1
|
Ren C, Chen L, Bai Y, Hou C, Li X, Schroyen M, Zhang D. Comparative effects of phosphorylation and acetylation on glycolysis and myofibrillar proteins degradation in postmortem muscle. Int J Biol Macromol 2024; 257:128567. [PMID: 38061521 DOI: 10.1016/j.ijbiomac.2023.128567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The study investigated the different effects between protein phosphorylation and acetylation on glycolytic enzyme activity and myofibrillar protein degradation. Lamb longissimus thoracis lumborum muscles were homogenized and then inhibitors were added for incubation at 4 °C. Phosphatase inhibitor was added to produce a high phosphorylation level (PI group) and lysine deacetylase inhibitor was added to produce a high acetylation level (DI group). The lactate and ATP content in the PI group was inhibited compared with that in the DI group (P < 0.05). Phosphofructokinase (PFK) activity was negatively related with the phosphorylation level and was positively related with the acetylation level in the DI group (P < 0.05). The degradation of troponin T and desmin of the DI group were restrained when compared to that in the PI group (P < 0.05). Compared with initial PFK and desmin, the simulation of phosphorylation and acetylation of PFK and desmin showed different electrostatic potential at the surface and a more unstable structure. The phosphorylation level of the DI group was increased, suggesting that the changes of protein acetylation altered protein phosphorylation. In conclusion, compared with protein phosphorylation, protein acetylation had a greater effect on promoting glycolysis and inhibiting protein degradation.
Collapse
Affiliation(s)
- Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| |
Collapse
|
2
|
Takeda S, Kanda T, Ahhmed AM, Sogawa K, Umezu K, Ogata M, Mizunoya W, Sakata R. Reducing Effects of Whey Protein Hydrolysate on Coloration of Cured Sausages. Foods 2023; 13:13. [PMID: 38201040 PMCID: PMC10778051 DOI: 10.3390/foods13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Curing produces a characteristic pink color during meat processing through the production of nitrosyl myoglobin (NOMb), which requires nitric oxide (NO). Nitrites and nitrates in coloring agents are crucial NO sources; however, a reducing agent is necessary to facilitate their chemical conversion to NO. This study aimed to investigate the effect of the reducing properties of whey protein hydrolysate (WPH) on the reddening of cured meat products. Cured and cooked sausage models were treated with WPH, which enhanced the reddening of the meat color and increased the a* value in the models compared with that of the controls. Additionally, ethanol-extracted WPH induced Fe3⁺ reduction, lowered oxidation-reduction potential, and decreased nitrite (NO2-) levels. Moreover, ethanol-extracted WPH promoted the formation of NOMb in myoglobin solution. This effect was also observed when ethanol-extracted WPH treated with maleimide was used, implying that certain peptides rather than the thiol group of WPH are involved in promoting NOMb formation. Furthermore, the peptides that decreased NO2- levels were isolated from ethanol-extracted WPH, identified, and synthesized. These synthesized peptides, particularly the FFVAPFPEVFGK peptide, showed NO2--reducing activity. Hence, WPH may promote the coloration of cured meat products through the reducing potential of the peptides contained within.
Collapse
Affiliation(s)
- Shiro Takeda
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan; (W.M.); (R.S.)
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (T.K.); (K.U.); (M.O.)
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Teppei Kanda
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (T.K.); (K.U.); (M.O.)
| | - Abdulatef M. Ahhmed
- Department of Nutritional Therapy, Graduate School of Medical Science, The Libyan Academy, Tripoli 79031, Libya;
| | - Kazuki Sogawa
- School of Life and Environmental Science, Azabu University, Sagamihara 252-5201, Japan;
| | - Keitarou Umezu
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (T.K.); (K.U.); (M.O.)
| | - Masaya Ogata
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (T.K.); (K.U.); (M.O.)
| | - Wataru Mizunoya
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan; (W.M.); (R.S.)
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (T.K.); (K.U.); (M.O.)
- Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara 252-5201, Japan
| | - Ryoichi Sakata
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan; (W.M.); (R.S.)
- Graduate School of Veterinary Science, Azabu University, Sagamihara 252-5201, Japan; (T.K.); (K.U.); (M.O.)
| |
Collapse
|
3
|
Overview of omics applications in elucidating the underlying mechanisms of biochemical and biological factors associated with meat safety and nutrition. J Proteomics 2023; 276:104840. [PMID: 36758853 DOI: 10.1016/j.jprot.2023.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.
Collapse
|
4
|
Wang Y, Li S, Chen J, Zhu H, Harsh BN, Boler DD, Dilger AC, Shike DW, Suman SP. Supranutritional Supplementation of Vitamin E Influences Myoglobin Post-Translational Modifications in Postmortem Beef Longissimus Lumborum Muscle. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications (PTM) in myoglobin (Mb) can influence fresh meat color stability. Dietary supplementation of vitamin E improves beef color stability by delaying lipid oxidation–induced Mb oxidation and influences proteome profile of postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTM in postmortem beef skeletal muscles has yet to be investigated. Therefore, the objective of the current study was to examine the effect of dietary vitamin E on Mb PTM in postmortem beef longissimus lumborum muscle. Beef longissimus lumborum muscle samples (24 h postmortem) were obtained from the carcasses of 9 vitamin E–supplemented (VITE; 1,000 IU vitamin E diet/heifer·d−1for 89 d) and 9 control (CONT; no supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef longissimus lumborum muscle. Tandem mass spectrometry identified multiple PTM (phosphorylation, acetylation, 4-hydroxynonenalalkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTM. The same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78), and 4-hydroxynonenal alkylation (K77, K78, K79) were identified in Mb from CONT and VITE samples, indicating that these PTM were not influenced by the vitamin E supplementation in cattle. Nonetheless, differential occurrence of acetylation, methylation, dimethylation, and trimethylation were identified in Mb from CONT and VITE samples. Overall, a greater number of amino acids were modified in CONT than VITE, suggesting that the supplementation of vitamin E decreased thenumbers of post-translationally modified residues in Mb. Additionally, PTM at K87, K96, K98, and K102 were unique to CONT, whereas PTM at K118 were unique to VITE. These findings suggested that dietary supplementation of vitamin E in beef cattle might protect amino acid residues in Mb—especially those located spatially close to proximal histidine—from undergoing PTM, thereby improving Mb redox stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | - Bailey N. Harsh
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Dustin D. Boler
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Anna C. Dilger
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Daniel W. Shike
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | | |
Collapse
|
5
|
Gao X, Xia L, Fan Y, Jin C, Xiong G, Hao X, Fu L, Lian W. Evaluation of coloration, nitrite residue and antioxidant capacity of theaflavins, tea polyphenols in cured sausage. Meat Sci 2022; 192:108877. [PMID: 35671627 DOI: 10.1016/j.meatsci.2022.108877] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/06/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
This study evaluated the effects of theaflavins (TFs), tea polyphenols (TP) and vitamin C (VC) on the nitrite residue amount, color, antioxidant capacity and N-nitrosamines inhibition in cured sausage. The addition of TFs, TP and VC combined with NaNO2 respectively could significantly increase the a* value, nitroso pigment content and DPPH free radical scavenging rate, and effectively reduced the content of residual nitrite, metmyoglobin (MetMb) and total N-nitrosamines in cured sausages than treated only with NaNO2 (P < 0.05), of which TFs group was the most significant (P < 0.05). It was indicated that the addition of TFs, TP could better inhibit the oxidation of cured sausages. UV-vis spectroscopy also showed pentacoordinate nitrosyl ferrohemochrome was the main pigment component in the samples. The results demonstrated that TFs and TP could contribute to the desired color and safety of sausage.
