in the droplet size and polydispersity index of NEs was observed. This indicated that NEs were not stable in small intestine and digestion of NEs occurred. As heating temperature and CaCl2 concentration level were decreased, a significant (p<0.05) increase in BA of CoQ10 was observed. There was a significant (p<0.05) increase in BA of CoQ10 with a decrease in the droplet size of NEs. In conclusion, heating temperature and CaCl2 concentration level were key-parameters affecting the initial droplet size of NEs and BA of CoQ10 was negatively correlated with initial droplet size of NEs.
Collapse
Affiliation(s)
- Ho-Kyung Ha
- Department of Animal Science and Technology,
Sunchon National University, Suncheon
57922, Korea
| | - Mee-Ryung Lee
- Department of Food and Nutrition, Daegu
University, Gyeongsan 38453, Korea
| | - Won-Jae Lee
- Department of Animal Bioscience (Institute of Agriculture
and Life Science), Gyeongsang National University,
Jinju 52828, Korea
| |
Collapse
|
24
|
Marchetti N, Bonetti G, Brandolini V, Cavazzini A, Maietti A, Meca G, Mañes J. Stinging nettle (Urtica dioica L.) as a functional food additive in egg pasta: Enrichment and bioaccessibility of Lutein and β-carotene. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Paul A, Banerjee K, Goon A, Saha S. Chemo-profiling of anthocyanins and fatty acids present in pomegranate aril and seed grown in Indian condition and its bioaccessibility study. Journal of Food Science and Technology 2018; 55:2488-2496. [PMID: 30042564 DOI: 10.1007/s13197-018-3166-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 11/25/2022]
Abstract
The goal of the present study was to investigate the bioactive molecules (anthocyanins and fatty acids) present in the aril of pomegranate. Major anthocyanins present in the aril of pomegranate were identified by HRMS as delphinidin 3,5-diglucoside, cyanidin 3,5-diglucoside, pelargonidin 3,5-diglucoside, cyanidin 3-glucoside and delphinidin 3-glucoside. In-vitro study revealed that bioaccessibility of anthocyanin in duodenal condition was varied between 7.3 and 9.7%. Encapsulation enhances the bioaccessibility of both the phenolics to some extent in gastric as well as duodenal condition. Seed oil contains significant amount of unsaturated fatty acids especially ω-5 fatty acids. Geometrical isomers of ω-5 fatty acids were also identified by GC-MS. The spray dried anthocyanin formulation has potential for food application.
Collapse
Affiliation(s)
- Anindita Paul
- 1Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Center for Grapes, Pune, Maharashtra 412 307 India
| | - Arnab Goon
- National Referral Laboratory, ICAR-National Research Center for Grapes, Pune, Maharashtra 412 307 India
| | - Supradip Saha
- 1Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
26
|
|
27
|
Rodrigues DB, Chitchumroonchokchai C, Mariutti LRB, Mercadante AZ, Failla ML. Comparison of Two Static in Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11220-11228. [PMID: 29205039 DOI: 10.1021/acs.jafc.7b04854] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In vitro digestion methods are routinely used to assess the bioaccessibility of carotenoids and other dietary lipophilic compounds. Here, we compared the recovery of carotenoids and their efficiency of micellarization in digested fruits, vegetables, egg yolk, and salmon and also in mixed-vegetable salads with and without either egg yolk or salmon using the static INFOGEST method22 and the procedure of Failla et al.16 Carotenoid stability during the simulated digestion was ≥70%. The efficiencies of the partitioning of carotenoids into mixed micelles were similar when individual plant foods and salad meals were digested using the two static methods. Furthermore, the addition of cooked egg or salmon to vegetable salads increased the bioaccessibility of some carotenoids. Our findings showed that the two methods of in vitro digestion generated similar estimates of carotenoid retention and bioaccessibility for diverse foods.
Collapse
Affiliation(s)
- Daniele B Rodrigues
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | | | - Lilian R B Mariutti
- Department of Food and Nutrition, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Adriana Z Mercadante
- Department of Food Science, Faculty of Food Engineering, University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Mark L Failla
- Human Nutrition Program, Department of Human Sciences, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|