1
|
Yu C, Wang Z, Fu X, Liu C, Li A, Lin Q, Lan T, Zhuang X. Aminated lignin improved enzymatic hydrolysis of cellulosic substrate treated by p-toluenesulfonic acid. J Biotechnol 2024; 395:44-52. [PMID: 39260703 DOI: 10.1016/j.jbiotec.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lignin can affect the enzymatic hydrolysis efficiency of lignocellulose. In this study, the lignin isolated from sugarcane bagasse (SCB) pretreated with p-toluenesulfonic acid (PL) was firstly aminated, and then the effects of PL and aminated PL (APL) on the bagasse enzymatic hydrolysis efficiency (EHE) were investigated. The results showed that the addition of PL and APL promoted the EHE, and EHE with APL (73.82 %) was higher than PL (51.39 %). To explore the reason, the data were further analyzed including cellulase adsorption capacity, enzyme activity, cellulase-lignin interaction, and molecular docking. It was found that APL adsorbed more cellulase (27.83 mg protein/g lignin) than PL (4.96 mg protein/g lignin), resulting from the greater interaction force and lower binding free energy between APL and cellulase. The addition of APL more remarkably enhanced the cellobiohydrolase and endoglucanase activities than PL due to more effectively inducing cellulase conformation optimization.
Collapse
Affiliation(s)
- Chunyang Yu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China; Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China
| | - Zekang Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China
| | - Xiangjin Fu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Chun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Anping Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China
| | - Tianqing Lan
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Rd., Tianxin District, Changsha 410004, China; Faculty of Food Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Rd., Chenggong District, Kunming 650500, China.
| | - Xinshu Zhuang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Tianhe District, 2 Energy Rd., Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Tianhe District, 2 Energy Rd., Guangzhou 510640, China
| |
Collapse
|
2
|
Wang L, Huang Y, Ren Y, Wang H, Ding Y, Ren G, Wang T, Li Z, Qiu J. Effect of ethanol addition on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes. Food Chem 2024; 451:139350. [PMID: 38663246 DOI: 10.1016/j.foodchem.2024.139350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The effects of ethanol on the physicochemical, structural and in vitro digestive properties of Tartary buckwheat starch-quercetin/rutin complexes (e-TBSQ and e-TBSR) were investigated. Ethanol restricted the gelatinization of Tartary buckwheat starch (TBS), which resulted an increase in ∆H, G' and G" as well as a decrease in apparent viscosity of e-TBSQ and e-TBSR. The particle size, scanning electron microscopy and X-ray diffraction results showed that ethanol influenced the morphological structure of TBS granules and the starch crystalline structure in e-TBSQ and e-TBSR changed from B-type to V-type when the ethanol concentration was 25%. Saturation transfer difference-nuclear magnetic resonance results revealed that ethanol weakened the binding ability of quercetin/rutin to TBS in e-TBSQ and e-TBSR, leading to a change in the binding site on the quercetin structural unit. The residual ungelatinized TBS granules in e-TBSQ and e-TBSR induced a high slowly digestible starch content, and thus displayed a "resistant-to-digestion".
Collapse
Affiliation(s)
- Libo Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| | - Yilin Huang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yanjuan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Haoran Wang
- College of Food Science and Engineering, Beijing University of Agriculture, Changping, Beijing 102206, China
| | - Yue Ding
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zaigui Li
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Ju Qiu
- Department of Nutrition and Health, China Agricultural University, No.17 Qinghuadonglu, Haidian, Beijing 100083, China.