Collapse
Affiliation(s)
- Xueqin Gao
- Henan Universality of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Luyang Xia
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqi Fan
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changchun Jin
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guoyuan Xiong
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xiuzhen Hao
- Henan Universality of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Li Fu
- Henan Universality of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Weishuai Lian
- Henan Universality of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
6
|
Du M, Li X, Zhang D, Li Z, Hou C, Ren C, Bai Y. Phosphorylation plays positive roles in regulating the inhibitory ability of calpastatin to calpain. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manting Du
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| | - Xin Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Dequan Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Zheng Li
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chengli Hou
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Chi Ren
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences, Key Laboratory of Agro‐products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs Beijing China
| | - Yanhong Bai
- College of Food and Biological Engineering Zhengzhou University of Light Industry Zhengzhou Henan China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan China
| |
Collapse
|
7
|
The Relationship between Lipid Content in Ground Beef Patties with Rate of Discoloration and Lipid Oxidation during Simulated Retail Display. Foods 2021; 10:foods10091982. [PMID: 34574092 PMCID: PMC8469196 DOI: 10.3390/foods10091982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
The relationships between the lipid content, lipid oxidation, and discoloration rate of ground beef during a simulated retail display were characterized in this study. A total of 276 batches of ground beef were manufactured with inside rounds and subcutaneous fat from 138 beef carcasses at different targeted levels of lean:fat. There was a total of four different targeted grind levels during the manufacture of the ground beef, and the lipid content for the samples used in this study ranged from 2% to 32% total lipid. Fatty acid composition was determined based on subcutaneous fat, whereas the proximate composition of moisture and total lipids, instrumental color, visual discoloration, and lipid oxidation measured as thiobarbituric acid reactive substances were evaluated on ground beef patties during 7 days of simulated retail at 4 °C display under LED lights. Analysis for the correlation and the creation of linear regression models indicated that lipid content played a more critical role in the discoloration rate compared to lipid oxidation and fatty acid composition. Lipid oxidation could be more reliably predicted by lipid content and instrumental color compared to visual discoloration. Overall, ground beef formulated with greater lipid content is expected to experience greater rates of lipid oxidation and discoloration during retail display.
Collapse
|
8
|
Barón CLC, Santos‐Donado PR, Ramos PM, Donado‐Pestana CM, Delgado EF, Contreras‐Castillo CJ. Influence of ultimate pH on biochemistry and quality of
Longissimus lumborum
steaks from Nellore bulls during ageing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Clara Lucía Contreras Barón
- Department of Agro‐industry, Food and Nutrition “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Priscila Robertina Santos‐Donado
- Department of Agro‐industry, Food and Nutrition “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Patricia Maloso Ramos
- Department of Animal Science “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Carlos M. Donado‐Pestana
- Department of Food and Experimental Nutrition Faculty of Pharmaceutical Sciences University of São Paulo P.O. Box 05508‐900, Av. Prof. Lineu Prestes 580 São Paulo SP Brazil
| | - Eduardo Francisquine Delgado
- Department of Animal Science “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| | - Carmen J. Contreras‐Castillo
- Department of Agro‐industry, Food and Nutrition “Luiz de Queiroz” College of Agriculture – University of São Paulo P.O. Box 13418‐900, Av. Padua Dias 11 Piracicaba SP Brazil
| |
Collapse
|
9
|
