1
|
Li C, Shao Z, Wang J, Hua H, Li G, Zhang Y, Wang S. The in-vitro digestibility of instant noodles: Interplay of texture, microstructure and starch structure. Food Res Int 2025; 201:115664. [PMID: 39849792 DOI: 10.1016/j.foodres.2024.115664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025]
Abstract
Instant noodles are a worldwide food staple. However, the correlation between its production methods and nutritional characteristics remains unclear. This study aims to elucidate the effects of hydrothermal (steaming and boiling) and cooling techniques on instant noodles in-vitro digestibility. Texture of rehydrated noodles, microstructure observed by SEM and starch molecular structure measuring techniques were used to identify the underlying mechanisms. Our results demonstrate that boiling results in incomplete gelatinization of internal starch, leading to a microstructure with numerous pores and channels due to irregular starch distribution. This microstructure facilitates α-amylase diffusion and subsequent attachment to the substrate, yielding a higher starch digestion rate coefficient for boiled noodles (Nboiled) within the first 120 min (K1, 5.7 min-1) compared to steamed noodles (Nsteamed, K1, 4.4 min-1). However, from 120 to 360 min, Nboiled exhibited a lower rate coefficient (K2, 4.5 min-1) due to the retarding effect of incompletely melted starch structure and greater texture rigidity, contrasting with Nsteamed (K2, 6.1 min-1). Moreover, noodles subjected to boiling and subsequent cooling exhibited the lowest starch degradation by α-amylase throughout hydrolysis. This is attributed to their increased hardness, denser microstructure, and presence of ungelatinized or recrystallized starch. Therefore, the study concludes that cooking and cooling processes significantly influence noodle texture, microstructure, and starch structure, collectively impacting the nutritional value of instant noodles. Our findings provide valuable insights for the development of nutritionally enhanced instant noodles.
Collapse
Affiliation(s)
- Caili Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, NanKai University, Tianjin 300071, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Zeping Shao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, NanKai University, Tianjin 300071, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, NanKai University, Tianjin 300071, China
| | - Hongying Hua
- Shanghai Kangshi Food Technology Co., Ltd., Shanghai 201105, China
| | - Ge Li
- Shanghai Kangshi Food Technology Co., Ltd., Shanghai 201105, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, NanKai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, NanKai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Fan Z, Dong Z, Zhang B, Li H. Research progress on non covalent interaction dissolution characterization of insoluble wheat protein based on swelling. Int J Biol Macromol 2025; 284:138154. [PMID: 39613078 DOI: 10.1016/j.ijbiomac.2024.138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The non covalent interactions of proteins are usually characterized by solubility, which is based on the principle that specific solvents can disrupt non covalent interactions and promote protein dissolution. However, this method is generally applicable to highly soluble protein materials. The solubility of wheat protein is poor. When using this method to characterize non covalent interactions, there is always a portion of protein aggregates that can only reach a swollen state and cannot be completely dissolved. At present, there are no research reports on the role of non covalent interactions in swelling. In view of this, this article first reviews the swelling and dissolution processes of insoluble proteins such as wheat protein in solvents, focusing on the characterization mechanisms and influencing factors of three non covalent interactions using solubility characterization. At the same time, this article also explores the potential of swelling in characterizing non covalent interactions, aiming to improve the characterization methods of non covalent interactions between wheat proteins and provide methodological support for analyzing processing differences from the hierarchical analysis of wheat protein interactions in the future.
Collapse
Affiliation(s)
- Zhen Fan
- School of Food Science and Technology, Hebei Agricultural University, Hebei Baoding 071000, China; Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ziyan Dong
- Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Zhang
- Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huijing Li
- School of Food Science and Technology, Hebei Agricultural University, Hebei Baoding 071000, China.
| |
Collapse
|
3
|
Chen J, Shi W, Shen Z, Ma Y, Zhang S. Comparison of the effects of pectin with different esterification degrees on the thermal aggregation of wheat glutenin and gliadin. Int J Biol Macromol 2025; 286:138394. [PMID: 39643181 DOI: 10.1016/j.ijbiomac.2024.138394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Our previous study found that pectin with different degrees of esterification (DE) could affect the thermal aggregation of gluten, but the mechanism was not clear. Analyzing the thermal aggregation of glutenin and gliadin supplemented with pectin can clarify this mechanism. With the increase of temperature, the particle size, disulfide bonds and β-sheet of glutenins increased, the surface hydrophobicity (H0) and fluorescence intensity decreased, and the network gradually aggregated, but the change trend of gliadins was opposite. These results suggested that the thermal aggregation of gluten mainly depended on glutenin. Glutenin and gliadin supplemented with low ester pectin (LEP) were in an aggregated state. At 95 °C, LEP (DE = 37 %) increased the particle size of glutenin and gliadin (141.83 μm and 19.91 μm), promoted the conversion of thiol to disulfide bonds, increased β-sheet (34.01 % and 31.13 %), decreased fluorescence intensity (2186.33 and 5165.33) and H0 (49.65 and 369.26). Scanning electron microscope (SEM) indicated that glutenin and gliadin supplemented with LEP retained a dense network structure, especially glutenin. This study elucidated the specific mechanism of how pectin affected the thermal aggregation of gluten. These results provide a more comprehensive theoretical support and scientific basis for understanding how pectin regulates the final quality of gluten-based products.
