1
|
Ma Y, Fu S, Cheng KW, Liu B. Impact of Extrusion Parameters on the Formation of Nε-(Carboxymethyl)lysine, Nε-(Carboxyethyl)lysine and Acrylamide in Plant-Based Meat Analogues. Int J Mol Sci 2024; 25:8668. [PMID: 39201355 PMCID: PMC11354377 DOI: 10.3390/ijms25168668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
To investigate the impact of extrusion parameters on the formation of Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL) and acrylamide in plant-based meat analogues (PBMAs), the content changes and the correlations of compounds related to their formation were studied. The extrusion promoted CML, CEL and acrylamide formation, with more CEL being formed than CML. Variations in the moisture level and barrel temperature exerted a greater influence on the CML, CEL, acrylamide and α-dicarbonyl compounds than the screw speed and the feed rate. An increase in the moisture content led to a decrease in the CEL content, whereas it enhanced CML formation. The impact of moisture on acrylamide formation varied depending on whether low- or high-moisture extrusion was applied. Elevated temperatures promoted the accumulation of CEL, methylglyoxal and 2,3-butanedione while diminishing the accumulation of CML, acrylamide, glyoxal and 3-deoxyglucosone. CML and CEL were positively correlated with glyoxal and methylglyoxal, respectively. CEL and methylglyoxal were negatively correlated with protein and water content, whereas CML, glyoxal and 3-deoxyglucosone displayed positive correlations. In summary, higher moisture levels and feed rates and lower screw speeds and barrel temperatures are advantageous for producing PBMAs with lower CEL and total advanced glycation end-products contents, while lower or higher moisture contents, a lower feed rate and a higher barrel temperature are beneficial to reducing the acrylamide content.
Collapse
Affiliation(s)
- Yurong Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Shuang Fu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.M.); (S.F.); (K.-W.C.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Aydemir ME, Altun SK, Takım K, Yilmaz MA, Yalçin H. Inhibitory effect of homemade hawthorn vinegar-based marinade on Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine formation in beef tenderloins. Meat Sci 2024; 214:109535. [PMID: 38759327 DOI: 10.1016/j.meatsci.2024.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
In this study, the inhibitory effects of homemade hawthorn vinegar-based marinade on the formation of Nε-(carboxymethyl) lysine (CML) and Nε-(carboxyethyl) lysine (CEL) during the cooking of beef tenderloins investigated. Additionally, the goal was to determine the bioactive compounds present in hawthorn vinegar that could contribute to these effects, both quantitatively and qualitatively. For this purpose, hawthorn vinegar was first produced from hawthorn fruit and characterized. Then, beef tenderloins were marinated at two different concentrations (25% and 50%) and three different marination times (2, 6 and 24 h) and cooked in a airfryer at 200 °C for 12 min. After the cooking process, analyses were conducted for CML, CEL, thiobarbituric acid reactive substances (TBARS), sensory and color. Hawthorn vinegar was found to have high phytochemical and bioactivity properties. It was found that hawthorn vinegar significantly altered the color properties (L*, a*, and b*) of raw beef tenderloin samples (P < 0.05). The marinating process did not adversely affect the sensory properties of the beef tenderloin, other than odour, and even improved its texture and appearance. Increasing the marination concentration and time significantly inhibited CML and CEL formation (P < 0.05), marinating the meat for 24 h reduced CML formation from 13.75 μg/g to 2.5 μg/g, while CEL formation decreased from 17.58 μg/g to 16.63 μg/g. Although CEL was inhibited at low levels during marination, it remained stable. In conclusion, this study showed that hawthorn vinegar contains bioactive compounds that significantly inhibit the formation of CML and stabilize the formation of CEL.
Collapse
Affiliation(s)
- Mehmet Emin Aydemir
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Serap Kılıç Altun
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Kasım Takım
- Department of Basic Sciences, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Mustafa Abdullah Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Hamza Yalçin
- Department of Animal Science, Faculty of Agriculture, Harran University, Şanlıurfa, Turkey
| |
Collapse
|
3
|
Anlar P, Kaban G. The effects of using sheep tail fat and cooking time on carboxymethyl-lysine formation and some quality characteristics of heat-treated sucuk. Food Sci Nutr 2024; 12:4076-4085. [PMID: 38873445 PMCID: PMC11167174 DOI: 10.1002/fsn3.4067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 06/15/2024] Open
Abstract
The study's aim was to determine the effect of using sheep tail fat (STF) on carboxymethyl-lysine (CML) content and other properties of heat-treated sucuk (HTS), a type of semi-dry fermented sausage. Three mixtures were prepared: 100% beef fat (BF), 50% BF + 50% STF, and 100% STF. After production (fermentation, heat treatment, and drying), the samples were cooked at 180°C for 0, 1, 3, and 5 min to determine the effect of cooking time on CML, thiobarbituric acid reactive substance (TBARS), total sulfhydryl, and carbonyl contents. The lowest pH value (5.50) was observed in the presence of STF. The most oleic acid (46.02%) was observed in the 100% STF group. The score of taste and general acceptability decreased with increasing STF. Using STF had no significant effect on TBARS, total sulfhydryl, carbonyl, or CML content. These parameters were affected by cooking time. The mean CML content increased from 55.77 to 72.90 μg/g after 5 min of cooking. CML correlated more strongly with TBARS than sulfhydryl or carbonyl.
Collapse
Affiliation(s)
- Pınar Anlar
- Department of Food Technology, Vocational College of Technical SciencesAtatürk UniversityErzurumTurkey
| | - Güzin Kaban
- Department of Food Engineering, Faculty of AgricultureAtatürk UniversityErzurumTurkey
| |
Collapse
|
4
|
Shi H, Gao R, Liu H, Wang Z, Zhang C, Zhang D. Qualitative and quantitative assessment of key aroma compounds, advanced glycation end products and heterocyclic amines in different varieties of commercially roasted meat products. Food Chem 2024; 436:137742. [PMID: 37857196 DOI: 10.1016/j.foodchem.2023.137742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Studies on the interactions and links between aroma and hazardous compounds were inadequately investigated. A complete analysis was conducted on the key aroma compounds, typical hazardous compounds and their precursors in 25 samples of roasted meats. Forty-nine aroma compounds were identified as essential odorants with odor-activity values exceeds 1. Nε-carboxymethyl lysine (CML, 11.78-49.32 μg/g) and Nε-carboxyethyl lysine (CEL, 8.48-171.00 μg/g) were identified as representative advanced glycation end products (AGEs) of meats with high concentrations. Harman and Norharman were typical heterocyclic aromatic amines. Meanwhile, correlation analysis indicated that aldehyde and alcohols showed a negative correlation with AGEs (p < 0.01), while pyrazines might affect the formation of Harman and Norharman. The furaldehyde, 1-hexanol, 2, 4-Decadienal, AGEs, and creatine were regarded as potential biomarkers that distinguished different roasted meat products. Therefore, the study could provide new insights for synergistic regulation of aroma and hazardous compounds in roasted meat products.
