1
|
Chen S, Guo Q, Zhou T, Liu L. Levels and Health Risk Assessment of Inorganic Arsenic, Methylmercury, and Heavy Metals in Edible Mushrooms Collected from Online Supermarket in China. Biol Trace Elem Res 2024; 202:1802-1815. [PMID: 37526876 DOI: 10.1007/s12011-023-03779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
Chromium (Cr), total arsenic (As), inorganic arsenic (iAs), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and lead (Pb) were analyzed in in Agaricus blazei, Tricholoma matsutake, Pholiota nameko, agrocybe aegirit, Boletus edulis, Auricularia auricula, and Lentinus edodes collected from online supermarket in China from 2015 to 2017. The order of mean concentrations for the five heavy metals in edible mushrooms was As > Cd > Cr > Pb > Hg. No positive correlation was found between total As and iAs, nor between total Hg and MeHg. The contents of iAs were at a low level except for A. blazei samples. The contents of MeHg were at a low level in all test mushroom samples. And Cr, Cd, and Pb pollution were common problems in the test mushroom samples. The comprehensive factor pollution index was between 0.569 (A. auricula) and 3.056 (B. edulis). The THQ values for the five heavy metals from P. nameko, A. auricula, A. aegirit, and L. edodes samples were less than 1. The hazard index (HI) values of A. blazei, T. matsutake, and B. edulis samples for adults and children were greater than 1, indicating significant health hazard to the adults and children consumers. The cancer risk (CR) values for iAs ranged from 3.82 × 10- 6 (T. matsutake) to 8.61 × 10- 5 (A. blazei), indicating no potential carcinogenic risk to the consumers. The order for carcinogenic risk of each edible mushroom species was A. blazei > L. edodes > P. nameko > A. aegirit > A. auricula > B. edulis > T. matsutake.
Collapse
Affiliation(s)
- Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qiaozhen Guo
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Tianhui Zhou
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
- School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Chen S, Liu L. Species composition and health risk assessment of arsenic in Agaricus blazei Murrill and Tricholoma matsutake from Yunnan Province, China. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Zhu Y, Zhang M, Mujumdar AS, Liu Y. Application advantages of new non-thermal technology in juice browning control: A comprehensive review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co., Ltd. Guangdong, Zhongshan, China
| |
Collapse
|
4
|
Semiautomatic method for the ultra-trace arsenic speciation in environmental and biological samples via magnetic solid phase extraction prior to HPLC-ICP-MS determination. Talanta 2021; 235:122769. [PMID: 34517627 DOI: 10.1016/j.talanta.2021.122769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022]
Abstract
A novel magnetic functionalized material based on graphene oxide and magnetic nanoparticles (MGO) was used to develop a magnetic solid phase extraction method (MSPE) to enrich both, inorganic and organic arsenic species in environmental waters and biological samples. An automatic flow injection (FI) system was used to preconcentrate the arsenic species simultaneously, while the ultra-trace separation and determination of arsenobetaine (AsBet), cacodylate, AsIII and AsV species were achieved by high performance liquid chromatography combined with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The sample was introduced in the FI system where the MSPE was performed, then 1 mL of eluent was collected in a chromatographic vial, which was introduced in the autosampler of HPLC-ICP-MS. Therefore, preconcentration and separation/determination processes were automatic and conducted separately. To the best of our knowledge, this is the first method combining an automatic MSPE with HPLC-ICP-MS for arsenic speciation, using a magnetic nanomaterial based on MGO for automatic MSPE. Under the optimized conditions, the LODs for the arsenic species were 3.8 ng L-1 AsBet, 0.5 ng L-1 cacodylate, 1.1 ng L-1 AsIII and 0.2 ng L-1 AsV with RSDs <5%. The developed method was validated by analyzing Certified Reference Materials for total As concentration (fortified lake water TMDA 64.3 and seawater CASS-6 NRC) and also by recovery analysis of the arsenic species in urine, well-water and seawater samples collected in Málaga. The developed method has shown promise for routine monitoring of arsenic species in environmental waters and biological fluids.