Collapse
Affiliation(s)
- Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| | - Wanlu Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Zheyu Shen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, People's Republic of China; State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, People's Republic of China.
| |
Collapse
|
4
|
Feng J, Jia Y, Xu B, Bi X, Ge Z, Ma G, Xie Y, Wang C, Ma D. Quantitative proteomic analysis for characterization of protein components related to dough quality and celiac disease in wheat flour, dough, and heat-treated dough. Food Chem 2024; 461:140924. [PMID: 39181042 DOI: 10.1016/j.foodchem.2024.140924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
High-sensitivity 4D label-free proteomic technology was used to identify protein components related to gluten quality and celiac disease (CD) in strong-gluten wheat cultivar KX 3302 and medium-gluten wheat cultivar BN 207. The highly expressed storage protein components in KX3302 were high-molecular-weight-glutenin-subunits (HMW-GSs), α-gliadin, and globulin, whereas those in BN207 were γ-gliadin, low-molecular-weight-glutenin-subunits (LMW-GSs) and avenin-like proteins. In addition, BN207 had more upregulated metabolic proteins than KX3302. The abundance of storage proteins increased during dough formation. After heat treatment, the upregulated proteins accounted for 57.53 % of the total proteins, but the downregulated storage proteins accounted for 79.34 % of the total storage proteins. In cultivar KX3302, CD proteins mainly included α-gliadin and HMW-GSs, whereas in BN207, they were mainly γ-gliadin and LMW-GSs. Thermal treatment significantly reduces the expression levels of CD-related proteins. These findings provide a new perspective on reducing the content of CD-related proteins in wheat products.
Collapse
Affiliation(s)
- Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuku Jia
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Xintong Bi
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Zifei Ge
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Geng Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China; Technology Innovation Center of Henan Wheat, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Yuan S, Chen Y, Wen A, Liu Q, He Y, Yu H, Guo Y, Cheng Y, Qian H, Xie Y, Yao W. Deciphering the interactions between altertoxins and glutenin based on molecular dynamic simulation: inspiration from detection. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8813-8822. [PMID: 38967243 DOI: 10.1002/jsfa.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Mycotoxin contamination of food has been gaining increasing attention. Hidden mycotoxins that interact with biological macromolecules in food could make the detection of mycotoxins less accurate, potentially leading to the underestimation of the total exposure risk. Interactions of the mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) with high-molecular glutenin were explored in this study. RESULTS The recovery rates of AOH and AME (1, 2, and 10 μg kg-1) in three types of grains (rice, corn, and wheat) were relatively low. Molecular dynamics (MD) simulations indicated that AOH and AME bound to glutenin spontaneously. Hydrogen bonds and π-π stacking were the primary interaction forces at the binding sites. Alternariol with one additional hydroxyl group exhibited stronger binding affinity to glutenin than AME when analyzing average local ionization energy. The average interaction energy between AOH and glutenin was -80.68 KJ mol-1, whereas that of AME was -67.11 KJ mol-1. CONCLUSION This study revealed the mechanisms of the interactions between AOH (or AME) and high-molecular glutenin using MD and molecular docking. This could be useful in the development of effective methods to detect pollution levels. These results could also play an important role in the evaluation of the toxicological properties of bound altertoxins. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yingying He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Yu Y, Gong W, Liu H, Chen Y, An X, Zhang H, Liang Y, Wang J. Insights into the enhancement mechanism of rheological properties of dough induced by wheat flour maturation: The view from gluten proteins aggregation. Int J Biol Macromol 2024; 282:136942. [PMID: 39471928 DOI: 10.1016/j.ijbiomac.2024.136942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To elucidate the mechanisms underlying the changes in the rheological properties of dough made from wheat flour during maturation, the molecular structure of gluten before and after maturation was characterized. Wheat flour was matured under three distinct conditions for predetermined durations. The development time, stability, and maximum force of dough peaked at 7.10 min, 8.58 min, and 88.98 N, respectively, after 40 days of maturation at 25 °C and 40 °C. Compared to the control, the storage modulus of dough made from wheat flour matured at 40 °C increased, while creep compliance decreased, indicating improved deformation resistance and a closer resemblance to viscoelastic solid materials. SDS-PAGE and molecular weight distribution indicated that maturation induces the binding of gluten peaks, evoking small molecular weight proteins to form larger protein clusters through folding. Compared to the control, the content of disulfide bonds significantly (P < 0.05) increased, tightening the protein network, while fluorescence intensity decreased after 40-50 days. This is accompanied by a distinct cross-linkage structure, confirmed by AFM. Among the three maturation conditions, 40 °C had the most pronounced effect, followed by 25 °C. This study offers insights and a theoretical basis for adjusting maturation conditions to enhance wheat flour quality.
Collapse
Affiliation(s)
- Yingtao Yu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wei Gong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanyan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xin An
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huihui Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Yu J, Xie S, Yang D. The changes induced by hydrodynamic cavitation treatment in wheat gliadin and celiac-toxic peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1976-1985. [PMID: 39285999 PMCID: PMC11401822 DOI: 10.1007/s13197-024-05973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Hydrodynamic cavitation (HC) is thought weaken the allergenicity of beer gluten proteins. However, the mechanism of action has not been thoroughly studied. In this study, an HC device was used to treat wheat gliadin and two specific celiac-toxic peptides, P1 and P2. FT-IR, MFS, HPLC, and CD were used to monitor the structural characteristics of gliadin and the two peptides. HC reduced the abundance of the coeliac toxic peptides P1 and P2 in solution and the contents of secondary structure β-turns and PPII, which are related to reduced allergen immunoreactivity. This meant that both the primary and secondary structures of P1 and P2 were affected by HC, leading to fewer allergic reactions. This study was focused on the impact of HC on the secondary structures of allergens produced from gluten raw materials, and it has positive implications for reducing product allergenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05973-7.
Collapse
Affiliation(s)
- Junyu Yu
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| | - Shida Xie
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| | - Dongsheng Yang
- Department of Bioengineering, College of Life Sciences, Hainan University, Renmin Avenue NO: 160, Haikou, 570228 China
| |
Collapse
|
8
|
Yu D, Li H, Liu Y, Yang X, Yang W, Fu Y, Zuo YA, Huang X. Application of the molecular dynamics simulation GROMACS in food science. Food Res Int 2024; 190:114653. [PMID: 38945587 DOI: 10.1016/j.foodres.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Food comprises proteins, lipids, sugars and various other molecules that constitute a multicomponent biological system. It is challenging to investigate microscopic changes in food systems solely by performing conventional experiments. Molecular dynamics (MD) simulation serves as a crucial bridge in addressing this research gap. The Groningen Machine for Chemical Simulations (GROMACS) is an open-source, high-performing molecular dynamics simulation software that plays a significant role in food science research owing to its high flexibility and powerful functionality; it has been used to explore the molecular conformations and the mechanisms of interaction between food molecules at the microcosmic level and to analyze their properties and functions. This review presents the workflow of the GROMACS software and emphasizes the recent developments and achievements in its applications in food science research, thus providing important theoretical guidance and technical support for obtaining an in-depth understanding of the properties and functions of food.