Wang Y, Li S, Rentfrow G, Chen J, Zhu H, Suman SP. Myoglobin Post-Translational Modifications Influence Color Stability of Beef Longissimus Lumborum. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTM) of proteins play critical roles in biological processes. PTM of muscle proteins influence meat quality. Nonetheless, myoglobin (Mb) PTM and their impact on fresh beef color stability have not been characterized yet. Therefore, our objectives were to identify Mb PTM in beef longissimus lumborum muscle during postmortem aging and to characterize their influence on color stability. The longissimus lumborum muscles from 9 (n = 9) beef carcasses (24 h postmortem) were subjected to wet aging for 0, 7, 14, and 21 d. At the end of each wet-aging period, steaks were fabricated. One steak for analyses of PTM was immediately frozen at −80°C, whereas other steaks were assigned to refrigerated storage in the darkness under aerobic packaging. Instrumental color and biochemical attributes were evaluated on day 0, 3, or 6 of storage. Mb PTM were analyzed using two-dimensional electrophoresis and tandem mass spectrometry. Surface redness (a* value), color stability, and Mb concentration decreased (P < 0.05) upon aging. Gel image analyses identified 6 Mb spots with similar molecular weight (17 kDa) but different isoelectric pH. Tandem mass spectrometry identified multiple PTM (phosphorylation, methylation, carboxymethylation, acetylation, and 4-hydroxynonenal alkylation) in these 6 isoforms. The amino acids susceptible to phosphorylation were serine (S), threonine (T), and tyrosine, whereas other PTM were detected in lysine (K), arginine (R), and histidine residues. Additionally, distal histidine (position 64), critical to heme stability, was found to be alkylated. Overall, Mb PTM increased with aging. The aging-induced PTM, especially those occurring close to hydrophobic heme pocket, could disrupt Mb tertiary structure, influence heme affinity, and compromise oxygen binding capacity, leading to decreased color stability of fresh beef. Furthermore, PTM at K45, K47, and K87 were unique to Mb from non-aged beef, whereas PTM at R31, T51, K96, K98, S121, R139, and K147 were unique to Mb from aged counterparts, indicating that these Mb PTM could be used as novel biomarkers for fresh beef color stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Gregg Rentfrow
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | | |
Collapse
|
10
|
Li X, Zhang D, Ren C, Bai Y, Ijaz M, Hou C, Chen L. Effects of protein posttranslational modifications on meat quality: A review. Compr Rev Food Sci Food Saf 2020; 20:289-331. [PMID: 33443799 DOI: 10.1111/1541-4337.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Meat quality plays an important role in the purchase decision of consumers, affecting producers and retailers. The formation mechanisms determining meat quality are intricate, as several endogenous and exogenous factors contribute during antemortem and postmortem periods. Abundant research has been performed on meat quality; however, unexpected variation in meat quality remains an issue in the meat industry. Protein posttranslational modifications (PTMs) regulate structures and functions of proteins in living tissues, and recent reports confirmed their importance in meat quality. The objective of this review was to provide a summary of the research on the effects of PTMs on meat quality. The effects of four common PTMs, namely, protein phosphorylation, acetylation, S-nitrosylation, and ubiquitination, on meat quality were discussed, with emphasis on the effects of protein phosphorylation on meat tenderness, color, and water holding capacity. The mechanisms and factors that may affect the function of protein phosphorylation are also discussed. The current research confirms that meat quality traits are regulated by multiple PTMs. Cross talk between different PTMs and interactions of PTMs with postmortem biochemical processes need to be explored to improve our understanding on factors affecting meat quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chi Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqiang Bai
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muawuz Ijaz
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Kęska P, Rohn S, Halagarda M, M. Wójciak K. Peptides from Different Carcass Elements of Organic and Conventional Pork-Potential Source of Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9090835. [PMID: 32906682 PMCID: PMC7554766 DOI: 10.3390/antiox9090835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
The growing consumer interest in organic foods, as well as, in many cases, the inconclusiveness of the research comparing organic and conventional foods, indicates a need to study this issue further. The aim of the study was to compare the effects of meat origin (conventional vs. organic) and selected elements of the pork carcass (ham, loin, and shoulder) on the meat proteome and the antioxidant potential of its peptides. The peptidomic approach was used, while the ability of antioxidants to scavenge 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS), to chelate Fe(II) ions, and to reduce Fe(III) was determined. Most peptides were derived from myofibrillary proteins. The meat origin and the element of the pork carcass did not have a significant effect on the proteome. On the other hand, the pork origin and the carcass element significantly affected the iron ion-chelating capacity (Fe(II)) and the reducing power of peptides. In particular, pork ham from conventional rearing systems had the best antioxidant properties in relation to potential antioxidant peptides. This could be a factor for human health, as well as for stabilized meat products (e.g., toward lipid oxidation).