Collapse
Affiliation(s)
- Haonan Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Quality and Design, Wageningen University, PO Box 8130, 6700 EW Wageningen, the Netherlands
| | - Rongmei Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunjiang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
5
|
Liu Y, Liu C, Huang X, Li M, Zhao G, Sun L, Yu J, Deng W. Exploring the role of Maillard reaction and lipid oxidation in the advanced glycation end products of batter-coated meat products during frying. Food Res Int 2024; 178:113901. [PMID: 38309860 DOI: 10.1016/j.foodres.2023.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The Maillard reaction occurs during the frying of batter-coated meat products, resulting in the production of advanced glycosylation products that are harmful to human health. This study investigated the effects of frying temperature (140, 150, 160, 170 and 180 ℃) and time (80, 100, 120, 140 and 160 s) on the quality, advanced glycation end product (AGE) level and the relationship between these parameters in batter-coated meat products were investigated. The results showed that with an increase in frying temperature and time, the moisture content of the batter-coated meat products gradually decreased, the thiobarbituric Acid Reactive Substance (TBARS) values and oil content increased to 0.37 and 21.7 %, respectively, and then decreased, and CML and CEL content increased to 7.30 and 4.86 mg/g, respectively. Correlation analysis showed that the moisture content and absorbance at 420 nm, as well as TBARS values, were highly correlated with the oil content in batter-coated meat products. Additionally, the absorbance at 420 nm and TBARS levels were significantly correlated with AGE levels. Moreover, the AGE content in batter-coated meat products was less variable at lower frying temperatures or shorter frying times, and the influence of temperature on AGE formation was greater than that of time. Overall, these findings may help to better control the cooking conditions of batter-coated meat products based on AGE profiles.
Collapse
Affiliation(s)
- Yanxia Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chun Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoshu Huang
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Miaoyun Li
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gaiming Zhao
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingxia Sun
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiahuan Yu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Deng
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
6
|
Lee HHL, Ha SK, Kim Y, Hur J. Simultaneous analysis of advanced glycation end products using dansyl derivatization. Food Chem 2024; 432:137186. [PMID: 37657336 DOI: 10.1016/j.foodchem.2023.137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Herein, new pre-column derivatization based on dansylation is present to resolve analytical difficulties, such as chromatographic separation difficulty, in identifying and quantifying advanced glycation end products (AGEs) owing to their high hydrophilicity, wide variety, and structural similarity. The proposed analytical method facilitated the separation of 14 AGEs, including structural isomers. Limits of detection of 1.0-43.3 ng/mL and linear ranges of the double- or triple-digit were achieved. Intra- and inter-day precisions of 1.1-3.0% and 1.3-3.1%, respectively, were achieved for standard solutions, while those for food specimens were 1.4-11.2% and 1.7-15.7%, respectively. The matrix effect was insignificant with regard to the percent recoveries and differences between slopes for both the standard solutions and food specimens. Furthermore, the quantitation results of AGEs in foods (coffee, beer, and sausage) and glycated proteins revealed the potential applicability of the developed method in various fields of food chemistry and biochemistry.
Collapse
Affiliation(s)
- Hyun Hee L Lee
- Agency for Defense Development, Daejeon 34186, Republic of Korea.
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jinyoung Hur
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Aydemir ME, Arslan A, Takım K, Kılıç Altun S, Yılmaz MA, Çakır O. Inhibitory effect of Paliurus spina-christi Mill., Celtis tournefortii L. and Nigella sativa L. on N ε-(Carboxymethyl) lysine in meatballs. Meat Sci 2024; 207:109362. [PMID: 37871485 DOI: 10.1016/j.meatsci.2023.109362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
This study was conducted to examine the effect of cooking at different temperatures on the formation of Nε-(carboxymethyl) lysine (CML) after adding Paliurus spina-christi Mill. (PSC), Celtis tournefortii L. (CT) fruits, and Nigella Sativa L. (NS) seeds to the meatballs. Phytochemical and bioactivity properties were determined before adding PSC, CT fruits, and NS seeds to the meatballs. Then, PSC, CT fruits, and NS seeds were added to the meatballs at a rate of 2% and stored at 4 ± 1 °C for 16 days. CML, TBARS, pH, and aw analyses were performed on the meatballs. The highest phytochemical and bioactivity levels were detected in PSC fruit. The aw values detected in the meatball groups were found to be between 0.931 and 0.951 on the 0th day and between 0.963 and 0.985 on the 16th day, and the pH values ranged from 5.66 to 6.06 on the 0th day and from 6.10 to 6.74 on the 16th day. TBARS values of the meatballs were found to be between 1.17 and 1.98 on day 0 and 1.70-3.34 mg MDA/kg on day 16. CML levels in the meatballs were determined to be between 11.15 and 13.45 on day 0 and between 13.43 and 18.17 μg/g on day 16. The highest a* value was found in the meatballs with added CT fruit. It was determined that NS seeds had a negative effect on the a* value of the meatballs. In conclusion, adding PSC, CT fruits, and NS seeds can imbue meatballs with functional properties, thereby creating a more health-beneficial product for humans.
Collapse
Affiliation(s)
- Mehmet Emin Aydemir
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Ali Arslan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Kasım Takım
- Department of Basic Sciences, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Serap Kılıç Altun
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Oğuz Çakır
- Dicle University Science and Technology Research and Application Center, Diyarbakir, Turkey
| |
Collapse
|
8
|
Wu R, Jia C, Rong J, Xiong S, Liu R. Effect of Pretreatment Methods on the Formation of Advanced Glycation End Products in Fried Shrimp. Foods 2023; 12:4362. [PMID: 38231862 DOI: 10.3390/foods12234362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Fried shrimp are popular for their attractive organoleptic and nutritional qualities. However, consumers are more concerned about the safety of fried foods. To investigate the formation of advanced glycation end products (AGEs) in fried shrimp and provide pretreatment guidance for producing low-AGEs fried pacific white shrimp were treated with seven pretreatment methods before frying. The AGEs contents, physicochemical indicators, and their correlations in the fried shrimps' interior, surface, and batter layer were analyzed. Results indicated that pretreatment methods influenced both Maillard and oxidation reactions by altering the basic compositions, which controlled the formation of AGEs. The highest and lowest AGEs contents were obtained in shelled shrimp with exscinded back and whole shrimp, respectively. The batter-coated treatment reduced the AGEs contents in samples but increased the oil content. Correlation analysis showed that lipid oxidation was the decisive chemical reaction to the formation of AGEs by promoting the generation of dicarbonyl compounds and their combination with free amino acids. Conclusively, the whole shrimp was suitable for producing fried shrimp with low AGEs, oil content, and desirable color.