| |
Collapse
|
3
|
Tan H, Zhou H, Guo T, Zhou Y, Zhang Y, Yuan R, Ma L. pH-induced interaction mechanism of zearalenone with zein: Binding characteristics, conformational structure and intermolecular forces. Food Chem 2024; 444:138595. [PMID: 38325086 DOI: 10.1016/j.foodchem.2024.138595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Zein-bound zearalenone (ZEN) complexes are naturally existed in maize by their spontaneous interaction, which significantly impacts the risk assessment of ZEN. Additionally, the pH levels in processing could affect the binding or release of zein-bound ZEN. In this study, pH-induced interaction mechanism of ZEN with zein were studied. Results showed that the acid conditions increased the binding constant (Ka) from 3.46 to 10.0 × 104 L/mol, binding energy from -17.38 to -43.49 kJ mol-1. By increasing hydrophobic interaction and hydrogen bond of ZEN with zein, the binding of ZEN with zein was promoted, forming zein-bound ZEN. Whereas, alkaline conditions decreased the Ka to 1.45 × 104 L/mol and binding energy to 148.48 kJ mol-1, weakened ZEN-zein interaction and stretched zein molecules, resulting the release of ZEN from zein. This study could provide important theoretical basis for perfecting risk assessment and controlling zein-bound ZEN during processing.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing 400715, PR China; College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Zhu J, Yu L, Stockmann R, Liu H, Zou W. Thermal treatment of alkali lignin to eliminate its inhibition of pancreatic proteases in vitro. Food Chem 2024; 442:138412. [PMID: 38241996 DOI: 10.1016/j.foodchem.2024.138412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
This study aims to investigate how alkali lignin inhibits protein digestion and explore thermal treatment as a potential solution. Solid alkali lignin species pre-heated at different temperatures (150, 200, and 250 °C) and soluble acid-differentiated fractions are subjected to in vitro protein digestion. A range of techniques, including Thermogravimetric Analysis (TGA), Size-Exclusion Chromatography (SEC), Zeta Potential Analyzer, 1H NMR, Isothermal Titration Calorimetry (ITC), and Molecular Docking, were used to investigate the inhibitory mechanism of alkali lignin on pancreatic proteases hydrolysis. Our results suggest that soluble alkali lignin inhibits pancreatic trypsin and chymotrypsin, with the acid-differentiated soluble fraction (LgpH<1) displaying the strongest inhibition and proteases' binding affinity due to the abundance of polar groups (e.g., -OH, -CHO), which facilitate hydrogen-bond formation. Furthermore, pre-heating lignin (200 °C) was confirmed effective for removing LgpH<1 and its negative nutritional influence, providing a feasible strategy for overcoming the negative impact of alkali lignin on protein digestion.
Collapse
Affiliation(s)
- Jian Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China
| | | | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Knowledge City, Guangzhou 510663, China.
| | - Wei Zou
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia.
| |
Collapse
|
5
|
Nguyen TVA, Nguyen TMH, Ha TT, Nguyen TD, Bui DH. Antiplatelet and Anticoagulant Effects of Two New Phenylpropanoid Sucrose Esters and Other Secondary Metabolites from the Aerial Part of Canna edulis. Chem Biodivers 2024; 21:e202400302. [PMID: 38454878 DOI: 10.1002/cbdv.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
This study isolated pure compounds from Canna edulis aerial parts and assessed their antiplatelet and anticoagulant potential. Structural elucidation resulted in the identification of two new compounds: caneduloside A (1) and caneduloside B (2), and eleven known compounds: 6'-acetyl-3,6,2'-tri-p-coumaroyl sucrose (3), 6'-acetyl-3,6,2'-triferuloyl sucrose (4), tiliroside (5), afzelin (6), quercitrin (7), 2-hydroxycinnamaldehyde (8), cinnamic acid (9), 3,4-dimethoxycinnamic acid (10), dehydrovomifoliol (11), 4-hydroxy-3,5-dimethoxybenzaldehyde (12), and (S)-(-)-rosmarinic acid (13). Compounds 3, 4, 6-9, 13 were previously reported for antithrombotic properties. Hence, antithrombotic tests were conducted for 1, 2, 5, 10-12. All tested compounds demonstrated a dose-dependent antiaggregatory effect, and 10 and 12 were the most potent for both ADP and collagen activators. Additionally, 10 and 12 showed anticoagulant effects, with prolonged prothrombin time and activated partial thromboplastin time. The new compound 1 displayed antiplatelet and anticoagulant activity, while 2 mildly inhibited platelet aggregation. C. edulis is a potential source for developing antithrombotic agents.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Minh Hang Nguyen
- Center of Drug Research and Development, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Thoa Ha
- Center of Drug Research and Development, Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thuy Duong Nguyen
- Department of Pharmacology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Duc Huy Bui
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
6
|
Cui J, Fan Y, Lian D, Wang S, Wang M, Du Y, Li Y, Li L. Interaction of narcissoside with α-amylase from Bacillus subtilis and Porcine pancreatic by multi-spectral analysis and molecular dynamics simulation. LUMINESCENCE 2023. [PMID: 38038156 DOI: 10.1002/bio.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
In this work, interaction mechanism of narcissoside with two α-amylase from Bacillus subtilis (BSA) and Porcine pancreatic (PPA) are comparatively studied by multi-spectral analysis, molecular docking and molecular dynamics simulation. The results prove that narcissoside can statically quench fluorescence of BSA/PPA. Two complexes are mainly formed by hydrogen bond and van der Waals force. With the increase of temperature, the two complexes formed by narcissoside and two enzymes become unstable. At the same experimental temperature, the binding force of narcissoside to PPA is higher than that of BSA. The binding of narcissoside to PPA/BSA increases the hydrophobicity of microenvironment. Moreover, the secondary structure of PPA/BSA is mainly changed by decreasing the α-helix. The optimal binding modes of narcissoside with BSA/PPA are predicted by molecular docking, and the stability of the two complexes is evaluated by molecular dynamics simulations.