Collapse
Affiliation(s)
- Paulina Kęska
- Department of Animal Raw Materials Technology, University of Life Sciences in Lublin, 20033 Lublin, Poland;
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany;
| | - Michał Halagarda
- Department of Food Product Quality, Cracow University of Economics, 31510 Kraków, Poland;
| | - Karolina M. Wójciak
- Department of Animal Raw Materials Technology, University of Life Sciences in Lublin, 20033 Lublin, Poland;
- Correspondence: ; Tel.: +48-081-462-3340
| |
Collapse
|
12
|
Sahiner N. Amino acid‐derived Poly(
L
‐Lysine
) (p
(LL
)) microgel as a versatile biomaterial: Hydrolytically degradable, drug carrying, chemically modifiable and antimicrobial material. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nurettin Sahiner
- Department of Chemistry & Nanoscience and Technology Research and Application CenterCanakkale Onsekiz Mart University Canakkale Turkey
- Department of OphthalmologyMorsani College of Medicine Tampa FL USA
| |
Collapse
|
13
|
Role of phosphorylation on characteristics of glycogen phosphorylase in lamb with different glycolytic rates post-mortem. Meat Sci 2020; 164:108096. [PMID: 32145602 DOI: 10.1016/j.meatsci.2020.108096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
The relationship between glycogen phosphorylase activity and phosphorylation levels in the longissimus thoracis muscle post-mortem was studied. Sixty lamb samples were collected at 0.5 h, 2 h, 6 h, 12 h, 24 h, 48 h, and 72 h post-mortem and divided into three groups (n = 6) with different glycolytic rates (fast, intermediate, and slow) according to the pH at 6 h post-mortem. The phosphorylation level and activity and expression of glycogen phosphorylase were determined. The results showed that the phosphorylation level and activity of glycogen phosphorylase in the slow pH decline group was lower than that in the fast pH decline group during 24 h post-mortem (P < .05). There was a significant positive correlation between the glycogen phosphorylase activity and the phosphorylation level. In conclusion, these data demonstrated that the glycogen phosphorylase activity in lambs was affected by phosphorylation levels and postmortem duration.
Collapse
|
14
|
Ren C, Hou C, Li Z, Li X, Bai Y, Zhang D. Effects of temperature on protein phosphorylation in postmortem muscle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:551-559. [PMID: 31587285 DOI: 10.1002/jsfa.10045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/29/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phosphorylation is one of the most important post-translational modifications. Currently, many postmortem protein phosphorylation studies in muscle have been related to meat quality such as tenderness and color stability. However, the effects of various storage temperatures (25, 15, 4 and -1.5 °C) on the phosphorylation level of protein are poorly understood. Changes in the protein phosphorylation levels in postmortem ovine muscle at various storage temperatures were determined in this study. RESULTS The obtained data showed that pH decline rate was significantly inhibited at -1.5 °C from 12 h to 7 days postmortem (P < 0.05). The ATP consumption rate was higher at 25 °C than that at other three temperatures (P < 0.05). Analysis of the temperature, pH and ATP content revealed that the ATP content was related to the phosphorylation levels of individual protein bands. Phosphorylated myofibrillar and sarcoplasmic proteins, such as myosin binding protein C, troponin T3, myosin light chain 1, glucose-6-phosphate isomerase and pyruvate kinase, were mainly involved in glycolysis and muscle contraction. CONCLUSION The global and specific protein phosphorylation levels can be influenced by the postmortem storage temperature of muscle. Phosphorylation of proteins was correlated with glycolysis and muscle contraction. Certain phosphorylated proteins, such as heat shock proteins, require further study to clarify their effects on meat traits. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chi Ren
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuqiang Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
15
|
Chen L, Bai Y, Everaert N, Li X, Tian G, Hou C, Zhang D. Effects of protein phosphorylation on glycolysis through the regulation of enzyme activity in ovine muscle. Food Chem 2019; 293:537-544. [DOI: 10.1016/j.foodchem.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
|
16
|