Collapse
Affiliation(s)
- Dongping Yu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Haiping Li
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yuzi Liu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xingqun Yang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Yang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yiran Fu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yi-Ao Zuo
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xianya Huang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
9
|
Boldea LS, Aprodu I, Enachi E, Dumitrașcu L, Păcularu-Burada B, Chițescu C, Râpeanu G, Stănciuc N. Advanced interactional characterization of the inhibitory effect of anthocyanin extract from Hibiscus sabdariffa L. on apple polyphenol oxidase. J Food Sci 2023; 88:5026-5043. [PMID: 37872831 DOI: 10.1111/1750-3841.16808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
In this study, a comprehensive approach to advance the inhibitory effect of Hibiscus sabdariffa extract on apple polyphenol oxidase (PPO) was performed. PPO was extracted, purified, and characterized for optimal activity, whereas response surface methodology generated a quadratic polynomial model to fit the experimental results for hibiscus extraction. The optimum conditions allowed to predict a maximum recovery of anthocyanins (256.11 mg delphinidin-3-O-glucoside/g), with a validated value of 272.87 mg delphinidin-3-O-glucoside/g dry weight (DW). The chromatographic methods highlighted the presence of gallic acid (36,812.90 µg/g DW extract), myricetin (141,933.84 µg/g DW extract), caffeic acid (101,394.07 µg/g DW extract), sinapic acid (1157.46 µg/g DW extract), kaempferol (2136.76 µg/g DW extract), and delphinidin 3-O-β-d-glucoside (226,367.08 µg/g DW extract). The inactivation of PPO followed a first-order kinetic model. A temperature-mediated flexible fit between PPO and anthocyanins was suggested, whereas the molecular docking tests indicated that PPO is a good receptor for cafestol, gallic acid, and catechin, involving hydrophobic and hydrogen bond interactions. PRACTICAL APPLICATION: It is well known that enzymatic browning is one of the most important challenges in the industrial minimal processing of selected fruit and vegetable products. Novel inhibitors for polyphenol oxidase are proposed in this study by using an anthocyanin-enriched extract from Hibiscus sabdariffa L. Based on our results, combining the chemical effect of phytochemicals from hibiscus extract with different functional groups with minimal heating could be an interesting approach for the development of a new strategy to inhibit apple polyphenol oxidase.
Collapse
Affiliation(s)
- Lavinia Stan Boldea
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Iuliana Aprodu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Elena Enachi
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, Galaţi, Romania
| | - Loredana Dumitrașcu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Carmen Chițescu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, Galaţi, Romania
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galați, Romania
| |
Collapse
|
10
|
Voci S, Pangua C, Martínez-Ohárriz MC, Aranaz P, Collantes M, Irache JM, Cosco D. Gliadin nanoparticles for oral administration of bioactives: Ex vivo and in vivo investigations. Int J Biol Macromol 2023; 249:126111. [PMID: 37541472 DOI: 10.1016/j.ijbiomac.2023.126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This study aims to provide a thorough characterization of Brij O2-stabilized gliadin nanoparticles to be used for the potential oral administration of various compounds. Different techniques were used in order to evaluate their physico-chemical features and then in vivo studies in rats were performed for the investigation of their biodistribution and gastrointestinal transit profiles. The results showed that the gliadin nanoparticles accumulated in the mucus layer of the bowel mucosa and evidenced their ability to move along the digestive systems of the animals. The incubation of the nanosystems with Caenorhabditis elegans, used as an additional in vivo model, confirmed the intake of the particles and evidenced their presence along the entire gastrointestinal tract of these nematodes. The gliadin nanoparticles influenced neither the egg-laying activity of the worms nor their metabolism of lipids up to 10 μg/mL of nanoformulation. The systems decreased the content of the age-related lipofuscin pigment in the nematodes in a dose-dependent manner, demonstrating a certain antioxidant activity. Lastly, dihydroethidium staining showed the absence of oxidative stress upon incubation of the worms together with the formulations, confirming their safe profile. This data paves the way for the future application of the proposed nanosystems regarding the oral delivery of various bioactives.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Pangua
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | | | - Paula Aranaz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Maria Collantes
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", 88100 Catanzaro, Italy.
| |
Collapse
|
11
|
Wang Y, Gao Y, Duan Y, Wu X, Huang P, Shui T, Xi J. Localization and identification of denatured antigenic sites of glycinin A3 subunit after using two processing technologies. Food Res Int 2023; 171:113082. [PMID: 37330838 DOI: 10.1016/j.foodres.2023.113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Glycinin is an important allergen in soybeans. In this study, molecular cloning and recombinant phage construction were performed to explore the antigenic sites of the glycinin A3 subunit that were denatured during processing. Next, the A-1-a fragment was located as the denatured antigenic sites by indirect ELISA. The combined UHP heat treatment showed better denaturation of this subunit than the single heat treatment assay. In addition, identification of the synthetic peptide showed that the A-1-a fragment was an amino acid sequence containing a conformational and linear IgE site, in which the first synthetic peptide (P1) being both an antigenic and allergenic site. The results of alanine-scanning showed that the key amino acids affecting antigenicity and allergenicity of A3 subunit were S28, K29, E32, L35 and N13. Our results could provide the basis for further development of more efficient methods to reduce the allergenicity of soybeans.