Collapse
Affiliation(s)
- Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
9
|
Li N, Wu X, Liu H, Xie D, Hao S, Lu Z, Quan W, Chen J, Xu H, Li M. Effect of edible oil type on the formation of protein-bound N ε-(carboxymethyl)lysine in roasted pork patties. Food Res Int 2023; 174:113628. [PMID: 37986479 DOI: 10.1016/j.foodres.2023.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Protein-bound Nε-(carboxymethyl)lysine (CML), an advanced glycation end product within meat products, poses a potential health risk to humans. The objective of this study was to explore the impact of various edible oils on the formation of protein-bound CML in roasted pork patties. Eleven commercially edible oils including lard oil, corn oil, palm oil, olive oil, flaxseed oil, blended oil, camellia oil, walnut oil, soybean oil, peanut oil, and colza oil were added to pork tenderloin mince, respectively, at a proportion of 4 % to prepare raw pork patties. The protein-bound CML contents in the pork patties were determined by HPLC-MS/MS before and after roasting at 200 °C for 20 min. The results indicated that walnut oil, flaxseed oil, colza oil, olive oil, lard oil, corn oil, blended oil, and palm oil significantly reduced the accumulation of protein-bound CML in pork patties, of which the inhibition rate was in the 24.43 %-37.96 % range. Moreover, the addition of edible oil contributed to a marginal reduction in the loss of lysine. Meanwhile, glyoxal contents in pork patties were reduced by 16.72 %-43.21 % after roasting. Other than blend oil, all the other edible oils restrained protein oxidation in pork patties to varying degrees (between 20.16 % and 61.26 %). In addition, camellia oil, walnut oil, and flaxseed oil increased TBARS values of pork patties by 2.2-8.6 times when compared to the CON group. After analyzing the fatty acid compositions of eleven edible oils, five main fatty acids (palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid) were selected to establish Myofibrillar protein-Glucose-fatty acids systems to simulate the roasting process. The results showed that palmitic acid, oleic acid, linoleic acid, and linolenic acid obviously mitigated the formation of myofibrillar protein-bound CML, exhibiting suppression rates ranging from 10.38 % to 40.32 %. In conclusion, the addition of specific edible oil may curb protein-bound CML production in roasted pork patty by restraining protein or lipid oxidation, reducing lysine loss, and suppressing glyoxal production, which may be attributed to the fatty acid compositions of edible oils. This finding provides valuable guidance for the selection of healthy roasting oils in the thermal processing of meat products.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuan Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Hailong Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Diandong Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shuqi Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zeyu Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Niu L, Kong S, Chu F, Huang Y, Lai K. Investigation of Advanced Glycation End-Products, α-Dicarbonyl Compounds, and Their Correlations with Chemical Composition and Salt Levels in Commercial Fish Products. Foods 2023; 12:4324. [PMID: 38231755 DOI: 10.3390/foods12234324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
The contents of free and protein-bound advanced glycation end-products (AGEs) including Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL), along with glyoxal (GO), methylglyoxal (MGO), chemical components, and salt in commercially prepared and prefabricated fish products were analyzed. Snack food classified as commercially prepared products exhibited higher levels of GO (25.00 ± 3.34-137.12 ± 25.87 mg/kg of dry matter) and MGO (11.47 ± 1.39-43.23 ± 7.91 mg/kg of dry matter). Variations in the contents of free CML and CEL increased 29.9- and 73.0-fold, respectively. Protein-bound CML and CEL in commercially prepared samples were higher than those in raw prefabricated ones due to the impact of heat treatment. Levels of GO and MGO demonstrated negative correlations with fat (R = -0.720 and -0.751, p < 0.05) in commercially prepared samples, whereas positive correlations were observed (R = 0.526 and 0.521, p < 0.05) in raw prefabricated ones. The heat-induced formation of protein-bound CML and CEL showed a negative correlation with the variations of GO and MGO but was positively related to protein levels in prefabricated products, suggesting that GO and MGO may interact with proteins to generate AGEs during heating. The influence of NaCl on the formation of GO and MGO exhibited variations across different fish products, necessitating further investigation.
Collapse
Affiliation(s)
- Lihong Niu
- School of Food Engineering, Ludong University, No. 186 Middle Hongqi Road, Yantai 264025, China
| | - Shanshan Kong
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410114, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
11
|
Zhu Z, Bassey AP, Huang M, Khan IA. The effect of protein oxidation on the formation of advanced glycation end products after chicken myofibrillar protein glycation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
12
|
Öztürk K, Yılmaz Oral ZF, Kaya M, Kaban G. The Effects of Sheep Tail Fat, Fat Level, and Cooking Time on the Formation of Nε-(carboxymethyl)lysine and Volatile Compounds in Beef Meatballs. Foods 2023; 12:2834. [PMID: 37569103 PMCID: PMC10417094 DOI: 10.3390/foods12152834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to determine the effects of fat type (sheep tail fat (STF) and beef fat (BF)), fat levels (10, 20, or 30%), and cooking time (0, 2, 4, and 6 min, dry heat cooking at 180 °C) on the carboxymethyl lysine (CML) content in meatballs. pH, thiobarbituric acid reactive substance (TBARS), and volatile compound analyses were also performed on the samples. The use of STF and the fat level had no significant effect on the pH value. The highest TBARS value was observed with the combination of a 30% fat level and STF. CML was not affected by the fat level. The highest CML content was determined in meatballs with STF at a cooking time of 6 min. In the samples cooked for 2 min, no significant difference was observed between STF and BF in terms of the CML content. STF generally increased the abundance of aldehydes. Aldehydes were also affected by the fat level and cooking time. A PCA provided a good distinction between groups containing STF and BF regardless of the fat level or cooking time. Pentanal, octanal, 2,4-decadienal, hexanal, and heptanal were positively correlated with CML.
Collapse
Affiliation(s)
- Kübra Öztürk
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye; (K.Ö.); (M.K.)
| | - Zeynep Feyza Yılmaz Oral
- Department of Food Technology, Erzurum Vocational School, Atatürk University, Erzurum 25240, Türkiye;
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye; (K.Ö.); (M.K.)