l-Lysine/l-arginine/l-cysteine synergistically improves the color of cured sausage with NaNO 2 by hindering myoglobin oxidation and promoting nitrosylmyoglobin formation. Food Chem 2019; 284:219-226. [PMID: 30744849 DOI: 10.1016/j.foodchem.2019.01.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/02/2023]
Abstract
This study aimed to evaluate the effects of l-lysine (Lys)/l-arginine (Arg)/l-cysteine (Cys) on the color of cured sausage and the possible mechanism underlying these effects. The results indicated that the combined addition of Arg/Lys/Cys and NaNO2 effectively increased the a* values and nitroso pigment content but decreased the MetMb(Fe3+) content in cured sausage, compared with the individual addition of Arg/Lys/Cys and NaNO2. The cured sausage treated with combined Arg/Lys/Cys and NaNO2 contained significantly lower residual nitrite than those treated with only NaNO2. UV-vis spectroscopy and electron paramagnetic resonance spectroscopy revealed that pentacoordinate nitrosyl ferrohemochrome was the main pigment component in the cured sausage treated with NaNO2 or combined Arg/Lys/Cys and NaNO2 and higher content in the latter one. The results suggest that Arg/Lys/Cys hindered myoglobin oxidation and promoted pentacoordinate nitrosylmyoglobin formation, which could contribute to the improved color of cured sausage. The results are of interest in the meat industry.
Collapse
|
17
|
Xing T, Gao F, Tume RK, Zhou G, Xu X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr Rev Food Sci Food Saf 2018; 18:380-401. [PMID: 33336942 DOI: 10.1111/1541-4337.12417] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Stress inevitably occurs from the farm to abattoir in modern livestock husbandry. The effects of stress on the behavioral and physiological status and ultimate meat quality have been well documented. However, reports on the mechanism of stress effects on physiological and biochemical changes and their consequent effects on meat quality attributes have been somewhat disjointed and limited. Furthermore, the causes of variability in meat quality traits among different animal species, muscle fibers within an animal, and even positions within a piece of meat in response to stress are still not entirely clear. This review 1st summarizes the primary stress factors, including heat stress, preslaughter handling stress, oxidative stress, and other stress factors affecting animal welfare; carcass quality; and eating quality. This review further delineates potential stress-induced pathways or mediators, including AMP-activated protein kinase-mediated energy metabolism, crosstalk among calcium signaling pathways and reactive oxygen species, protein modification, apoptosis, calpain and cathepsin proteolytic systems, and heat shock proteins that exert effects that cause biochemical changes during the early postmortem period and affect the subsequent meat quality. To obtain meat of high quality, further studies are needed to unravel the intricate mechanisms involving the aforementioned signaling pathways or mediators and their crosstalk.
Collapse
Affiliation(s)
- Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Ronald K Tume
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| |
Collapse
|
18
|
Mora L, Gallego M, Toldrá F. New approaches based on comparative proteomics for the assessment of food quality. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Chen L, Li Z, Li X, Chen J, Everaert N, Zhang D. The effect of sarcoplasmic protein phosphorylation on glycolysis in postmortem ovine muscle. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Li Chen
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
- Precision Livestock and Nutrition Unit; Gembloux Agro-Bio Tech; University of Liège; Passage de Déportés 2 Gembloux Belgium
| | - Zheng Li
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| | - Xin Li
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| | - Jing Chen
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit; Gembloux Agro-Bio Tech; University of Liège; Passage de Déportés 2 Gembloux Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing; Ministry of Agriculture; Beijing China
| |
Collapse
|
20
|
Li Z, Li M, Li X, Xin J, Wang Y, Shen QW, Zhang D. Quantitative phosphoproteomic analysis among muscles of different color stability using tandem mass tag labeling. Food Chem 2018; 249:8-15. [DOI: 10.1016/j.foodchem.2017.12.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 11/15/2022]
|