Collapse
Affiliation(s)
- Jingjing Cui
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Di Lian
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yutong Du
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yuan Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
7
|
Saroha B, Kumar G, Arya P, Raghav N, Kumar S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg Chem 2023; 140:106805. [PMID: 37634269 DOI: 10.1016/j.bioorg.2023.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Enzymes are the biological macromolecules that have emerged as an important drug target as their upregulation/imbalance leads to various pathological conditions, such as inflammation, parasitic infection, Alzheimer's, cancer, and many others. Here, we designed and synthesized some morpholine tethered novel aurones and evaluated them as potential inhibitors for CTSB, α-amylase, lipase and activator for trypsin. All the newly synthesized compounds were fully characterized by various spectroscopic techniques (1H NMR, 13C NMR, HRMS) and the Z-configuration to them was assigned based on single crystal XRD data and 1H NMR chemical shift values. Further, the hybrids were evaluated for their intracellular (cathepsin B) and extracellular (trypsin, lipase, amylase) enzyme inhibition potencies. The in-vitro inhibition screening against cathepsin B revealed that most of the synthesized compounds are good competitive inhibitors (% inhibition = 22.91-75.04), with 6q (% inhibition = 75.04) and 6r (% inhibition = 71.13) as the eminent inhibitors of the series. At the same time, they exhibited weak to moderate inhibition towards amylase (% inhibition = 7.22-22.48) and lipase (% inhibition = 16.29-54.83). A significant trypsin activation (% activation = 107.42-196.47) was observed even at the micromolar concentration of the compounds. Furthermore, the drug-modeling studies showed a good correlation between the in-vitro experimental results and the calculated binding affinity of the screened compounds with all the tested enzymes. These findings are expected to provide a new lead in drug development for different pathological disorders wherever these enzymes are involved.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Department of Biomedical Engineering, Oregon Health & Science University (OHSU), 2730 S Moody Ave., Portland, OR 97201
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
8
|
Zhang H, Nie M, Gu Z, Xin Y, Zhang L, Li Y, Shi G. Preparation of water-insoluble lignin nanoparticles by deep eutectic solvent and its application as a versatile and biocompatible support for the immobilization of α-amylase. Int J Biol Macromol 2023; 249:125975. [PMID: 37494993 DOI: 10.1016/j.ijbiomac.2023.125975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As one of the most abundant biopolymers, lignin is a widely available resource. However, its potential largely remains untapped, with most of it ending up as waste from industries like paper production, pulp processing, and bio-refining. The research undertaken in this study focused on the extraction of lignin from agroforestry waste using a deep eutectic solvent (DES) as a carrier for α-amylase immobilization, resulting in high stability and reusability. Several techniques, including Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and the Brunauer-Emmett-Teller (BET) method were employed to examine the structure and morphology of both the extracted lignin and the immobilized enzyme. The temperature used to recover lignin by DES would affect immobilization efficiency and enzyme loading by influencing its specific surface area, pore size, and volume distribution. Investigations using Nuclear Overhauser Effect Spectroscopy (NOESY) uncovered that the hydroxyl groups in G, H, and S units and the β-O-4 structure of lignin primarily serve as binding sites for enzyme molecules. Immobilized α-amylase demonstrated a higher pH and thermal stability level, with an optimal pH of 7.0 and temperature of 100 °C, compared to the free enzyme, which exhibited optimal activity at a pH of 6.5 and temperature of 90 °C. Importantly, immobilized α-amylase retained >80 % of its initial activity even after 28 days at room temperature, and it maintained 70 % of its activity after being reused 12 times. These findings strongly suggest that lignin derived from agroforestry residues holds promising potential as a future versatile immobilization material, a prospect integral to society's sustainable development.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Mingfu Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Yu Xin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China.
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| |
Collapse
|
9
|
Design, synthesis, biological evaluation, and docking study of chromone-based phenylhydrazone and benzoylhydrazone derivatives as antidiabetic agents targeting α-glucosidase. Bioorg Chem 2023; 132:106384. [PMID: 36696731 DOI: 10.1016/j.bioorg.2023.106384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
To develop novel α-glucosidase inhibitors, a series of chromone-based phenylhydrazone and benzoylhydrazone derivatives were designed, synthesized, and evaluated their inhibitory effects on α-glucosidase. The target compounds were characterized using 1H NMR, 13C NMR, and high-resolution mass spectra. Some of the compounds showed a varying degree of α-glucosidase inhibitory activity with IC50 values ranging from 6.59 ± 0.09 to 158.55 ± 0.87 μM. Among them, compound 5c (IC50 = 6.59 ± 0.09 μM) was the most potent inhibitor by comparison with positive control acarbose (IC50 = 685.11 ± 7.46 μM). Enzyme kinetic, fluorescence analysis, circular dichroism spectra, and molecular docking techniques were employed to explain the underlying molecular mechanisms of 5c inhibition on α-glucosidase. In vivo sucrose-loading test showed that 5c could suppress the rise of blood glucose levels after loading sucrose in normal Kunming mice. The cytotoxicity assay indicated that 5c exhibited low cytotoxicity.