- MK Consulting, Ata Teknokent, Erzurum 25240, Türkiye
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye; (K.Ö.); (M.K.)
| |
Collapse
|
13
|
Chu F, Liu Z, Miao J, Huang Y, Niu L, Lai K. Formation of advanced glycation end-products in minced pork during frozen-then-chilled storage and subsequent heating. Food Chem 2023; 426:136616. [PMID: 37354580 DOI: 10.1016/j.foodchem.2023.136616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
The influences of frozen-then-chilled storage of minced pork on the formation of advanced glycation end-products (AGEs) including Nε-carboxymethyllysine and Nε-carboxyethyllysine, and their corresponding α-dicarbonyl precursors (α-DPs; glyoxal and methylglyoxal) during storage and subsequent heating were investigated in comparison with chilled storage. During cold storage, the levels of AGEs, trichloroacetic acid-soluble peptides, and Schiff bases in minced pork continuously increased while α-DPs decreased. The 30 min heating (100 °C) resulted in 64-560% increase of AGEs in pork, corresponding with an increase of Schiff bases and decreases of α-DPs. Compared to the chilled storage, the frozen-then-chilled storage led to no significant difference (P > 0.05) on the levels of AGEs and α-DPs in raw or heat-treated pork, implying that the formation and thawing of ice crystals in pork during the frozen-then-chilled storage had minor to no effects on the formation of AGEs and their α-DPs.
Collapse
Affiliation(s)
- Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China
| | - Zhijie Liu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China.
| | - Lihong Niu
- School of Food Engineering, Ludong University, No. 186, Middle Hongqi Road, Yantai 264025, Shandong, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Fu S, Ma Y, Wang Y, Sun C, Chen F, Cheng KW, Liu B. Contents and Correlations of Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, Acrylamide and Nutrients in Plant-Based Meat Analogs. Foods 2023; 12:1967. [PMID: 37238785 PMCID: PMC10217484 DOI: 10.3390/foods12101967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
High temperatures applied in the production of plant-based meat analogs (PBMA) lead to the occurrence of Maillard reactions, in which harmful compounds Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL) and acrylamide are formed. However, little research has focused on these compounds in PBMA. In this study, the contents of CML, CEL and acrylamide in 15 commercial-sold PBMA were determined by an ultra-high performance liquid chromatograph coupled with a triple quadrupole tandem mass spectrometer (UHPLC-QqQ-MS/MS). Nutrients (protein, amino acids, fatty acids and sugars) which are related to the formation of these compounds were also studied. The results showed that CML, CEL and acrylamide contents were in the range of 16.46-47.61 mg/kg, 25.21-86.23 mg/kg and 31.81-186.70 μg/kg, respectively. Proteins account for 24.03-53.18% of PBMA. Except for Met + Cys, which is the limiting amino acid of most PBMA, all other indispensable amino acids met the requirements for adults. Besides, PBMA had more n-6 fatty acids than n-3 fatty acids. A correlation analysis showed that proteins and the profiles of amino acid and fatty acid had little influence on CML but significant influence on CEL and acrylamide. The results of the present study can be used as a reference to produce PBMA with higher amounts of nutrients and lower amounts of CML, CEL and acrylamide.
Collapse
Affiliation(s)
- Shuang Fu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
| | - Yurong Ma
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Yinan Wang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Chongzhen Sun
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.F.); (F.C.); (K.-W.C.)
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
15
|
Lin YY, Huang SF, Liao KW, Ho CT, Hung WL. Quantitation of α-Dicarbonyls, Lysine- and Arginine-Derived Advanced Glycation End Products, in Commercial Canned Meat and Seafood Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6727-6737. [PMID: 37088952 PMCID: PMC10161224 DOI: 10.1021/acs.jafc.3c01205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Commercial sterilization is a thermal processing method commonly used in low-acid canned food products. Meanwhile, heat treatment can significantly promote advanced glycation end product (AGE) formation in foodstuffs. In this research, the validated analytical methods have been developed to quantitate both lysine- and arginine-derived AGEs and their precursors, α-dicarbonyls, in various types of commercial canned meat and seafood products. Methylglyoxal-hydroimidazolone 1 was the most abundant AGEs found in the canned food products, followed by Nε-(carboxyethyl)lysine, Nε-(carboxymethyl)lysine, and glyoxal-hydroimidazolone 1. Correlation analysis revealed that methylglyoxal and glyoxal were only positively associated with the corresponding arginine-derived AGEs, while their correlations with the corresponding lysine-derived AGEs were not significant. Importantly, we demonstrated for the first time that total sugar and carbohydrate contents might serve as the potential markers for the prediction of total AGEs in canned meats and seafoods. Altogether, this study provided a more complete view of AGEs' occurrence in commercial canned food products.
Collapse
Affiliation(s)
- You-Yu Lin
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Fang Huang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Wei-Lun Hung
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Yu L, Zhang X, Sun W, Shen G, Yang Y, Zeng M. The influence of piperine on oxidation-induced porcine myofibrillar protein gelation behavior and fluorescent advanced glycation end products formation in model systems. Food Chem 2023; 420:136119. [PMID: 37060667 DOI: 10.1016/j.foodchem.2023.136119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
This study investigated the effects of piperine on oxidation-induced porcine myofibrillar protein (MP) gelation behavior and fluorescent advanced glycation end products (fAGEs) formation. Model systems were prepared, lipid oxidation, MP gelling behavior, and fAGEs content were determined daily. The results indicated that lipid oxidation, carbonyl content, S0, cooking loss, and tryptophan fluorescence intensity of MP significantly decreased, whereas gel strength, WHC, and whiteness markedly increased as the concentration of piperine increased (from 0 to 30 μM/g protein), indicating that piperine could reduce lipid oxidation and oxidative damage to MP. The fluorescence intensity of fAGEs markedly decreased (P < 0.05), from 93.1 ± 4.4 to 61.2 ± 3.0, as the concentration of piperine increased from 0 μM/g protein to 30 μM/g protein after 5 days of incubation. These results in model systems suggest that the presence of piperine has an important role in the inhibition of MP oxidation and fAGEs formation.
Collapse
Affiliation(s)
- Ligang Yu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan 030006, China.
| | - Xiaoyue Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wenyan Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Guang Shen
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry (Preparation)), Taiyuan 030006, China.