Collapse
Affiliation(s)
- Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yida Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xiao Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Pengbo Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tianjiao Shui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
12
|
Wen W, Li S, Wang J. The Effects of Tea Polyphenol on Chicken Protein Digestion and the Mechanism under Thermal Processing. Foods 2023; 12:2905. [PMID: 37569174 PMCID: PMC10418937 DOI: 10.3390/foods12152905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Meat product is the main food and major source of daily protein intake. Polyphenols are always introduced into many meat products during processing. Some complex interactions may occur between polyphenol and meat protein during the processing, especially thermal processing, which may affect the digestion of protein. In this experiment, chicken protein and tea polyphenol were interacted in simulated systems to explore the effects of the interaction between meat protein and polyphenols on the digestion of meat protein. The mechanism of tea polyphenol inhibiting chicken protein digestion was studied by analyzing the changes of chicken protein in intrinsic fluorescence, surface plasmon resonance (SPR), reactive sulfhydryl group, and solubility in different solvents. The results showed that the chicken protein digestion had a negative correlation with tea polyphenol concentration and interaction temperature, and the meat protein has a higher affinity to EGCG than protease. The mechanism of tea polyphenol inhibiting chicken protein digestion was related to the changing spatial structure of chicken protein and the decreasing activity of proteases. In the simulation system, at low-concentration tea polyphenol, the inhibition of the tea polyphenol on the digestibility of chicken protein might be mainly caused by the changes in chicken protein structure, while at high concentration, the changes in protein structure and the inhibition of proteases activity played a role together. This experiment revealed the effect and the mechanism of polyphenols on the digestion performance of meat protein and provide more references for the further application of polyphenols in meat processing.
Collapse
Affiliation(s)
- Wenjun Wen
- College of Food Science and Engineering, Shanxi Agriculture University, Shanxi 030801, China;
| | - Shijie Li
- Medical College, Nankai University, Tianjin 300350, China;
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
13
|
Li G, Lan N, Huang Y, Mo C, Wang Q, Wu C, Wang Y. Preparation and Characterization of Gluten/SDS/Chitosan Composite Hydrogel Based on Hydrophobic and Electrostatic Interactions. J Funct Biomater 2023; 14:jfb14040222. [PMID: 37103311 PMCID: PMC10146719 DOI: 10.3390/jfb14040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Gluten is a natural byproduct derived from wheat starch, possessing ideal biocompatibility. However, its poor mechanical properties and heterogeneous structure are not suitable for cell adhesion in biomedical applications. To resolve the issues, we prepare novel gluten (G)/sodium lauryl sulfate (SDS)/chitosan (CS) composite hydrogels by electrostatic and hydrophobic interactions. Specifically, gluten is modified by SDS to give it a negatively charged surface, and then it conjugates with positively charged chitosan to form the hydrogel. In addition, the composite formative process, surface morphology, secondary network structure, rheological property, thermal stability, and cytotoxicity are investigated. Moreover, this work demonstrates that the change can occur in surface hydrophobicity caused by the pH-eading influence of hydrogen bonds and polypeptide chains. Meanwhile, the reversible non-covalent bonding in the networks is beneficial to improving the stability of the hydrogels, which shows a prominent prospect in biomedical engineering.
Collapse
Affiliation(s)
- Guangfeng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Ni Lan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Yanling Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chou Mo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiaoli Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
| | - Chaoxi Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510642, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou 510642, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou 510642, China
| |
Collapse
|
14
|
Ben Z, Jibril AN, Sun X, Bai Y, Yang D, Chen K, Dong Y. Compression Characteristics and Fracture Simulation of Gluten Pellet. Foods 2023; 12:foods12081598. [PMID: 37107394 PMCID: PMC10137437 DOI: 10.3390/foods12081598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Gluten pellets are readily broken on packaging and transportation. This study aimed to research mechanical properties (elastic modulus, compressive strength, failure energy) with different moisture contents and aspect ratios under different compressive directions. The mechanical properties were examined with a texture analyzer. The results revealed that the material properties of the gluten pellet are anisotropic, and it was more likely to cause crushing during radial compression. The mechanical properties were positively correlated with the moisture content. The aspect ratio had no significant effect (p > 0.05) on the compressive strength. The statistical function model (p < 0.01; R2 ≥ 0.774) for mechanical properties and moisture content fitted well with the test data. The minimum elastic modulus, compressive strength, and failure energy of standards-compliant pellets (with moisture content less than 12.5% d.b.) were 340.65 MPa, 6.25 MPa, and 64.77 mJ, respectively. Moreover, a finite element model with cohesive elements was established using Abaqus software (Version 2020, Dassault Systèmes, Paris, France) to simulate the compression rupture form of gluten pellets. The relative error of the fracture stress in the axial and radial directions between the simulation results and the experimental value was within 4-7%.
Collapse
Affiliation(s)
- Zongyou Ben
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
- College of Biotechnology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | | | - Xiao Sun
- College of Biotechnology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Yu Bai
- College of Biotechnology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Duoxing Yang
- Anhui Bi Lv Chun Biotechnology Co., Ltd., Chuzhou 239200, China
| | - Kunjie Chen
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yan Dong
- College of Biotechnology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
15
|
Rheological properties of wheat dough mediated by low-sodium salt. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Inhibition of PPO-related browning in fresh noodles: A combination of chemical and heat treatment. Food Chem 2023; 404:134549. [DOI: 10.1016/j.foodchem.2022.134549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
|
17
|
Compound treatment of thiolated citrus high-methoxyl pectin and sodium phosphate dibasic anhydrous improved gluten network structure. Food Chem 2023; 404:134770. [DOI: 10.1016/j.foodchem.2022.134770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
18
|
Liu H, Wang J, Liu M, Zhang X, Liang Y, Wang J. Effect of Thermal Treatment on the Self-Assembly of Wheat Gluten Polypeptide. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020834. [PMID: 36677896 PMCID: PMC9862778 DOI: 10.3390/molecules28020834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
Self-assembled fibrillation of wheat gluten is a common phenomenon in the daily production and processing of wheat flour products. The driving forces for its formation and the factors that influence the morphology of fibrils have not been thoroughly investigated. In this study, the effect of three bonding changes (breaking hydrogen bonds, strengthening hydrophobic interactions, and SH-SS exchange reactions) on gluten polypeptide (GP) fibrillation was simulated by adjusting the heating temperature (room temperature (RT), 45 °C, 65 °C, and 95 °C). The results showed that the breakage of hydrogen bonds could induce conformational transitions in GPs and help to excite fibrillation in GPs. Strengthened hydrophobic interactions significantly contributed to the fibrillation of GPs. Covalent crosslinks generated by SH-SS exchange reactions might also promote the fibrillation of GPs. GPs with different degrees of hydrolysis (4.0%, 6.0%, and 10.0%, represented by DH 4, DH 6, and DH 10, respectively) presented different extents of fibrillation, with DH 10 GPs having a higher propensity to fibrillation than DH 4 and DH 6 GPs. The results of Fourier's transform infrared spectroscopy indicated that hydrophobic interactions drive the transition from a random coil and α-helix to a β-sheet. In addition, hydrophobic interactions also drive the intermolecular polymerization of GPs, resulting in larger molecular weight aggregates. The morphology presented by transmission electron microscopy showed that the greater the DH, the stronger the tendency for the worm-like aggregation of GPs.