Collapse
|
10
|
Zhu P, Ma C, Fan J, Yang Y, Liu X, Bian X, Ren L, Xu Y, Yu D, Liu L, Fu Y, Gao J, Zhang N. The interaction of trehalose and molten globule state soybean 11S globulin and its impact on foaming capacities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1194-1204. [PMID: 36088619 DOI: 10.1002/jsfa.12214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soybean 11S globulin has good functional properties, which are widely used in the field of food. However, natural soybean 11S globulin (N-11S) has low flexibility and is easy to aggregate, impacting its foaming process. Studies have shown that soybean 11S globulin in molten globule state (MG-11S) has better molecular flexibility than N-11S, and trehalose has been shown to improve the properties of proteins. Therefore, this study investigated the interaction mechanism between trehalose and MG-11S, and its impact on rheological and foaming properties of MG-11S. RESULTS The molecular docking and intrinsic fluorescence results showed that hydrogen bonding was the main interaction force at lower than 0.5 mol L-1 trehalose added. Meanwhile, rheology and foaming showed that the MG-11S-trehalose complexes had better viscoelasticity, foaming ability (66.67-86.67%) and foaming stability (75.00-89.29%) than N-11S (16.67% foaming ability and 40.00% foaming stability); however, when the trehalose was higher than 0.5 mol L-1 , molecular crowding occurred and H-bonds were weakened, resulting in reduction of foaming capacities. Microstructure determination showed that trehalose attached to the surface of foam membrane; meanwhile, the foaming structure of the complex with 0.5 mol L-1 trehalose had a thicker liquid film with decreased drainage rate, less agglomeration and disproportionation of foam, illustrating the best foaming ability and foaming stability. CONCLUSION The results suggested that trehalose at different concentrations can interact with MG-11S through different mechanisms, and improve the foaming capacity of MS-11S. This provided a reference for the application of MS-11S in foaming food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengyu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Likun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Dehui Yu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Gao
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
11
|
Study on the mechanism of interaction between mulberry anthocyanins and yeast mannoprotein. Food Chem 2022; 405:135024. [DOI: 10.1016/j.foodchem.2022.135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
|
12
|
Kr Mandal N, Bandyopadhyay N, Arya P, Chowdhury S, Raghav N, Prakash Naskar J. Synthesis, characterization, structure, in vitro enzymatic activity and sensing aspects of a copper(II) complex stabilized from a naphthaldehyde based Schiff base ligand. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Xue Y, Wang F, Zhou C. Optimization of Ultrasonic Extraction of Triterpenes from Loquat Peel and Pulp and Determination of Antioxidant Activity and Triterpenoid Components. Foods 2022; 11:foods11172563. [PMID: 36076748 PMCID: PMC9455252 DOI: 10.3390/foods11172563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this paper was to study the optimal extraction process of total triterpenes from loquat peel and pulp assisted by ultrasound. The effects of solid–liquid ratio, ethanol concentration, ultrasonic time, ultrasonic power, and ultrasonic temperature on the yield of triterpenoid acid in loquat were investigated by single-factor and response surface methodology. FRAP (Ferric ion reducing antioxidant power) method, ABTS (2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) method, and DPPH (1,1-Diphenyl-2-picrylhydrazyl) method were used to determine the antioxidant capacity of peel and pulp at different stages. LC-MS (Liquid Chromatograph Mass Spectrometer) was used to qualitatively analyze different tissues of loquat. The optimal extraction conditions were as follows: ethanol concentration 71%, ultrasonic time 45 min, ultrasonic power 160 W, solid–liquid ratio 1:10, and ultrasonic temperature 30 °C. The total triterpenoid content of loquat peel was 13.92 ± 0.20 mg/g. The optimal extraction conditions were ethanol concentration 85%, ultrasonic time 51 min, ultrasonic power 160 W, solid–liquid ratio 1:8, and ultrasonic temperature 43 °C. The total triterpenoid content of loquat pulp was 11.69 ± 0.25 mg/g. The contents of triterpenes and antioxidant capacity in the peel and pulp of loquat at the three stages were the highest in the fruit ripening stage (S3). LC-MS analysis showed that most of the triterpenes belonged to ursolic acid derivatives and oleanolic acid derivatives, which laid the foundation for further utilization and development of loquat peel and pulp.