Collapse
|
5
|
Abstract
Following an official request to EFSA from the European Commission, EFSA assessed the chronic dietary exposure to inorganic arsenic (iAs) in the European population. A total of 13,608 analytical results on iAs were considered in the current assessment (7,623 corresponding to drinking water and 5,985 to different types of food). Samples were collected across Europe between 2013 and 2018. The highest mean dietary exposure estimates at the lower bound (LB) were in toddlers (0.30 μg/kg body weight (bw) per day), and in both infants and toddlers (0.61 μg/kg bw per day) at the upper bound (UB). At the 95th percentile, the highest exposure estimates (LB-UB) were 0.58 and 1.20 μg/kg bw per day in toddlers and infants, respectively. In general, UB estimates were two to three times higher than LB estimates. The mean dietary exposure estimates (LB) were overall below the range of benchmark dose lower confidence limit (BMDL 01) values of 0.3-8 μg/kg bw per day established by the EFSA Panel on Contaminants in the Food Chain in 2009. However, for the 95th percentile dietary exposure (LB), the maximum estimates for infants, toddlers and other children were within this range of BMDL 01 values. Across the different age classes, the main contributors to the dietary exposure to iAs (LB) were 'Rice', 'Rice-based products', 'Grains and grain-based products (no rice)' and 'Drinking water'. Different ad hoc exposure scenarios (e.g. consumption of rice-based formulae) showed dietary exposure estimates in average and for high consumers close to or within the range of BMDL 01 values. The main uncertainties associated with the dietary exposure estimations refer to the impact of using the substitution method to treat the left-censored data (LB-UB differences), to the lack of information (consumption and occurrence) on some iAs-containing ingredients in specific food groups, and to the effect of food preparation on the iAs levels. Recommendations were addressed to improve future dietary exposure assessments to iAs.
Collapse
|
6
|
Jiao Y, Yang L, Kong Z, Shao L, Wang G, Ren X, Liu Y. Evaluation of trace metals and rare earth elements in mantis shrimp Oratosquilla oratoria collected from Shandong Province, China, and its potential risks to human health. MARINE POLLUTION BULLETIN 2021; 162:111815. [PMID: 33168143 DOI: 10.1016/j.marpolbul.2020.111815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
This study provided the primary data of selected trace elements and rare earth elements from 120 samples of mantis shrimp Oratosquilla oratoria (O. oratoria) caught from three sites in the Shandong Province, China and evaluated the potential health risk of shrimp consumption from this region. The calculation of estimated daily intake (EDI), target hazard quotient (THQ) and total target hazard quotient (TTHQ) showed that the contents of all target TREs were below respective permitted limits recommended by China, with the exceptions of Cd and iAs levels. In addition to pollution, results indicated that TREs concentrations in O. oratoria were also impacted by characteristics of O. oratoria. The distribution patterns of REEs in O. oratoria did not differ from those in the sediment and other marine organisms, following the abundance rule. Consumption of O. oratoria from Shandong Province is potentially harmful to human health due to high levels of Cd and iAs.
Collapse
Affiliation(s)
- Yanni Jiao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China; Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Luping Yang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China; Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Zhengqiao Kong
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China; Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Lijun Shao
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China; Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Guoling Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China; Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Xiaofei Ren
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China; Academy of Preventive Medicine, Shandong University, Jinan, China
| | - Yongjun Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, China.
| |
Collapse
|
7
|
Zou H, Zhou C, Li Y, Yang X, Wen J, Song S, Li C, Sun C. Speciation analysis of arsenic in edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Food Chem 2020; 327:127033. [DOI: 10.1016/j.foodchem.2020.127033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/19/2023]
|
8
|
|
9
|
Zhang J, Barałkiewicz D, Wang Y, Falandysz J, Cai C. Arsenic and arsenic speciation in mushrooms from China: A review. CHEMOSPHERE 2020; 246:125685. [PMID: 31887488 DOI: 10.1016/j.chemosphere.2019.125685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 05/22/2023]
Abstract
Arsenic (As) is a natural environmental contaminant to which humans are usually exposed in water, air, soil, and food. China is a typical high-As region, and also a great contributor of the world production of cultivated edible mushrooms and a region abundant in wild growing edible mushrooms. Mushrooms can accumulate different amounts of As and different As compounds, so potential health risk of As intake may exist to people who use mushrooms with elevated As contents as food or medicine. A systematic literature search was carried out for studies on As and As compounds in mushrooms from China. We compiled existing data from published sources in English or Chinese and provide an updated review of the findings on As in mushrooms associated with environments and health risks. Future perspectives for studies on As in mushrooms have also been discussed.