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Liu Y, Li X, Gong H, Guo Z, Zhang C. Analysis of the potential fading mechanism of sweet cherry after freezing and thawing using untargeted metabolomics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Formation of N ε-Carboxymethyl-Lysine and N ε-Carboxyethyl-Lysine in Heated Fish Myofibrillar Proteins with Glucose: Relationship with Its Protein Structural Characterization. Foods 2023; 12:foods12051039. [PMID: 36900556 PMCID: PMC10000450 DOI: 10.3390/foods12051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The formation of advanced glycation end products (AGEs), including Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), in a fish myofibrillar protein and glucose (MPG) model system at 80 °C and 98 °C for up to 45 min of heating were investigated. The characterization of protein structures, including their particle size, ζ-potential, total sulfhydryl (T-SH), surface hydrophobicity (H0), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy (FTIR), were also analyzed. It was found that the covalent binding of glucose and myofibrillar protein at 98 °C promoted protein aggregation when compared with the fish myofibrillar protein (MP) heated alone, and this aggregation was associated with the formation of disulfide bonds between myofibrillar proteins. Furthermore, the rapid increase of CEL level with the initial heating at 98 °C was related to the unfolding of fish myofibrillar protein caused by thermal treatment. Finally, correlation analysis indicated that the formation of CEL and CML had a significantly negative correlation with T-SH content (r = -0.68 and r = -0.86, p ≤ 0.011) and particle size (r = -0.87 and r = -0.67, p ≤ 0.012), but was weakly correlated with α-Helix, β-Sheet and H0 (r2 ≤ 0.28, p > 0.05) during thermal treatment. Overall, these findings provide new insights into the formation of AGEs in fish products based on changes of protein structure.
Collapse
|
19
|
Geng Y, Mou Y, Xie Y, Ji J, Chen F, Liao X, Hu X, Ma L. Dietary Advanced Glycation End Products: An Emerging Concern for Processed Foods. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| |
Collapse
|
20
|
Investigation on the Contents of N ε-carboxymethyllysine, N ε-carboxyethyllysine, and N-nitrosamines in Commercial Sausages on the Chinese Market. Foods 2023; 12:foods12040724. [PMID: 36832798 PMCID: PMC9955857 DOI: 10.3390/foods12040724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Sausages are among the most popular meat products worldwide. However, some harmful products, such as advanced glycation end-products (AGEs) and N-nitrosamines (NAs), can be formed simultaneously during sausage processing. In this study, the contents of AGEs, NAs, α-dicarbonyls and the proximate composition were investigated in two kinds of commercial sausages (fermented sausages and cooked sausages) in the Chinese market. The correlations among them were further analyzed. The results showed that the fermented and cooked sausages had different in protein/fat contents and pH/thiobarbituric acid reactive substance values due to their different processing technologies and added ingredients. The Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) concentrations varied from 3.67 to 46.11 mg/kg and from 5.89 to 52.32 mg/kg, respectively, and the NAs concentrations ranged from 1.35 to 15.88 µg/kg. The contents of some hazardous compounds, such as CML, N-nitrosodimethylamine, and N-nitrosopiperidine, were observed to be higher in the fermented sausages than in the cooked sausages. Moreover, levels of NAs in some sausage samples exceeded the limit of 10 µg/kg issued by the United States Department of Agriculture, suggesting that particular attention should be paid to mitigating NAs, especially in fermented sausages. The correlation analysis suggested that the levels of AGEs and NAs were not significantly correlated in both kinds of sausages.
Collapse
|
21
|
Anti-glycation level of pectic oligosaccharide in orange peel and its stability in accelerated storage temperature. Food Chem 2023; 398:133886. [DOI: 10.1016/j.foodchem.2022.133886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
|
22
|
Han P, Zhang Q, Wang X, Zhou P, Dong S, Zha F, Zeng M. Formation of advanced glycation end products in sturgeon patties affected by pan-fried and deep-fried conditions. Food Res Int 2022; 162:112105. [PMID: 36461405 DOI: 10.1016/j.foodres.2022.112105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Abstract
This study compared the effects of pan-fried with low (LPF), high (HPF) amounts of oil and deep-fried (DF) on the profiles of advanced glycation end products (AGEs) in sturgeon patties. The surface color of the pan-fried patties, regardless of the amounts of oil used, visually presented more brown than deep-fried ones with higher internal temperature at the frying course of 3-9 min. Compared to LPF and HPF, DF significantly accelerated the furosine development for 6-9 min of frying, dynamically increased the accumulation of CML (Nε-carboxymethyl-lysine) and CEL (Nε-carboxyethyl-lysine) for up to 9 min of frying, and the level of CML in DF than LPF, HPF for 9 min of frying were increased by 209.6 % and 149.9 %, respectively. The oil level employed for pan-fried insignificantly influenced the formation of furosine and CML in patties. The principal component analysis further confirmed that DF patties had a greater influence on the formation of AGEs. The AGEs formation was positively associated with the temperature and amino groups, while remarkably negative correlation with moisture content. Therefore, pan-fried within 6 min of frying was recommended for the domestic cooking of sturgeon patties based on the potential formation of AGEs.
Collapse
Affiliation(s)
- Peng Han
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Qi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xueyang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Pengcheng Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fengchao Zha
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| |
Collapse
|
23
|
Yan H, Yu Z, Liu L. Lactose crystallization and Maillard reaction in simulated milk powder based on the change in water activity. J Food Sci 2022; 87:4956-4966. [PMID: 36163688 DOI: 10.1111/1750-3841.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
Maillard reaction (MR) and lactose crystallization (LC) are important reactions in the storage of milk powder. In this study, three models with different proteins based on skimmed milk powder were established to investigate the relationship between MR and LC at different water activities (aw ). Moisture sorption isotherm, glass transition temperature (Tg ), and glycation products were evaluated, and the protein structure and lactose crystallinity were determined. The results indicated that MR product content, browning, and LC subsequently enhanced with the increase in aw . The Tg value dropped lower than 0 at aw 0.43 in whey protein isolate-lactose (WP-Lac) model and at aw 0.54 in casein-whey protein isolate-lactose (CN-WP-Lac) model and casein-lactose (CN-Lac) model. The crystallinity of α-lactose monohydrate and anhydrous β-lactose in WP-Lac model was more significant than CN-WP-Lac and CN-Lac models (p < 0.05). The molecular band of whey protein gradually blurred in the Sodium dodecyl-sulfate polyacrylamide gel electrophoresis image, and the content of α-helix of WP-Lac model increased by 45.15% from aw 0.33 to 0.53 (p < 0.05), while that of CN-WP-Lac model increased by only 3.95% (p < 0.05). With the increase in aw , WP-Lac model formed more browning and crystallization products than CN-WP-Lac model, indicating that the presence of micelle macromolecules and the interaction between casein and whey proteins limited the browning and crystallization in CN-WP-Lac model. Practical Application Maillard reaction and lactose crystallization are important reactions in the storage of milk powder, and the result will provide theoretical guidance for the development of milk powder in the food industry.