Collapse
Affiliation(s)
- Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jingxuan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (Y.L.); (J.W.); Tel./Fax: +86-0371-67756872 (Y.L.); +86-0371-67756512 (J.W.)
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (Y.L.); (J.W.); Tel./Fax: +86-0371-67756872 (Y.L.); +86-0371-67756512 (J.W.)
| |
Collapse
|
19
|
Zhang Z, Ma R, Xu Y, Chi L, Li Y, Mu G, Zhu X. Investigation of the Structure and Allergic Potential of Whey Protein by Both Heating Sterilization and Simulation with Molecular Dynamics. Foods 2022; 11:foods11244050. [PMID: 36553793 PMCID: PMC9778632 DOI: 10.3390/foods11244050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As the main allergens in milk, whey proteins are heat-sensitive proteins and are widespread in dairy products and items in which milk proteins are involved as food additives. The present work sought to investigate the effect of heating sterilization on the allergenicity of α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), the main composite and allergen in whey protein isolate (WPI), by combining molecular dynamics with experimental techniques for detecting the spatial structure and IgE binding capacity. The structure of WPI was basically destroyed at heat sterilization conditions of 95 °C for 5 min and 65 °C for 30 min by SDS-PAGE analysis and spectroscopic analysis. In addition, α-lactalbumin (α-LA) may be more sensitive to temperature, resulting in exposure to allergic epitopes and increasing the allergic potential, while the binding capacity of β-lactoglobulin (β-LG) to IgE was reduced under 65 °C for 30 min. By the radius of gyration (Rg) and root-mean-square deviation (RMSD) plots calculated in molecular dynamics simulations, α-LA was less structurally stable at 368 K, while β-LG remained stable at higher temperatures, indicating that α-LA was more thermally sensitive. In addition, we observed that the regions significantly affected by temperatures were associated with the capacity of allergic epitopes (α-LA 80-101 and β-LG 82-93, 105-121) to bind IgE through root-mean-standard fluctuation (RMSF) plots, which may influence the two major allergens. We inferred that these regions are susceptible to structural changes after sterilization, thus affecting the allergenicity of allergens.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ruida Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Chi
- Dalian Women and Children Medical Center, Dalian 116012, China
| | - Yue Li
- Dalian Women and Children Medical Center, Dalian 116012, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
20
|
Nawrocka A, Rumińska W, Szymańska-Chargot M, Niewiadomski Z, Miś A. Effect of fluorescence dyes on wet gluten structure studied with fluorescence and FT-Raman spectroscopies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Effects of Different Gluten Proteins on Starch’s Structural and Physicochemical Properties during Heating and Their Molecular Interactions. Int J Mol Sci 2022; 23:ijms23158523. [PMID: 35955657 PMCID: PMC9368910 DOI: 10.3390/ijms23158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Starch–gluten interactions are affected by biopolymer type and processing. However, the differentiation mechanisms for gluten–starch interactions during heating have not been illuminated. The effects of glutens from two different wheat flours (a weak-gluten (Yangmai 22, Y22) and a medium-strong gluten (Yangmai 16, Y16)) on starch’s (S) structural and physicochemical properties during heating and their molecular interactions were investigated in this study. The results showed that gluten hindered the gelatinization and swelling of starch during heating when temperature was below 75 °C, due to competitive hydration and physical barriers of glutens, especially in Y22. Thus, over-heating caused the long-range molecular order and amylopectin branches of starch to be better preserved in the Y22-starch mixture (Y22-S) than in the Y16-starch mixture (Y16-S). Meanwhile, the starch’s degradation pattern during heating in turn influenced the polymerization of both glutens. During heating, residual amylopectin branching points restricted the aggregation and cross-linking of gluten proteins due to steric hindrance. More intense interaction between Y16 and starch during heating mitigated the steric hindrance in starch–gluten networks, which was due to more residual short-range ordered starch and hydrogen bonds involved in the formation of starch–gluten networks in Y16-S during heating.
Collapse
|
22
|
A combination of alkaline pH-shifting/acidic pH and thermal treatments improves the solubility and emulsification properties of wheat glutenin. Food Chem 2022; 393:133358. [PMID: 35661594 DOI: 10.1016/j.foodchem.2022.133358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022]
Abstract
Glutenin has limited applicability in food industry due to poor water solubility and emulsifying properties. In this study, the physicochemical properties of glutenin were improved by combined treatments of alkaline pH-shifting or acidic pH with heating. The surface morphology, structure and physicochemical properties were measured during the modification process of glutenin. Results showed that the smaller square clusters and regular tubular fibrils were observed in modified glutenin and the α-helix proportion of the treated glutenin was finally increased to 59.90 ± 0.01%. Compared with untreated glutenin, the combined treatments of pH-shifting with heating as well as fibrillation process increased the solubility of glutenin by 21.3 and 3.5 times, respectively. Moreover, the treated glutenin showed excellent emulsifying stability (EAI: 50.84 ± 0.51 m2g-1) and thermal stability (peak temperature increased from 109.58 to 149.05 °C). This study provides an informative basis for improving the physicochemical and functional properties of glutenin.
