1
|
Sun Z, Chen J, Dai T, Lv C, Liang R, Liu W, Liu C, Deng L. Effect of maturity on the drying characteristics of lotus seed and molecular structure, gelation and digestive properties of its starch. Carbohydr Polym 2024; 345:122589. [PMID: 39227113 DOI: 10.1016/j.carbpol.2024.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Maturity and drying treatment are important factors affecting the processing characteristics of lotus seeds and its starch. This study aimed to investigate the effect of maturity (from low to high-M-1, M-2, M-3, M-4) on far-infrared drying kinetics of lotus seeds, and on the variation of structure, gelation and digestive properties of lotus seed starch (LSS) before and after drying. As the maturity increased, the drying time reduced from 5.8 to 1.0 h. The reduction of drying time was correlated with the decrease of initial moisture content, the increase of water freedom and the destruction of tissue structure during ripening. The increased maturity and drying process altered the multiscale structure of LSS, including an increase in amylose content, disruption of the short-range structure, and a decrease in relative crystallinity and molecular weight. The viscosity, pasting temperature and enthalpy of LSS decreased during ripening, and drying treatment caused the further decrease. The digestibility of LSS increased during ripening and drying. Lotus seeds at M-4 would be optimal for obtaining shorter drying time, lower pasting temperature and enthalpy, and higher digestibility. This study provided theoretical guidance for achieving effective drying process and screening LSS with suitable processing properties through maturity sorting.
Collapse
Affiliation(s)
- Zhixia Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Jun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Chengliang Lv
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China
| | - Lizhen Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, PR China; International Institute for Food Innovation, Nanchang University, Nanchang, Jiangxi 330200, PR China.
| |
Collapse
|
2
|
Cheng X, Wang S, Shahid Iqbal M, Pan L, Hong L. Effect of ultrasound-assisted osmotic dehydration on the drying kinetics, water state, and physicochemical properties of microwave vacuum-dried potato slices. ULTRASONICS SONOCHEMISTRY 2023; 99:106557. [PMID: 37625257 PMCID: PMC10470384 DOI: 10.1016/j.ultsonch.2023.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
The effects of pre-treatments on the drying characteristics, water state, thermal properties, and bulk shrinkage of potato slices during microwave vacuum drying (MVD) were investigated. The pre-treatment included ultrasound in distilled water (USOD-0%), and ultrasound-assisted osmotic dehydration in a 60% sucrose solution (USOD-60%). Results showed that the drying time of potato slices was reduced and the drying rate was increased when USOD-0% was used as a pretreatment, whereas USOD-60% had a negative effect on the drying rate of the samples. The Weibull model was effective in predicting the water changes in potato slices during the drying process. NMR analysis revealed that the relative content of immovable water (M22) increased initially, then decreased for drying, while the transverse relaxation time (T2) and the relative content of free water (M23) decreased consistently. The DSC results indicated that the glass transition temperature (Tg) had an inverse relationship with the water content of the samples, yet had virtually no influence on the volume shrinkage. The sample volumes decreased linearly with the decrease in water content during the initial drying stages. USOD pre-treatment lessened the volume shrinkage of MVD potato slices. Static gravimetry was used to determine the moisture sorption isotherms of MVD potato slices at 30 °C within the aw range of 0.113-0.923. The GAB model accurately fitted the experimental sorption data, which showed sigmoid shape curves for the MVD samples. When aw values exceeded 0.7, the USOD-60% treatment significantly reduce the water sorption capacity of MVD potato slices, while USOD-0% treatment was observed to increase the hygroscopic properties of MVD samples. Compared with the control, USOD-0% pretreatment significantly increased the monolayer water content (X0), sorption surface area (S0), the thickness of sorbed water multilayer (tm), and density of sorbed water (Ds) values of MVD potato slices, while USOD-60% decreased these values.