Collapse
Affiliation(s)
- Haixia Yan
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ziyin Yu
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
24
|
Niu L, Yu H, Zhang L, Zhao Q, Lai K, Liu Y, Huang Y. Advanced glycation end-products in raw and commercially sterilized pork tenderloin and offal. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Effects of oxidation and precursors (lysine, glyoxal and Schiff base) on the formation of Nε-carboxymethyl-lysine in aged, stored and thermally treated chicken meat. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Shen Z, Li S, Wu J, Wang F, Li X, Yu J, Liu Y, Ma X. Effect of different oil incorporation on gelling properties, flavor and advanced glycation end-products of silver carp surimi sausages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Eggen MD, Merboth P, Neukirchner H, Glomb MA. Lipid Peroxidation Has Major Impact on Malondialdehyde-Derived but Only Minor Influence on Glyoxal and Methylglyoxal-Derived Protein Modifications in Carbohydrate-Rich Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10271-10283. [PMID: 35968682 DOI: 10.1021/acs.jafc.2c04052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present work, the contribution of lipid peroxidation on modifications of lysine and arginine residues of proteins was investigated. Lipid peroxidation had a major impact on malondialdehyde-derived protein modifications; however, the influence on glyoxal and methylglyoxal-derived modifications in flat wafers was negligible. Therefore, vegetable oils (either linseed oil, sunflower oil, or coconut oil) were added to respective batters, and flat wafers were baked (150 °C, 3-10 min). Analysis of malondialdehyde indicated oxidation in linseed wafers, which was supported by the direct quantitation of three malondialdehyde protein adducts in the range of 0.09-23.5 mg/kg after enzymatic hydrolysis. In contrast, levels of free glyoxal and methylglyoxal were independent of the type of oil added, which was in line with the analysis of 13 advanced glycation end products. Comprehensive incubations of 40 mM N2-t-Boc-lysine (100 mM phosphate buffer, pH 7.4) with either 10% oil or an equimolar concentration of carbohydrates led to magnitudes higher (103-105) amounts of N6-carboxymethyl lysine, N6-glycolyl lysine, and N6-carboxyethyl lysine in the latter. Furthermore, malondialdehyde exceeded glyoxal and methylglyoxal in incubations of pure oils at 150 °C by factors of 30 and 100, respectively.
Collapse
Affiliation(s)
- Michael D Eggen
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| | - Paul Merboth
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| | - Helen Neukirchner
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Saale, Germany
| |
Collapse
|
28
|
Li J, Niu L, Yu J, Wang F, Li X, Huang Y, Liu Y. Effects of frozen temperature and multiple freeze‐thaw cycles on gel structure, protein and lipid oxidation and formation of advanced glycation end‐products in unwashed silver carp surimi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiayi Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Lihong Niu
- School of Food Engineering Ludong University Yantai 264025 Shandong China
| | - Jian Yu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
29
|
Nawaz A, Irshad S, Ali Khan I, Khalifa I, Walayat N, Muhammad Aadil R, Kumar M, Wang M, Chen F, Cheng KW, Lorenzo JM. Protein oxidation in muscle-based products: Effects on physicochemical properties, quality concerns, and challenges to food industry. Food Res Int 2022; 157:111322. [DOI: 10.1016/j.foodres.2022.111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/29/2022]
|
30
|
Fang R, Zhu Z, Bassey AP, Khan IA, Huang M. Glyoxal induced advanced glycation end products formation in chicken meat emulsion instead of oxidation. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Effects of salt concentrations on the advanced glycation end-products in dried salted spanish mackerel fillets during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01440-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Qin R, Wu R, Shi H, Jia C, Rong J, Liu R. Formation of AGEs in fish cakes during air frying and other traditional heating methods. Food Chem 2022; 391:133213. [PMID: 35617759 DOI: 10.1016/j.foodchem.2022.133213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the formation of advanced glycation end products (AGEs) in fish cakes under air frying, deep frying, pan frying and baking. The results showed that the AGEs contents on the surface of fish cakes significantly increased with prolonging heating time. The AGEs contents under different methods were following: deep frying > air frying ≈ pan frying > baking. However, the AGEs contents in the interior of fish cakes were hardly influenced by the methods and time. The correlation analysis showed that the AGEs contents were negatively correlated with the moisture content, positively correlated with the yellowness (b*) value, oil content and oxidation products. Additionally, the air-fried fish cake exhibited a denser texture compared to the others, and its colour was similar to the deep-fried ones. Conclusively, the air-fried fish cake showed low oil and AGEs contents, and similar colour to the deep-fried fish cake.
Collapse
Affiliation(s)
- Ruike Qin
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Haonan Shi
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University / Key Laboratory of Environment Correlative Dietology, Ministry of Education / National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
33
|
Yu L, Li Y, Yang Y, Guo C, Li M. Inhibitory effects of curcumin and piperine on fluorescent advanced glycation end products formation in a bovine serum albumin–fructose model. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ligang Yu
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Yong Li
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Caixia Guo
- School of Life Science Shanxi University Taiyuan 030006 China
| | - Meiping Li
- School of Life Science Shanxi University Taiyuan 030006 China
| |
Collapse
|
34
|
Zhang Z, Cheng W, Wang X, Wang M, Chen F, Cheng KW. A novel formation pathway of N ε-(carboxyethyl)lysine from lactic acid during high temperature exposure in wheat sourdough bread and chemical model. Food Chem 2022; 388:132942. [PMID: 35447583 DOI: 10.1016/j.foodchem.2022.132942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
Abstract
Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) have been the most extensively studied advanced glycation end-products (AGEs) in foods. Their formation mechanism, especially the latter, has not been clearly delineated in fermented food. In this work, the relative contents of CEL and CML were evaluated in a sourdough-bread and a silica solid chemical model. Lactic acid (LA) content in the sourdough increased with fermentation time that was accompanied by an increase in CEL, but not CML content in the bread. The role of LA as a precursor for CEL was supported by a positive significant correlation between LA and CEL contents, and further analysis using isotope-labeled LA (LA-13C3) revealed that the three carbon atoms of LA were incorporated into CEL. These findings for the first time indicate LA may function as a precursor to promote CEL formation in sourdough bread that merits further investigation.