Collapse
|
23
|
Zhang M, Ma M, Yang T, Li M, Sun Q. Dynamic distribution and transition of gluten proteins during noodle processing. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107114] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Du J, Li Q, Obadi M, Qi Y, Liu S, an D, Zhou X, Zhang D, Xu B. Quality Evaluation Systems and Methods of the Whole Making Process of Asian Noodles: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jin Du
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qingqing Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yajing Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shuyi Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Di an
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoling Zhou
- Research and Development Department, Kemen Noodle Manufacturing Co., Ltd, Changsha, China, Kemen Noodle Manufacturing Co., Ltd, Changsha, China
| | - Dongsheng Zhang
- Research and Development Department, Kemen Noodle Manufacturing Co., Ltd, Changsha, China, Kemen Noodle Manufacturing Co., Ltd, Changsha, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Carpio LE, Sanz Y, Gozalbes R, Barigye SJ. Computational strategies for the discovery of biological functions of health foods, nutraceuticals and cosmeceuticals: a review. Mol Divers 2021; 25:1425-1438. [PMID: 34258685 PMCID: PMC8277569 DOI: 10.1007/s11030-021-10277-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Scientific and consumer interest in healthy foods (also known as functional foods), nutraceuticals and cosmeceuticals has increased in the recent years, leading to an increased presence of these products in the market. However, the regulations across different countries that define the type of claims that may be made, and the degree of evidence required to support these claims, are rather inconsistent. Moreover, there is also controversy on the effectiveness and biological mode of action of many of these products, which should undergo an exhaustive approval process to guarantee the consumer rights. Computational approaches constitute invaluable tools to facilitate the discovery of bioactive molecules and provide biological plausibility on the mode of action of these products. Indeed, methodologies like QSAR, docking or molecular dynamics have been used in drug discovery protocols for decades and can now aid in the discovery of bioactive food components. Thanks to these approaches, it is possible to search for new functions in food constituents, which may be part of our daily diet, and help to prevent disorders like diabetes, hypercholesterolemia or obesity. In the present manuscript, computational studies applied to this field are reviewed to illustrate the potential of these approaches to guide the first screening steps and the mechanistic studies of nutraceutical, cosmeceutical and functional foods.
Collapse
Affiliation(s)
- Laureano E Carpio
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Rafael Gozalbes
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain
| | - Stephen J Barigye
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain.
- MolDrug AI Systems SL, Valencia, Spain.
| |
Collapse
|
26
|
Wang Z, Ma S, Sun B, Wang F, Huang J, Wang X, Bao Q. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. Int J Biol Macromol 2021; 177:474-484. [PMID: 33636262 DOI: 10.1016/j.ijbiomac.2021.02.175] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Starch and gluten, the most important macromolecules in wheat flour, vary in thermal properties. The thermal behavior of starch, gluten and their complexes during the manufacture and quality control of flour products need to be accurately understood. However, the high complexity of starch-gluten systems impedes the accurate description of their interactions. When heated within varying temperature ranges and when water molecules are involved, the behaviors of amylose and amylopectin change, and the properties of the starch are modified. Moreover, important indicators of starch granules such as gelatinization temperature, peak viscosity, and so on, which are encapsulated by the gluten matrix, are altered. Meanwhile, the high-temperature environment induces the opening of the intrachain disulfide bonds of gliadin, leading to an increase in the probability of interchain disulfide bond formation in the gluten network system. These behaviors are notable and may provide insights into this complex interaction. In this review, the relationship between the thermal behavior of wheat starch and gluten and the quality of flour products is analyzed. Several methods used to investigate the thermal characteristics of wheat and its flour products are summarized, and some thermal interaction models of starch and gluten are proposed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| | - Fengcheng Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jihong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Qingdan Bao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
27
|
Bradauskiene V, Vaiciulyte-Funk L, Shah B, Cernauskas D, Tita M. Recent Advances in Biotechnological Methods for Wheat Gluten Immunotoxicity Abolishment – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/132853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
28
|
Sun F, Xie X, Zhang Y, Ma M, Wang Y, Duan J, Lu X, Yang G, He G. Wheat gliadin in ethanol solutions treated using cold air plasma at atmospheric pressure. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Kłosok K, Welc R, Fornal E, Nawrocka A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021; 26:508. [PMID: 33478043 PMCID: PMC7835854 DOI: 10.3390/molecules26020508] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
This review presents applications of spectroscopic methods, infrared and Raman spectroscopies in the studies of the structure of gluten network and gluten proteins (gliadins and glutenins). Both methods provide complimentary information on the secondary and tertiary structure of the proteins including analysis of amide I and III bands, conformation of disulphide bridges, behaviour of tyrosine and tryptophan residues, and water populations. Changes in the gluten structure can be studied as an effect of dough mixing in different conditions (e.g., hydration level, temperature), dough freezing and frozen storage as well as addition of different compounds to the dough (e.g., dough improvers, dietary fibre preparations, polysaccharides and polyphenols). Additionally, effect of above mentioned factors can be determined in a common wheat dough, model dough (prepared from reconstituted flour containing only wheat starch and wheat gluten), gluten dough (lack of starch), and in gliadins and glutenins. The samples were studied in the hydrated state, in the form of powder, film or in solution. Analysis of the studies presented in this review indicates that an adequate amount of water is a critical factor affecting gluten structure.