Collapse
Affiliation(s)
- Xinfeng Cheng
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002 Anhui, China.
| | - Shihao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | | | - Ling Pan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lijie Hong
- Huangshan Shenong Eco-Agriculture Co. Xiuning, 245452 Anhui, China
| |
Collapse
|
3
|
Vega-Galvez A, Gomez-Perez LS, Zepeda F, Vidal RL, Grunenwald F, Mejías N, Pasten A, Araya M, Ah-Hen KS. Assessment of Bio-Compounds Content, Antioxidant Activity, and Neuroprotective Effect of Red Cabbage ( Brassica oleracea var. Capitata rubra) Processed by Convective Drying at Different Temperatures. Antioxidants (Basel) 2023; 12:1789. [PMID: 37760092 PMCID: PMC10526076 DOI: 10.3390/antiox12091789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, and no efficient therapy able to cure or slow down PD is available. In this study, dehydrated red cabbage was evaluated as a novel source of bio-compounds with neuroprotective capacity. Convective drying was carried out at different temperatures. Total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and glucosinolates (TGC) were determined using spectrophotometry, amino acid profile by LC-DAD and fatty acid profile by GC-FID. Phenolic characterization was determined by liquid chromatography-high-resolution mass spectrometry. Cytotoxicity and neuroprotection assays were evaluated in SH-SY5Y human cells, observing the effect on preformed fibrils of α-synuclein. Drying kinetic confirmed a shorter processing time with temperature increase. A high concentration of bio-compounds was observed, especially at 90 °C, with TPC = 1544.04 ± 11.4 mg GAE/100 g, TFC = 690.87 ± 4.0 mg QE/100 g and TGC = 5244.9 ± 260.2 µmol SngE/100 g. TAC degraded with temperature. Glutamic acid and arginine were predominant. Fatty acid profiles were relatively stable and were found to be mostly C18:3n3. The neochlorogenic acid was predominant. The extracts had no cytotoxicity and showed a neuroprotective effect at 24 h testing, which can extend in some cases to 48 h. The present findings underpin the use of red cabbage as a functional food ingredient.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis S. Gomez-Perez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Francisca Zepeda
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - René L. Vidal
- Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Universidad de Chile, Santiago 8380000, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago 8380000, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Felipe Grunenwald
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8380000, Chile
| | - Nicol Mejías
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Alexis Pasten
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile
| | - Kong Shun Ah-Hen
- Facultad de Ciencias Agrarias y Alimentarias, Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
4
|
Vega-Galvez A, Uribe E, Pasten A, Camus J, Rojas M, Garcia V, Araya M, Valenzuela-Barra G, Zambrano A, Goñi MG. Low-Temperature Vacuum Drying on Broccoli: Enhanced Anti-Inflammatory and Anti-Proliferative Properties Regarding Other Drying Methods. Foods 2023; 12:3311. [PMID: 37685242 PMCID: PMC10486434 DOI: 10.3390/foods12173311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Low-temperature vacuum drying (LTVD) has shown great potential for drying vegetables. It could avoid excessive degradations of active compounds with potential therapeutic agents. In this study, the effect on several relevant bioactive compounds, anti-inflammatory activity, and anti-proliferative activity of broccoli (Brassica oleracea var. italica) were evaluated. Effects of other drying methods, including vacuum drying (VD), convective drying (CD), infrared drying (IRD), and freeze drying (FD), were also comparatively evaluated. The results of all dried samples showed high polyunsaturated fatty acid contents (of up to 71.3%) and essential amino acid contents (of up to 8.63%). The LTVD method stands out above the other drying methods, since it obtained the highest content of total phenols, chlorogenic acid, and ferulic acid. Both the LTVD and CD samples demonstrated high anti-inflammatory and anti-proliferative activities. These CD and LTVD samples were also the most active against the breast carcinoma MDA-MB-23 cell line. Due to the good retention of bioactive compounds via LTVD, the obtained dried broccoli here can be used in a near time as an ingredient for the development of novel natural products with anti-inflammatory and anti-proliferative effects.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Elsa Uribe
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, La Serena 1700000, Chile
| | - Alexis Pasten
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Javiera Camus
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Michelle Rojas
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Vivian Garcia
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile;
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile;
| | - Angara Zambrano
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Maria Gabriela Goñi
- Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1000-1499, Argentina
| |
Collapse
|
5
|
Dai Y, Cao Y, Zhou W, Zhu D. Hot Air Drying of Sipunculus nudus: Effect of Microwave-Assisted Drying on Quality and Aroma. Foods 2023; 12:foods12040733. [PMID: 36832811 PMCID: PMC9956570 DOI: 10.3390/foods12040733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
The present study aimed to investigate the effect of different microwave pre-drying times under hot-air-drying processes on the quality properties and sensory evaluation of Sipunculus nudus (S. nudus). The colour, proximate analysis, amino acid content, fat oxidation, and volatile components of dried S. nudus were determined. Microwave pre-drying could significantly (p < 0.05) increase the drying rate and shorten the drying time. The results of colour, proximate analysis, and amino acid content indicated that microwave pre-drying could improve the quality of the product, resulting in dried S. nudus with less of a loss in nutrients. The samples that underwent microwave pre-drying had a high degree of fatty acid oxidation and low monounsaturated fatty acid content, which facilitated the formation of volatile components. Additionally, the MAD-2 and MAD-3 groups had high relative contents of aldehydes and hydrocarbons, and the FD group had the highest relative content of esters found in the samples. The relative content of ketones and alcohols did not differ significantly between the different drying groups. The finding of this study has important potential for enhancing the quality and aroma of dry S. nudus products with microwave pre-drying during the drying process.