Collapse
Affiliation(s)
- Zhongfei Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Weiwei Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaowen Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
35
|
Liu Q, Wang S, Wang X, Dong S, Zhao Y, Zeng M. The relationship between the formation of advanced glycation end products and quality attributes of fried sturgeon fillets. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Chen C, Jiao Y, Zeng M, He Z, Shen Q, Chen J, Quan W. The Simultaneous Formation of Acrylamide, β-carbolines, and Advanced Glycation End Products in a Chemical Model System: Effect of Multiple Precursor Amino Acids. Front Nutr 2022; 9:852717. [PMID: 35356734 PMCID: PMC8959668 DOI: 10.3389/fnut.2022.852717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigated the effect of multiple precursor amino acids on the simultaneous formation of acrylamide, β-carbolines (i. e., harmane and norharmane), and advanced glycation end products (AGEs) [i.e., Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine] via a chemical model system. This model system was established with single or multiple precursor amino acids, including lysine–glucose (Lys/Glu), asparagine–glucose (Asn/Glu), tryptophan–glucose (Trp/Glu), and a combination of these amino acids (Com/Glu). Kinetic parameters were calculated by multiresponse non-linear regression models. We found that the k values of the AGEs and of acrylamide decreased, while those of harmane increased in the Com/Glu model when heated to 170 and 200°C. Our results indicated that the precursor amino acid of acrylamide and AGEs compete for α-dicarbonyl compounds, leading to a decrease in the formation of AGEs and acrylamide. Moreover, compared with asparagine, the precursor amino acid of β-carbolines was more likely to react with acetaldehyde by Pictet–Spengler condensation, which increased the formation of harmane and decreased the formation of acrylamide via the acrolein pathway.
Collapse
Affiliation(s)
- Cuyu Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ye Jiao
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Jie Chen
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- *Correspondence: Wei Quan
| |
Collapse
|
37
|
Huang S, Dong X, Zhang Y, Chen Y, Yu Y, Huang M, Zheng Y. Formation of advanced glycation end products in raw and subsequently boiled broiler muscle: biological variation and effects of postmortem ageing and storage. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
A comprehensive review of advanced glycosylation end products and N- Nitrosamines in thermally processed meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Golchinfar Z, Farshi P, Mahmoudzadeh M, Mohammadi M, Tabibiazar M, Smith JS. Last Five Years Development In Food Safety Perception of n-Carboxymethyl Lysine. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Golchinfar
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Parastou Farshi
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - J. Scott Smith
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
40
|
Liu S, Zhong Y, Shen M, Yan Y, Yu Y, Xie J, Nie S, Xie M. Changes in fatty acids and formation of carbonyl compounds during frying of rice cakes and hairtails. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Impact of frozen storage duration of raw pork on the formation of advanced glycation end-products in meatballs. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Huang S, Huang M, Dong X. Advanced Glycation End Products in Meat during Processing and Storage: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Suhong Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Xiaoli Dong
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
43
|
Yu L, He Z, Zeng M, Yang Y, Chen J. Effect of oxidation and hydrolysis of porcine myofibrillar protein on N
ε
‐carboxymethyl‐lysine formation in model systems. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ligang Yu
- School of Life Science Shanxi University Taiyuan030006China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi214122China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi214122China
| | - Yukun Yang
- School of Life Science Shanxi University Taiyuan030006China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi214122China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi214122China
| |
Collapse
|
44
|
Zhao X, Zhang X, Ye B, Yan H, Zhao Y, Liu L. Effect of unsaturated fatty acids on glycation product formation pathways. Food Res Int 2021; 143:110288. [PMID: 33992388 DOI: 10.1016/j.foodres.2021.110288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Glycation and lipid oxidation in high-nutrient foods are closely related and exhibit complex interactions. To evaluate the effect of unsaturated fatty acids (UFAs) on glycation pathways, glycation products in glucose-lysine-UFA models were detected by ultra performance liquid chromatography-tandem mass spectrometry and electron spin resonance spectroscopy, together with multivariate data analysis. Results indicated that UFAs inhibited glucose oxidation by decreasing the contents of carbonyl compounds about 73.85-86.19%. UFAs promoted the formation of glycation products mainly via production of active radical. In three models, linoleic acid (LA) exhibits stronger glycation activity than oleic acid and eicosapentaenoic acid. LA significantly promoted radical formation, as well as the formation and degradation of fructosyllysine (FL), the signal intensity of active radical increased 647.45% and FL increased 78.73%. The comparison of E(k3), E(k7) and variable importance in projection values of orthogonal projections to latent structures discriminant analysis in three models also proved these conclusions. By studying the characteristics of LA on glycation in three UFA, we hypothesized that unsaturation is not the key factor in evaluating their effects on glycation, the radical activity, UFA solubility, spatial structure and interaction should be considered as potentially important factors.
Collapse
Affiliation(s)
- Xin Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No.120, 110866 Shenyang, China
| | - Xiaoyu Zhang
- The College of Food Science, Shenyang Agricultural University, Dongling Street No.120, 110866 Shenyang, China
| | - Bo Ye
- The College of Food Science, Shenyang Agricultural University, Dongling Street No.120, 110866 Shenyang, China; Liaoning Modern Agricultural Engineering Center, Changjiang North Street No.39, 110031 Shenyang, China
| | - Haixia Yan
- The College of Food Science, Shenyang Agricultural University, Dongling Street No.120, 110866 Shenyang, China
| | - Yingbo Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No.120, 110866 Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Dongling Street No.120, 110866 Shenyang, China.
| |
Collapse
|
45
|
Zhu Z, Yang J, Zhou X, Khan IA, Bassey AP, Huang M. Comparison of two kinds of peroxyl radical pretreatment at chicken myofibrillar proteins glycation on the formation of N ε-carboxymethyllysine and N ε-carboxyethyllysine. Food Chem 2021; 353:129487. [PMID: 33725542 DOI: 10.1016/j.foodchem.2021.129487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
During meat processing, two typical advanced glycation end products (AGEs), Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL), are generated by free radical induction. However, the impact of peroxyl radicals on myofibrillar proteins (MPs) glycosylation and CML and CEL formation is scarcely reported. In this study, two peroxyl radicals called ROO· and LOO· derived from AAPH (2,2'-azobis (2-methylpropionamidine) dihydrochloride) and linoleic acid were exposed prior to the Maillard reaction (glucosamine incubation at 37 °C for 24 h). Levels of AGEs (CML/CEL), protein oxidation (sulfhydryl/carbonyl), free amino group, surface hydrophobicity, zeta potential, particle size, intrinsic fluorescence intensity and secondary structure were determined. Together with Pearson's correlation, the assumption that free radicals promote MPs oxidation and glycation, alter the aggregation behavior and structure modification, leading to AGEs promotion has been built. In addition, the effect of dose-dependency of peroxyl radical on AGEs has also been established with different effects of peroxyl radical induction.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jing Yang
- Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., National R&D, Center for Poultry Processing Technology, Nanjing, Jiangsu 211200, PR China; Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Xinghu Zhou
- Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., National R&D, Center for Poultry Processing Technology, Nanjing, Jiangsu 211200, PR China
| | - Iftikhar Ali Khan
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210095, PR China
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing 210095, PR China; Nanjing Huangjiaoshou Food Science and Technology Co., Ltd., National R&D, Center for Poultry Processing Technology, Nanjing, Jiangsu 211200, PR China.