Collapse
Affiliation(s)
- Konrad Kłosok
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Renata Welc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Agnieszka Nawrocka
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| |
Collapse
|
30
|
Xi J, Yao L, Li S. Identification of β-conglycinin α' subunit antigenic epitopes destroyed by thermal treatments. Food Res Int 2021; 139:109806. [DOI: 10.1016/j.foodres.2020.109806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
|
31
|
Effects of dietary fiber on the digestion and structure of gluten under different thermal processing conditions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Baruah I, Borgohain G. Structural and functional changes of the protein β-lactoglobulin under thermal and electrical processing conditions. Biophys Chem 2020; 267:106479. [PMID: 33027745 DOI: 10.1016/j.bpc.2020.106479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
In the present study we have tried to explore the effect of static external electric field of strength 3.0 V/nm on the conformational changes adopted by the protein β-lactoglobulin. We have chosen different temperatures viz. 300 K, 400 K and 450 K to evaluate the temperature dependent effect of electric field. We have observed that combined effect of high temperature and static external electric field show significant changes on the structural conformation of the protein which in turn may affect the functional properties of the protein. Calculations of root mean square deviations reveal that both helical and β-sheet regions of the protein are noticeably affected at high temperature. We have used solvent accessible surface area (SASA) and dipole moment values to explain that there is changes in hydrophobicity of the protein surface due to presence of external electric field. The study reveals that electric field in combination with high temperature can be used to alter the conformation of the protein and the effect of external electric field is more pronounced at high temperature than that of low temperature. The study provides a better understanding of the conformational changes adopted by the protein under the stress of external electric field and high temperature and provide guidance to choose optimum conditions for processing without loss of nutritional properties.
Collapse
Affiliation(s)
- Indrani Baruah
- Department of Chemistry, Cotton University, Guwahati, Assam 781001, India
| | - Gargi Borgohain
- Department of Chemistry, Cotton University, Guwahati, Assam 781001, India.
| |
Collapse
|
33
|
Moisture molecule migration and quality changes of fresh wet noodles dehydrated by cold plasma treatment. Food Chem 2020; 328:127053. [DOI: 10.1016/j.foodchem.2020.127053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
|
34
|
Han C, Ma M, Li M, Sun Q. Further interpretation of the underlying causes of the strengthening effect of alkali on gluten and noodle quality: Studies on gluten, gliadin, and glutenin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Adlay starch-gluten composite gel: Effects of adlay starch on rheological and structural properties of gluten gel to molecular and physico-chemical characteristics. Food Chem 2019; 289:121-129. [DOI: 10.1016/j.foodchem.2019.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/29/2023]
|
36
|
Min F, You Y, Yu F, Yuan J, Mu P, Sang W, Han X, Wu Y, Gao J, Chen H. Assessment of the gluten toxicity of wheat and naan in Xinjiang Uyghur Autonomous Region, China. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fangfang Min
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
- Sino‐German Joint Research Institute Nanchang University Nanchang 330047 China
- School of Food Science and Technology Nanchang University Nanchang 330031 China
| | - Yijiao You
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
- Sino‐German Joint Research Institute Nanchang University Nanchang 330047 China
- School of Food Science and Technology Nanchang University Nanchang 330031 China
| | - Fenglian Yu
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
- Sino‐German Joint Research Institute Nanchang University Nanchang 330047 China
- School of Food Science and Technology Nanchang University Nanchang 330031 China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
- School of Pharmacy Nanchang University Nanchang 330031 China
| | - Peiyuan Mu
- Institute of Crop Research Xinjiang Academy of Agricultural and Reclamation Sciences Shihezi 832000 China
| | - Wei Sang
- Institute of Crop Research Xinjiang Academy of Agricultural and Reclamation Sciences Shihezi 832000 China
| | - Xinnian Han
- Institute of Crop Research Xinjiang Academy of Agricultural and Reclamation Sciences Shihezi 832000 China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
- Sino‐German Joint Research Institute Nanchang University Nanchang 330047 China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
- School of Food Science and Technology Nanchang University Nanchang 330031 China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang 330047 China
- Sino‐German Joint Research Institute Nanchang University Nanchang 330047 China
| |
Collapse
|
37
|
Wen W, Li S, Gu Y, Wang S, Wang J. Effects of Starch on the Digestibility of Gluten under Different Thermal Processing Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7120-7127. [PMID: 31026160 DOI: 10.1021/acs.jafc.9b01063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gluten and starch are the primary ingredients of wheat. The complex reaction between gluten and starch will occur during thermal food processing, which will affect digestibility. The effects of proteins on the digestibility of starch have been reported, but the effects of starch on the digestibility of proteins have not been well-researched. In this paper, the effects of starch on gluten digestion during the heating process were studied by the gluten-starch simulated system, and it was found that starch can enhance gluten digestion. When the complex of 1:1 gluten-starch is heated at 100 °C, the digestibility of gluten is higher and more low-molecular-weight peptides are produced. Results from the digestibility and digestion peptide mapping of the gluten-starch complex at different conditions showed that the addition of starch during processing enhanced the digestion performance of gluten. Meanwhile, the secondary structure, intrinsic fluorescence, and microscopic structure of the gluten-starch complex were investigated to understand the mechanism of the enhancement. The digestion performance is related to the secondary structure variation during the thermal processing caused by the hydration increase and disulfide bond reduction. The gluten-starch complex spatial structure is looser than gluten after heating, which could expose more protease cleavage sites. These results suggest that starch can protect gluten from aggregation in water and destroy the spatial structure of gluten with the assistance of heating, exposing more cleavage sites and enhancing gluten digestion.