Collapse
Affiliation(s)
- Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
- Correspondence: ; Tel.: +86-0759-2221090
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Donghong Zhu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| |
Collapse
|
6
|
Chen B, Liang Z, Lin X, Li W, Lin X, He Z. Enhanced survival of fluidized bed-dried microencapsulated Saccharomyces cerevisiae cells in the presence of Hongqu rice distiller's grain peptides. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Puttalingappa YJ, Natarajan V, Varghese T, Naik M. Effect of microwave‐assisted vacuum drying on the drying kinetics and quality parameters of
Moringa oleifera
leaves. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yashaswini Jampannanayakakote Puttalingappa
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management ‐Thanjavur, Ministry of Food Processing Industries Government of India Thanjavur India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management ‐Thanjavur, Ministry of Food Processing Industries Government of India Thanjavur India
| | - Taruna Varghese
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management ‐Thanjavur, Ministry of Food Processing Industries Government of India Thanjavur India
| | - Mohan Naik
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management ‐Thanjavur, Ministry of Food Processing Industries Government of India Thanjavur India
| |
Collapse
|
8
|
Study on the Effect of Crushed Rice-Lotus Seed Starch Reconstituted Rice on Lipid Metabolism Histology in Rats. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study investigated the changes of lipid metabolism histology in rats under the three groups of dietary modifications after dietary intervention in (Sprague-Dawley, SD) SD rats using lotus seed reconstituted rice, ordinary rice, and high-fat feed made from lotus seed starch-rice flour after extrusion and puffing. It was found that the high-fat feed could lead to the disorder of lipid metabolism in rats, and the accumulation of lipid metabolism substances caused by the high-fat feed was significantly increased; the intervention of ordinary rice and high-dose reconstituted rice revealed that the high-dose reconstituted rice could improve the disorder of lipid metabolism and the accumulation of lipid substances caused by the high-fat feed to a greater extent. The main lipid substances were PC, TAG, Cer, CE, SM, PE, LPC, Acar, DAG, FAHFA, OxPI, PI, SQDG, Cer/NS, GlcADG, HBMP, Cer/NDS, HexCer/NS, etc., and the study confirmed that the reconstituted rice made from lotus seeds in this experiment was better than ordinary rice, and the high-dose reconstituted rice obtained from the study has a better modulating effect on lipid metabolism disorders and organism damage caused by high-fat feed.