Collapse
Affiliation(s)
- Yanwei Xue
- Department of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fei Wang
- Department of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chunhua Zhou
- Department of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agre-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-139-5272-9962
| |
Collapse
|
14
|
Formation of protein-anthocyanin complex induced by grape skin extracts interacting with wheat gliadins: Multi-spectroscopy and molecular docking analysis. Food Chem 2022; 385:132702. [DOI: 10.1016/j.foodchem.2022.132702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
|
15
|
Li X, Chen H, Jia Y, Peng J, Li C. Inhibitory Effects against Alpha-Amylase of an Enriched Polyphenol Extract from Pericarp of Mangosteen (Garcinia mangostana). Foods 2022; 11:foods11071001. [PMID: 35407086 PMCID: PMC8997748 DOI: 10.3390/foods11071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
The pericarp of mangosteen, a by-product of the mangosteen, is rich in polyphenols. In this study, an efficient and environmentally friendly method for preparative enrichment of polyphenols from mangosteen pericarp (MPPs) was developed, and the inhibitory effects on starch digestion were also evaluated. It was found that the optimal extract method of MPPs was at a solid to solvent ratio of 1:50 g/mL, pH of 2, and at 80 °C for 2 h. The IC50 of MPPs for α-amylase was 0.28 mg/mL. Based on the fluorescence quenching results, we presumed that MPPs could alter the natural structure of α-amylase, resulting in inhibitory activity on α-amylase. In addition, MPPs significantly reduced the blood glucose peak and AUC of glucose responses in rats after ingestion of the starch solution. Taken together, MPPs may have the potential as a functional supplement for blood glucose control and diabetes prevention.
Collapse
Affiliation(s)
- Xiaofang Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (H.C.)
| | - Haoze Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (H.C.)
| | - Yan Jia
- Beijing Key Lab of Plant Resource Research and Development, School of Science, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.J.); (C.L.)
| | - Jinming Peng
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (H.C.)
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Y.J.); (C.L.)
| |
Collapse
|
16
|
Yang C, Ma L, Wang X, Xing Y, Lü X. A Novel Polyphenol Oxidoreductase OhLac from Ochrobactrum sp. J10 for Lignin Degradation. Front Microbiol 2021; 12:694166. [PMID: 34671322 PMCID: PMC8521193 DOI: 10.3389/fmicb.2021.694166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying the enzymes involved in lignin degradation by bacteria is important in studying lignin valorization to produce renewable chemical products. In this paper, the catalytic oxidation of lignin by a novel multi-copper polyphenol oxidoreductase (OhLac) from the lignin degrader Ochrobactrum sp. J10 was explored. Following its expression, reconstitution, and purification, a recombinant enzyme OhLac was obtained. The OhLac enzyme was characterized kinetically against a range of substrates, including ABTS, guaiacol, and 2,6-DMP. Moreover, the effects of pH, temperature, and Cu2+ on OhLac activity and stability were determined. Gas chromatography-mass spectrometer (GC-MS) results indicated that the β-aryl ether lignin model compound guaiacylglycerol-β-guaiacyl ether (GGE) was oxidized by OhLac to generate guaiacol and vanillic acid. Molecular docking analysis of GGE and OhLac was then used to examine the significant amino residues and hydrogen bonding sites in the substrate–enzyme interaction. Altogether, we were able to investigate the mechanisms involved in lignin degradation. The breakdown of the lignocellulose materials wheat straw, corn stalk, and switchgrass by the recombinant OhLac was observed over 3 days, and the degradation results revealed that OhLac plays a key role in lignin degradation.
Collapse
Affiliation(s)
- Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingling Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuqi Xing
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Elucidation of Interaction between Whey Proteins and Proanthocyanidins and Its Protective Effects on Proanthocyanidins during In-Vitro Digestion and Storage. Molecules 2021; 26:molecules26185468. [PMID: 34576939 PMCID: PMC8471322 DOI: 10.3390/molecules26185468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Whey proteins and oligomeric proanthocyanidins have nutritional value and are widely used in combination as food supplements. However, the effect of the interactions between proanthocyanidins and whey proteins on their stability has not been studied in depth. In this work, we aimed to characterize the interactions between β-Lactoglobulin (β-LG) and α-lactalbumin (α-LA) and oligomeric proanthocyanidins, including A1, A2, B1, B2, B3, and C1, using multi-spectroscopic and molecular docking methods. Fluorescence spectroscopic data revealed that all of the oligomeric proanthocyanidins quenched the intrinsic fluorescence of β-LG or α-LA by binding-related fluorescence quenching. Among the six oligomeric proanthocyanidins, A1 showed the strongest affinity for β-LG (Ka = 2.951 (±0.447) × 104 L∙mol−1) and α-LA (Ka = 1.472 (±0.236) × 105 L∙mol−1) at 297 K. β-LG/α-LA and proanthocyanidins can spontaneously form complexes, which are mainly induced by hydrophobic interactions, hydrogen bonds, and van der Waals forces. Fourier-transform infrared spectroscopy (FTIR) and circular dichroism spectroscopy showed that the secondary structures of the proteins were rearranged after binding to oligomeric proanthocyanidins. During in vitro gastrointestinal digestion, the recovery rate of A1 and A2 increased with the addition of WPI by 11.90% and 38.43%, respectively. The addition of WPI (molar ratio of 1:1) increased the retention rate of proanthocyanidins A1, A2, B1, B2, B3, and C1 during storage at room temperature by 14.01%, 23.14%, 30.09%, 62.67%, 47.92%, and 60.56%, respectively. These results are helpful for the promotion of protein–proanthocyanidin complexes as functional food ingredients in the food industry.