Collapse
Affiliation(s)
- Wenjun Wen
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , 29 Thirteenth Road , Tianjin Economy and Technology Development Area, Tianjin 300457 , People's Republic of China
| | - Shijie Li
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , 29 Thirteenth Road , Tianjin Economy and Technology Development Area, Tianjin 300457 , People's Republic of China
| | - Ying Gu
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , 29 Thirteenth Road , Tianjin Economy and Technology Development Area, Tianjin 300457 , People's Republic of China
| | - Shuo Wang
- Medical College , Nankai University , 38 Tongyan Road , Jinnan District, Tianjin 300350 , People's Republic of China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science & Technology , 29 Thirteenth Road , Tianjin Economy and Technology Development Area, Tianjin 300457 , People's Republic of China
| |
Collapse
|
38
|
Wang P, Liu K, Yang R, Gu Z, Zhou Q, Jiang D. Comparative Study on the Bread Making Quality of Normoxia- and Hypoxia-Germinated Wheat: Evolution of γ-Aminobutyric Acid, Starch Gelatinization, and Gluten Polymerization during Steamed Bread Making. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3480-3490. [PMID: 30817141 DOI: 10.1021/acs.jafc.9b00200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To explore the bread making characteristics of germinated wheat flour, the current study focused on the componential evolution throughout the steamed bread making process. Hypoxia-germinated wheat (HGW) dough produced the maximum γ-aminobutyric acid as a result of high glutamic acid decarboxylase activity during fermentation compared to normoxia-germinated wheat (NGW) and sound wheat (SW). HGW was superior to NGW in terms of rheological properties and restored the organoleptic characteristics as SW bread. Blocking of α-amylase activity and protein polymerization demonstrated that the decline in pasting and gelation properties was not caused by changes in intrinsic starch and protein properties. Polymerization of α- and γ-gliadin to glutenin was facilitated in germinated wheat bread, while the cross-linking degree of glutenin-gliadin was suppressed. In comparison to NGW bread, more high-molecular-weight glutenin subunits but less α-gliadin fractions polymerized upon steaming of HGW dough. Results demonstrate that HGW has great potential to be exploited as a nutritious functional ingredient for wheat-based food.
Collapse
|
39
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
40
|
Wang P, Zou M, Gu Z, Yang R. Heat-induced polymerization behavior variation of frozen-stored gluten. Food Chem 2018; 255:242-251. [DOI: 10.1016/j.foodchem.2018.02.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022]
|
41
|
Brzozowski B. Impact of food processing and simulated gastrointestinal digestion on gliadin immunoreactivity in rolls. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3363-3375. [PMID: 29277903 DOI: 10.1002/jsfa.8847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 05/26/2023]
Abstract
BACKGROUND The enzymatic modification of wheat proteins during dough fermentation and its digestion as supported by peptidases of microbiological origin can result in the degradation of important peptides in the pathogenesis of coeliac disease. However, baking bread and the high temperature associated with this could change the physicochemical and immunological properties of proteins. Thermal changes in the spatial structure of proteins and their hydrolysis can lead to a masking or degrading of immunoreactive peptides. RESULTS The addition of prolyl endopeptidase (PEP), comprising peptidases isolated from Lactobacillus acidophilus 5e2 (LA) or transglutaminase (TG) in the course of fermentation, decreases its immunoreactivity by 83.9%, 51.9% and 18.5%, respectively. An analysis of the fractional composition of gliadins revealed that γ- and ω-gliadins are the proteins most susceptible to enzymatic modification. Hydrolysis of wheat storage proteins with PEP and LA reduces the content of αβ-, γ- and ω-gliadins by 13.7%, 60.2% and 41.9% for PEP and by 22.1%, 43.5% and 36.9% for LA, respectively. Cross-linking of proteins with TG or their hydrolysis by PEP and LA peptidases during the process of forming wheat dough, followed by digesting bread samples with PEP and LA peptidases, decreases the immunoreactivity of bread hydrolysates from 2.4% to 0.02%. The content of peptide detected in polypeptide sequences is 263.4 ± 3.3, 30.9 ± 1.5 and 7.9 ± 0.4 mg kg-1 in samples of hydrolysates of bread digested with PEP, as produced from dough modified by TG, PEP and LA, respectively. CONCLUSION Enzymatic pre-modification of proteins during the process of dough fermentation decreases their immunoreactive potential, such that fewer peptides recognised by R5 antibodies are released during the digestion process from the bread matrix. Immunoreactive peptides are degraded more effectively when digestive enzymes are supported by the addition of PEP. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bartosz Brzozowski
- Department of Food Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
42
|
Stănciuc N, Creţu AA, Banu I, Aprodu I. Advances on the impact of thermal processing on structure and antigenicity of chicken ovomucoid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3119-3128. [PMID: 29210457 DOI: 10.1002/jsfa.8813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Ovomucoid (OVM) is the dominant allergen found in egg white. The heat-induced changes on chicken OVM structure and antigenic properties were assessed at acidic, neutral and alkaline pH values. RESULTS The fluorescence spectroscopy measurements indicated changes in the conformation of OVM caused by both pH and thermal treatment. The OVM molecule exhibited higher exposure of hydrophobic residues at 7.0, as indicated by the synchronous spectra, intrinsic fluorescence and quenching experiments. When heating the protein at pH 9.5, the molecular structure appeared more compact. The antigenic properties of OVM, estimated through the enzyme-linked immunosorbent assay, appeared not to be sensitive to heat at pH 7.0 and 4.5. Single molecule level investigations indicated that the secondary and tertiary structure of OVM was affected by the thermal treatment. CONCLUSIONS Experimental results indicated over 90% reduction of the antigenicity at pH 9.5 and temperature of 100 °C. Significant changes of the linear epitopes exposure and location of the conformational epitopes were highlighted after performing heating molecular dynamics simulations of OVM from 25 °C to 100 °C. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nicoleta Stănciuc
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| | - Alexandra Andreea Creţu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| | - Iuliana Banu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| | - Iuliana Aprodu
- Dunarea de Jos University of Galati, Faculty of Food Science and Engineering, Galati, Romania
| |
Collapse
|
43
|
Shi A, Chen X, Liu L, Hu H, Liu H, Wang Q, Agyei D. Synthesis and characterization of calcium-induced peanut protein isolate nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra07987g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A convenient and green synthetic route using calcium ion induction was first used to prepare peanut protein isolate (PPI) nanoparticles.
Collapse
Affiliation(s)
- Aimin Shi
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Xue Chen
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Li Liu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Hui Hu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Hongzhi Liu
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Qiang Wang
- Institute of Food Science and Technology
- Chinese Academy of Agricultural Sciences
- Key Laboratory of Agro-Products Processing
- Ministry of Agriculture
- Beijing 100193
| | - Dominic Agyei
- Department of Food Science
- University of Otago
- Dunedin
- New Zealand
| |
Collapse
|