Collapse
|
9
|
Microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds: Effects of ultrasonic pretreatment on color, antioxidant activity, and rehydration capacity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Li J, Deng ZY, He Y, Fan Y, Dong H, Chen R, Liu R, Tsao R, Liu X. Differential specificities of polyphenol oxidase from lotus seeds (Nelumbo nucifera Gaertn.) toward stereoisomers, (−)-epicatechin and (+)-catechin: Insights from comparative molecular docking studies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Wang H, Che G, Wan L, Liu M, Sun W. Experimental study on drying characteristics of rice by low‐field nuclear magnetic resonance. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongchao Wang
- College of Engineering Heilongjiang Bayi Agricultural University Daqing China
- Heilongjiang Key Laboratory of Intelligent Agricultural Machinery Equipment Daqing China
| | - Gang Che
- College of Engineering Heilongjiang Bayi Agricultural University Daqing China
- Heilongjiang Key Laboratory of Intelligent Agricultural Machinery Equipment Daqing China
| | - Lin Wan
- College of Engineering Heilongjiang Bayi Agricultural University Daqing China
- Heilongjiang Key Laboratory of Intelligent Agricultural Machinery Equipment Daqing China
| | - Menggang Liu
- College of Engineering Heilongjiang Bayi Agricultural University Daqing China
| | - Wensheng Sun
- College of Engineering Heilongjiang Bayi Agricultural University Daqing China
| |
Collapse
|
12
|
Development of fortified low-fat potato chips through Vacuum Impregnation and Microwave Vacuum Drying. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Zheng Y, Wang B, Guo Z, Zhang Y, Zheng B, Zeng S, Zeng H. Properties of lotus seed starch-glycerin monostearin V-complexes after long-term retrogradation. Food Chem 2020; 311:125887. [DOI: 10.1016/j.foodchem.2019.125887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 12/27/2022]
|
14
|
Rapid freezing using atomized liquid nitrogen spray followed by frozen storage below glass transition temperature for Cordyceps sinensis preservation: Quality attributes and storage stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109066] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
|
16
|
Zhang L, Qiu J, Cao X, Zeng X, Tang X, Sun Y, Lin L. Drying methods, carrier materials, and length of storage affect the quality of xylooligosaccharides. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Bualuang O, Onwude DI, Uso A, Peerachaakkarachai K, Mora P, Dulsamphan S, Sena P. Determination of drying kinetics, some physical, and antioxidant properties of papaya seeds undergoing microwave vacuum drying. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oraporn Bualuang
- Faculty of Science and Technology, Chemistry ProgramSuratthani Rajabhat University Surat Thani Thailand
| | - Daniel I. Onwude
- Department of Agricultural and Food EngineeringUniversity of Uyo Nigeria
| | - Aneesah Uso
- Faculty of Science and Technology, Chemistry ProgramSuratthani Rajabhat University Surat Thani Thailand
| | | | - Pimpalak Mora
- Mathematical Program, Faculty of EducationSuratthani Rajabhat University Surat Thani Thailand
| | | | - Pairot Sena
- Faculty of Science and TechnologyNakhon Si Thammarat Rajabhat University Nakhon Si Thammarat Thailand
| |
Collapse
|
18
|
Suitability of LF-NMR to analysis water state and predict dielectric properties of Chinese yam during microwave vacuum drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Yan B, Shen H, Fan D, Tao Y, Wu Y, Wang M, Zhao J, Zhang H. Microwave treatment regulates the free volume of rice starch. Sci Rep 2019; 9:3876. [PMID: 30846823 PMCID: PMC6405908 DOI: 10.1038/s41598-019-40598-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/19/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of this work was to investigate the role of microwave parameters and moisture content on the free volume (FV) changes of rice starch by positron annihilation lifetime spectroscopy analysis (PALS) and to explore the potential relationship between the changes of FV and physicochemical properties of rice starch. Microwave heating and water molecules lead to the increasing of FV of starch. However, this result is largely influenced by the plasticization of water molecule. The anti-plasticization caused by water evaporation resulting in a decrease in the size and concentration of FV during microwave heating. Significant decrease (p < 0.05) in the thickness of amorphous region of microwave-heated rice starch was found by small angle X-ray scattering (SAXS), and the glass transition temperature (Tg) and gelatinization temperature significantly increase (p < 0.05) after microwave heating. According to correlation analysis, the power intensity and heating time were correlated negatively with the lifetime of o-Ps. In addition, the changes of amorphous region and Tg of rice starch were strongly related to FV changes. These results provided a theoretical basis for further research on the directional regulation of FV and improvement the quality of starch-based food by using microwave treatment.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huijie Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, Hong Kong, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, 214122, China.