| |
Collapse
|
46
|
Wu X, Zhang Z, He Z, Wang Z, Qin F, Zeng M, Chen J. Effect of Freeze-Thaw Cycles on the Oxidation of Protein and Fat and Its Relationship with the Formation of Heterocyclic Aromatic Amines and Advanced Glycation End Products in Raw Meat. Molecules 2021; 26:molecules26051264. [PMID: 33652771 PMCID: PMC7956273 DOI: 10.3390/molecules26051264] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
The aim of this research was to investigate the effect of the number of freeze–thaw cycles (0, 1, 3, 5, and 7) on porcine longissimus protein and lipid oxidation, as well as changes in heterocyclic aromatic amines (HAAs) and advanced glycation end products (AGEs) and their precursors. We analyzed the relationship among HAAs, AGEs, oxidation, and precursors and found the following results after seven freeze–thaw cycles. The HAAs, Norharman and Harman, were 20.33% and 16.67% higher, respectively. The AGEs, Nε-carboxyethyllysine (CEL) and Nε-carboxymethyllysine (CML), were 11.81% and 14.02% higher, respectively. Glucose, creatine, and creatinine were reduced by 33.92%, 5.93%, and 1.12%, respectively after seven freeze–thaw cycles. Norharman was significantly correlated with thiobarbituric acid reactive substances (TBARS; r2 = 0.910) and glucose (r2 = −0.914). Harman was significantly correlated to TBARS (r2 = 0.951), carbonyl (r2 = 0.990), and glucose (r2 = −0.920). CEL was correlated to TBARS (r2 = 0.992) and carbonyl (r2 = 0.933). These changes suggest that oxidation and the Maillard reaction during freeze–thaw cycles promote HAA and AGE production in raw pork.
Collapse
Affiliation(s)
- Xingge Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.W.); (Z.H.); (Z.W.); (F.Q.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Xianmen 361100, China;
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.W.); (Z.H.); (Z.W.); (F.Q.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.W.); (Z.H.); (Z.W.); (F.Q.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.W.); (Z.H.); (Z.W.); (F.Q.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.W.); (Z.H.); (Z.W.); (F.Q.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: (M.Z.); (J.C.); Tel.: +86-510-85919065 (M.Z.)
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.W.); (Z.H.); (Z.W.); (F.Q.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: (M.Z.); (J.C.); Tel.: +86-510-85919065 (M.Z.)
| |
Collapse
|
47
|
Quan W, Li Y, Jiao Y, Xue C, Liu G, Wang Z, He Z, Qin F, Zeng M, Chen J. Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation ends products in an aqueous Maillard reaction model system. Food Chem 2020; 332:127387. [PMID: 32629331 DOI: 10.1016/j.foodchem.2020.127387] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
|
48
|
Zhu Z, Fang R, Ali I, Huang M. Impact of methylglyoxal modification of chicken sarcoplasmic protein emulsions on emulsifying properties, rheological behavior and advanced glycation end products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4208-4216. [PMID: 32378237 DOI: 10.1002/jsfa.10460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Protein modification is used to improve emulsion properties. However, there are limited reports on the effect of methylglyoxal (MGO) modification on emulsifying properties and on the production of advanced glycation end-products (AGEs) in chicken sarcoplasmic protein emulsion (SPE). In this study, MGO solution was dispersed into prepared emulsion (17 mg mL-1 sarcoplasmic-soybean oil (v/v 5:1)) at 0, 0.5, 5, 10, 30 and 50 mmol L-1 concentrations. Emulsifying activity index (EAI), emulsifying stability index (ESI), Z-average diameter, polydispersity index (PDI), zeta potential, rheological behavior (thermal condensation characteristics and fluidity) and AGEs in different concentrations of MGO SPE were measured. In addition, the effect of MGO on the levels of AGEs, lipid and protein oxidation of the emulsion as well as their relationship has also been analyzed. RESULTS Our findings showed that ESI had the lowest value when MGO was added at a concentration of 10 mmol L-1 , while Z-average, PDI, carbonyl and AGEs had the highest value at the same concentration. Also, 10 mmol L-1 MGO played an important role in affecting the rheology of the emulsion. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the presence of myofibrillar proteins (MPs) in SPE was the main reason for the crosslinking of polymers which could be damaged by high concentration of MGO (>10 mmol L-1 ). CONCLUSION Different concentration of MGO showed varying effects on emulsion properties and on the formation of AGEs in chicken SPE. Pearson's correlation analysis concluded that protein oxidation played a significant positive role during MGO modification. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zongshuai Zhu
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing, China
| | - Rui Fang
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing, China
| | - Iftikhar Ali
- Institution of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ming Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Products Processing, MOA, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
49
|
Zhao X, Zhang X, Ye B, Yan H, Zhao Y, Liu L. Effect of unsaturated fatty acids on glycation product formation pathways (Ⅰ) the role of oleic acid. Food Res Int 2020; 136:109560. [PMID: 32846604 DOI: 10.1016/j.foodres.2020.109560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Research on advanced glycation end-products (AGEs) and their formation pathways in food processing has gradually increased because AGEs are associated with human health, especially with involvement of lipids. In this study, radicals and glycation products were detected via electron spin resonance (ESR) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) respectively. The correlation of important intermediates was used to explain the effect of oleic acid (OA) on the glycation products and pathways. The results indicated OA participation decreased the content of stable radicals and glycosyl compounds in Maillard Reaction (MR). The oxidation of OA produced active radicals, and electron transfer caused lysine to transform radical form. These radicals participated in the formation of fructosyllysine (FL) with glucose (Glc) via the MR. The participation of OA is acted as inhibiting the way of Glc autoxidation and promoting the glycation pathway from FL to 3-deoxyglucosone (3-DG) to fluorescent-AGEs. Orthogonal projection to latent structures discriminant analysis results indicated that 3-DG, D-glucosone and methylglyoxal are key products in discriminating the glycation reaction.
Collapse
Affiliation(s)
- Xin Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Xiaoyu Zhang
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Bo Ye
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China; Liaoning Modern Agricultural Engineering Center, Changjiang North Street No. 39, 110031 Shenyang, China
| | - Haixia Yan
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Yingbo Zhao
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Dongling Street No. 120, 110866 Shenyang, China.
| |
Collapse
|
50
|
Protein-bound N-carboxymethyllysine and N-carboxyethyllysine in raw and heat treated whites and yolks of hen eggs. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|