Collapse
|
18
|
Insights on the interaction mechanism of exemestane to three digestive enzymes by multi-spectroscopy and molecular docking. Int J Biol Macromol 2021; 187:54-65. [PMID: 34274402 DOI: 10.1016/j.ijbiomac.2021.07.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/27/2023]
Abstract
Exemestane is an irreversible steroidal aromatase inhibitor, typically used to treat breast cancer. As an anti-tumor drug, exemestane has more obvious side effects on the gastrointestinal tract. The purpose of this work is to investigate the combination of exemestane with three important digestive enzymes including pepsin (Pep), trypsin (Try) and α-Chymotrypsin (α-ChT) so as to analyze the mechanism of the gastrointestinal adverse effects causing by exemestane binding. Enzyme activity experiment showed that the enzyme activity of Pep was decreased in the presence of exemestane. Fluorescence spectra revealed that exemestane formed stable complexes with digestive enzymes, and the quenching mechanism of drug-digestive enzymes interaction were all static quenching. The binding constants of Pep, Try and α-ChT at 298 K were 2.34 × 105, 1.45 × 105, and 2.05 × 105 M-1, respectively. Synchronous fluorescence and 3D fluorescence spectroscopy showed that the conformation of exemestane was slightly changed after combining with digestive enzymes, and non-radiative energy transfer occurred. Circular dichroism results indicated that exemestane could change the secondary structure of digestive enzymes via increase the α-helix content and decrease in the β-sheet content. Thermodynamic parameters (ΔH0, ΔS0, and ΔG0) revealed that exemestane interacted with α-ChT through electrostatic force, and the binding force with Pep and Try was van der Waals interactions and hydrogen, which was basically consistent with the molecular docking results.
Collapse
|
19
|
Chemical Group Profiling, In Vitro and In Silico Evaluation of Aristolochia ringens on α-Amylase and α-Glucosidase Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6679185. [PMID: 34194523 PMCID: PMC8203400 DOI: 10.1155/2021/6679185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) has become a global scourge, and there is a continuous search for novel compounds as viable alternatives to synthetic drugs which are often accompanied by severe adverse effects. Aristolochia ringens is among the scientifically implicated botanicals effective in the management of several degenerative diseases including DM. The current study evaluated the inhibitory mechanism(s) of root extract of A. ringens on α-amylase and α-glucosidase in vitro and in silico, while its constituents were characterized using liquid chromatography-mass spectrometric technique. The extract had concentration-dependent inhibitory effect on the study enzymes, and the inhibition compared well with that of standard drug (acarbose) with respective IC50 values of 0.67 mg/mL (α-amylase) and 0.57 mg/mL (α-glucosidase) compared with that of the extract (0.63 and 0.54 mg/mL). The extract competitively and uncompetitively inhibited α-amylase and α-glucosidase, respectively. Of the identified compounds, dianoside G (−12.4, −12.5 kcal/mol) and trilobine (−10.0, −10.0 kcal/mol) had significant interactions with α-amylase and α-glucosidase, respectively, while magnoflorine and asiatic acid also interacted keenly with both enzymes, with quercetin 3-O-glucuronide and strictosidine showing better affinity towards α-glucosidase. These observations are suggestive of involvement of these compounds as probable ligands contributing to antidiabetic potential of the extract. While studies are underway to demystify the yet to be identified compounds in the extract, the data presented have lent scientific credence to the acclaimed in vivo antidiabetic potential of the extract and suggested it as a viable source of oral hypoglycaemic agent.