| | - Yuan Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yejun Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, Hong Kong, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, 214122, China
| |
Collapse
|
20
|
Uribe E, Vega-Gálvez A, Vargas N, Pasten A, Rodríguez K, Ah-Hen KS. Phytochemical components and amino acid profile of brown seaweed Durvillaea antarctica as affected by air drying temperature. Journal of Food Science and Technology 2018; 55:4792-4801. [PMID: 30482974 DOI: 10.1007/s13197-018-3412-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 11/30/2022]
Abstract
The effects of different drying temperatures between 40 and 80 °C on bioactive constituents and antioxidant activity of edible sub Antarctic brown seaweed, Durvillaea antarctica were studied. Dietary fibre, amino acids profile, pigments (chlorophyll and carotenoids), vitamin E, total phenolics and total flavonoids as well as antioxidant activity were determined, beside a measurement of the chromatic coordinates. The brown seaweed D. antarctica had a high content of dietary fibre and was rich in essential amino acids and drying between 40 and 80 °C did not influence significantly dietary fibre content nor the level of essential amino acids that remained around 44%. However, a significant degradation of the chlorophyll pigments was observed with the lowest level of the initial chlorophyll content occurring at 60 °C (59%). Total carotenoids content was stable during drying between 50 and 70 °C. Vitamin E showed no significant loss during drying at any of the assayed temperatures, which could be due to its occurrence within the lipid fraction. Drying at 40 °C imparted a darker brown colour to the seaweed, while a lighter brown colour was acquired as drying temperature increased. The greatest loss in total phenolics content occurred at 60 °C, while total flavonoids content showed a significant reduction, which declined as drying temperature increased. According to the experimental results, phenolics and flavonoids could be considered as an important source of bioactive compounds with relatively high antioxidant activity. Thus D. antarctica may satisfy the requirements for development of functional foods.
Collapse
Affiliation(s)
- Elsa Uribe
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile.,3Institute of Multidisciplinary Investigation in Science and Technology, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Antonio Vega-Gálvez
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Natalia Vargas
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Alexis Pasten
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Katia Rodríguez
- 1Food Engineering Department, Faculty of Engineering, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena, Chile
| | - Kong Shun Ah-Hen
- 2Faculty of Agricultural Science, Institute of Food Science and Technology, Universidad Austral de Chile, Av. Julio Sarrazín s/n, Campus Isla Teja, Valdivia, Chile
| |
Collapse
|
21
|
Xiang Z, Ye F, Zhou Y, Wang L, Zhao G. Performance and mechanism of an innovative humidity-controlled hot-air drying method for concentrated starch gels: A case of sweet potato starch noodles. Food Chem 2018; 269:193-201. [PMID: 30100424 DOI: 10.1016/j.foodchem.2018.06.153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 01/02/2023]
Abstract
The effects of humidity control on dried starch gels were investigated using starch noodles as a model. A two-stage innovative hot-air-drying regime was developed with the first stage humidity-controlled (70 °C, 60% RH) and the second at high temperature (100 °C). The proposed drying method is comparable to natural-air-drying in product quality and to conventional hot-air-drying (70 °C) in production efficiency. The operating humidity of the first stage predominated the swelling index and rehydration ratio of dry noodles as well as the hardness and chewiness of cooked noodles. The results from XRD, DSC, SEM, digital microscopy and low field TD 1H NMR evidenced that these outcomes were largely ascribed to the higher shrinkage, lower porosity, smoother surface, lesser shape deformation and higher starch retrogradation resulting from increased humidity. The results reported herein are valuable for regulating the physicochemical properties of dried starch gels and glimpsing the underlying mechanisms of related operations.
Collapse
Affiliation(s)
- Zhuoya Xiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Lei Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Sweet Potato Research Centre, Chongqing 400715, People's Republic of China.
| |
Collapse
|
22
|
Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans. Molecules 2018; 23:molecules23051146. [PMID: 29751607 PMCID: PMC6100066 DOI: 10.3390/molecules23051146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of this study is to investigate the effect of microwave vacuum drying (MVD) on the drying characteristics and quality attributes of green coffee beans. We specifically focused on the effective moisture diffusion coefficient (Deff), surface temperature, glass transition temperature (Tg), water state, and microstructure. The kinetics of color changes during drying, total phenolic content (TPC), and antioxidant activity (DPPH, FRAP, and ABTS) were also characterized. Microwave power during MVD affected the porosity of coffee beans, their color, TPC, and antioxidant activity. The Allometric 1 model was the most suitable for simulating surface temperature rise kinetics. Thermal processing of green coffee beans resulted in increased b*, L*, ΔE, and TPC values, and greater antioxidant capacity. These findings may provide a theoretical reference for the technical improvement, mechanisms of flavor compound formation, and quality control of dried green coffee beans.
Collapse
|
23
|
Smart NMR Method of Measurement of Moisture Content of Vegetables During Microwave Vacuum Drying. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1991-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Alehosseini A, Ghorani B, Sarabi-Jamab M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 58:2346-2363. [DOI: 10.1080/10408398.2017.1323723] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Alehosseini
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Nick Tucker
- School of Engineering, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| |
Collapse
|