Collapse
Affiliation(s)
- Ji Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China; Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danuta Barałkiewicz
- Department of Trace Element Analysis by Spectroscopy Method, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Yuanzhong Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Jerzy Falandysz
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China; Environmental Chemistry & Ecotoxicology, University of Gdańsk, Gdańsk, 80-308, Poland; Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Chuantao Cai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China.
| |
Collapse
|
10
|
Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Arsenic species in mushrooms, with a focus on analytical methods for their determination – A critical review. Anal Chim Acta 2019; 1073:1-21. [DOI: 10.1016/j.aca.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023]
|
12
|
Cao XY, Liu D, Bi RC, He YL, He Y, Liu JL. The protective effects of a novel polysaccharide from Lentinus edodes mycelia on islet β (INS-1) cells damaged by glucose and its transportation mechanism with human serum albumin. Int J Biol Macromol 2019; 134:344-353. [DOI: 10.1016/j.ijbiomac.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
|
13
|
Chen S, Kimatu BM, Fang D, Chen X, Chen G, Hu Q, Zhao L. Effect of Ultrasonic Treatment on Transformations of Arsenic Species in Edible Mushrooms. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1639056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shuangyang Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Benard Muinde Kimatu
- Department of Dairy and Food Science and Technology, Egerton University, Egerton, Kenya
| | - Donglu Fang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guitang Chen
- Department of Food Quality and Safety, China Pharmaceutical University, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Cao X, Liu D, Xia Y, Cai T, He Y, Liu J. A novel polysaccharide from Lentinus edodes mycelia protects MIN6 cells against high glucose-induced damage via the MAPKs and Nrf2 pathways. Food Nutr Res 2019; 63:1598. [PMID: 31217790 PMCID: PMC6560380 DOI: 10.29219/fnr.v63.1598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/06/2019] [Accepted: 05/08/2019] [Indexed: 12/23/2022] Open
Abstract
Background Diabetes mellitus is one of the most widespread diseases in the world, high glucose can damage islet cells, it is important to discover new natural products to inhibit high glucose damage. The protective effects and mechanisms of a novel Lentinus edodes mycelia polysaccharide (LMP) against damage induced by high glucose in MIN6 cells were explored. Methods Cell viability, malondialdehyde (MDA) inhibition, lactate dehydrogenase (LDH) release and the activity of superoxide dismutase (SOD) were evaluated under 40 mM glucose with or without LMP for 48 h. Cell signaling pathway analysis was performed to investigate the possible mechanisms of the protective effects of LMP in MIN6 cells. Results The results showed that LMP could increase cell viability and the activity of SOD, decrease the reactive oxygen species ( ROS) production, and reduce the MDA content and LDH release in high glucose-induced MIN6 cells. Moreover, LMP prevented high glucose-induced apoptosis by decreasing the expression of Bax and the activation of caspase-1 and caspase-3. Cell signaling pathway analysis showed that p38 mitogen-activated protein kinase (MAPK) and JNK pathways were inhibited and the Nrf2 pathway was activated after treated with LMP. Conclusion The protective effects of LMP against MIN6 cells damage induced by high glucose might rely on the regulation of the MAPK and Nrf2 pathways. These results indicated that LMP had great potential as a therapeutic agent for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Dan Liu
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Ying Xia
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Tiange Cai
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Yin He
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| | - Jianli Liu
- School of life Science, Liaoning University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Wang Z, Xu J, Liu Y, Li Z, Xue Y, Wang Y, Xue C. Arsenic Speciation of Edible Shrimp by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS): Method Development and Health Assessment. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1608224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhipeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yanjun Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
16
|
Rabb SA, Le MD, Yu LL. A novel approach to converting alkylated arsenic to arsenic acid for accurate ICP-OES determination of total arsenic in candidate speciation standards. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|