Collapse
|
20
|
Xie F, Zhang W, Gong S, Wang Z. Inhibitory effect of lignin from Canna edulis Ker residues on trypsin: kinetics and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2090-2099. [PMID: 32978811 DOI: 10.1002/jsfa.10831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lignin extracted from Canna edulis Ker residues shows a strong inhibitory effect on α-glucosidase and a promoting effect on α-amylase. Protease activity inhibition may play a key role in disease processes, such as metastasis, tumor invasion and bacterial colonization. Hence, in the present study, the inhibitory mechanism of lignin on trypsin was examined, including the interaction type, thermodynamic parameters, structure, reaction site and molecular docking. RESULTS The isolated lignin presented an inhibitory effect on trypsin activity with an IC50 value of 1.35 μmol L-1 . This inhibition was a mixed linear type with a constant Ki of 3.92 μmol L-1 . The lignin could bind with the key amino acid residue Ser195 on the active site of the trypsin molecule to inhibit its activity, and the phenolic hydroxyl group and -OH on the β-O-4 structure of the lignin molecule were the major groups bound with trypsin. CONCLUSION These results illustrate the inhibitory effects of Canna edulis residue lignin on protease, which helps with respect to understanding the possible application of lignin in the food industry in functional foods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengxiang Gong
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengwu Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Zou W, Zhang X, Stockmann R. Thermally processed lignin reduces the apparent hydrolysis rate of pancreatic α-amylase in starchy foods. Carbohydr Polym 2021; 263:117961. [PMID: 33858568 DOI: 10.1016/j.carbpol.2021.117961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Lignin, despite being the second most abundant constituent of plant cell walls, is thought to be chemically inert during gastrointestinal digestion and therefore attracts little attention for its role in the human diet. This study explores the heat modifications of lignin to derive species capable of slowing starch digestion in vitro. We applied various advanced biochemical (e.g. enzymic digestion, solubility) and physio-chemical (e.g. scanning electron microscopy, Fourier-Transform-Infrared Spectroscopy, 13C-NMR) analyses to characterize the structure-function of lignin induced by heat treatment. It was found that lignin thermally processed above 300 °C reduced the apparent hydrolysis rate of pancreatic α-amylase, which is ascribed mainly to the insoluble lignin with a modified particle surface morphology. Further kinetic experiments showed that lignin species derived by thermal processing slowed in vitro digestion rates of potato starch and pasta. These findings highlight the potential for utilizing thermally processed lignin in slowing digestion of starchy foods.
Collapse
Affiliation(s)
- Wei Zou
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Werribee, VIC, Australia.
| | - Xiaoqing Zhang
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia.
| | - Regine Stockmann
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Werribee, VIC, Australia.
| |
Collapse
|
22
|
Gong S, Yang C, Zhang J, Yu Y, Gu X, Li W, Wang Z. Study on the interaction mechanism of purple potato anthocyanins with casein and whey protein. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr 2020; 8:6320-6337. [PMID: 33312519 PMCID: PMC7723208 DOI: 10.1002/fsn3.1987] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
The strategy of reducing carbohydrate digestibility by controlling the activity of two hydrolyzing enzymes (α-amylase and α-glucosidase) to control postprandial hyperglycemia is considered as a viable prophylactic treatment of type 2 diabetes mellitus (T2DM). Thus, the consumption of foods rich in hydrolyzing enzyme inhibitors is recommended for diet therapy of diabetes. Whole cereal products have gained increasing interests for plasma glucose-reducing effects. However, the mechanisms for whole cereal benefits in relation to T2DM are not yet fully understood, but most likely involve bioactive components. Cereal-derived phenolic compounds, peptides, nonstarch polysaccharides, and lipids have been shown to inhibit α-amylase and α-glucosidase activities. These hydrolyzing enzyme inhibitors seem to make whole cereals become nutritional strategies in managing postmeal glucose for T2DM. This review presents an updated overview on the effects provided by cereal-derived ingredients on carbohydrate digestibility. It suggests that there is some evidence for whole cereal intake to be beneficial in amelioration of T2DM through inhibiting α-glucosidase and α-amylase activities.
Collapse
Affiliation(s)
- Lingxiao Gong
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Danning Feng
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Tianxi Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Yuqing Ren
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Yingli Liu
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| | - Jing Wang
- China‐Canada Joint Lab of Food Nutrition and Health (Beijing)Beijing Engineering and Technology Research Center of Food AdditivesBeijing Technology & Business University (BTBU)BeijingChina
| |
Collapse
|
24
|
Xie F, Gong S, Zhang W, Wang Z. Kinetics and Molecular Docking Studies of Activating Effect of
Canna edulis
Ker Residue Lignin on the Activity of Lipase. STARCH-STARKE 2020. [DOI: 10.1002/star.202000154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| | - Shengxiang Gong
- Department of Food Science and Technology School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wei Zhang
- Department of Food Science and Technology School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhengwu Wang
- Department of Food Science and Technology School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
25
|
Wang L, Wang L, Li Z, Gao Y, Cui SW, Wang T, Qiu J. Diverse effects of rutin and quercetin on the pasting, rheological and structural properties of Tartary buckwheat starch. Food Chem 2020; 335:127556. [PMID: 32738529 DOI: 10.1016/j.foodchem.2020.127556] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
We investigated the interactions of two main phenolics, rutin and quercetin, with starch, the primary component of Tartary buckwheat. The addition of rutin or quercetin significantly affected the structural and physicochemical properties of the starch, and rutin showed a stronger effect than quercetin, particularly at a dose of 6% (w/w). Rutin better enhanced the aggregation of starch pastes and gel formation than quercetin according to our pasting, rheological and thermal property analyses. A scanning electron microscopy analysis of its morphology showed that rutin was more easily dispersed in starchy matrix than quercetin and acted as rigid fillers for gels. The nuclear magnetic resonance results showed different binding sites due to the steric hindrance of the rutin disaccharide groups (rutinose). These findings provide fundamental information about applying rutin during the whole grain processing of Tartary buckwheat.
Collapse
Affiliation(s)
- Libo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Lijuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Steve W Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affaris, Beijing 100081, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affaris, Haidian, Beijing 100081, China.
| |
Collapse
|
26
|
Combining mutagenesis on Glu281 of prenyltransferase NovQ and metabolic engineering strategies for the increased prenylated activity towards menadione. Appl Microbiol Biotechnol 2020; 104:4371-4382. [PMID: 32125480 DOI: 10.1007/s00253-020-10470-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/04/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Prenyltransferase NovQ is a vital class involved in the biosynthesis of secondary metabolites such as clorobiocin and novobiocin. To investigate the relationship between structure and catalytic properties of NovQ, here, we have analyzed the substrate-binding site, namely PT barrel, and revealed that menadione hydroquinol formed intermolecular interactions with the residue Glu281 near the center of the active pocket. In this study, Glu281 was substituted with 9 diverse amino acids and catalytic properties of mutants were observed in vitro. Among them, E281Q showed 2.05-fold activities towards the aromatic substrate and prenyl donor, while others obtained catalytic efficiency between 8.4 and 88.6% of that of wild-type NovQ. Furthermore, the effects of catalytic conditions and substrate status on the activity of NovQ and its mutants were considered to obtain the optimized prenylated reaction. When the evolutionary NovQ variant E281Q was overexpressed in the host constructed to synthesize dimethylallyl diphosphate through the engineered mevalonate (MVA) pathway, we harvested up to 4.7 mg/L prenylated menadione at C-3 position by exogenously supplying the aromatic substrate. The construction of the microbial platform based on NovQ opens a new orientation to further biosynthesize various vitamin K2 with other ABBA prenyltransferases in E. coli.
Collapse
|
27
|
Zhang Y, Aryee ANA, Simpson BK. Current role of in silico approaches for food enzymes. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Zheng Y, Yang W, Sun W, Chen S, Liu D, Kong X, Tian J, Ye X. Inhibition of porcine pancreatic α-amylase activity by chlorogenic acid. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103587] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
29
|
Tao X, Huang Y, Wang C, Chen F, Yang L, Ling L, Che Z, Chen X. Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14325] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuan Tao
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Yukun Huang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| | - Chong Wang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Fang Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Lingling Yang
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Li Ling
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu Sichuan 611137 China
| | - Zhenming Che
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
| | - Xianggui Chen
- School of Food and Bioengineering Xihua University Chengdu Sichuan 610039 China
- Key Laboratory of Food Non Thermal Processing Engineering Technology Research Center of Food Non Thermal Processing Yibin Xihua University Research Institute Yibin Sichuan 644404 China
| |
Collapse
|
30
|
Tao J, Li S, Ye F, Zhou Y, Lei L, Zhao G. Lignin - An underutilized, renewable and valuable material for food industry. Crit Rev Food Sci Nutr 2019; 60:2011-2033. [PMID: 31547671 DOI: 10.1080/10408398.2019.1625025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lignin is the second most abundant biorenewable polymers only next to cellulose and is ubiquitous in various plant foods. In food industry, lignin often presented as a major component of by-products from plant foods. In the last decade, the food and nutritional interests of lignin attracted more and more attentions and great progresses have been accomplished. In the present review, the structure, physicochemical properties, dietary occurrence and preparation methods of lignin from food resources were summarized. Then, the versatile activities of food lignin were introduced under the subtitles of antioxidant, antimicrobial, antiviral, antidiabetic and other activities. Finally, the potential applications of food lignin were proposed as a food bioactive ingredient, an improver of food package films and a novel material in fabricating drug delivery vehicles and contaminant passivators. Hopefully, this review could bring new insights in exploiting lignin from nutrition- and food-directed views.
Collapse
Affiliation(s)
- Jianming Tao
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Sheng Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Yun Zhou
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing, People's Republic of China.,Chongqing Engineering Research Centre of Regional Foods, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Sobhy R, Eid M, Zhan F, Liang H, Li B. Toward understanding the in vitro anti-amylolytic effects of three structurally different phytosterols in an aqueous medium using multispectral and molecular docking studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|