1
|
Karunnanithy V, Abdul Rahman NHB, Abdullah NAH, Fauzi MB, Lokanathan Y, Min Hwei AN, Maarof M. Effectiveness of Lyoprotectants in Protein Stabilization During Lyophilization. Pharmaceutics 2024; 16:1346. [PMID: 39458674 PMCID: PMC11510631 DOI: 10.3390/pharmaceutics16101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Proteins are commonly used in the healthcare industry to treat various health conditions, and most proteins are sensitive to physical and chemical changes. Lyophilization, also known as freeze-drying, involves sublimating water in the form of ice from a substance at low pressure, forming a freeze-dried powder that increases its shelf life. Extreme pressure and varying temperatures in the freeze-drying process may damage the protein's structural integrity. Lyoprotectants are commonly used to protect protein conformations. It is important to choose a suitable lyoprotectant to ensure optimal effectiveness. Method: Twenty articles screened from Scopus, Web of Science, and PubMed were included in this review that discussed potential lyoprotectants and their effectiveness with different protein models. Results: Lyoprotectants were categorized into sugars, polyols, surfactants, and amino acids. Lyoprotectants can exhibit significant protective effects towards proteins, either singularly or in combination with another lyoprotectant. They exert various interactions with the protein to stabilize it, such as hydrogen bonding, hydrophobic interactions, electrostatic interactions, and osmoprotection. Conclusions: This review concludes that disaccharides are the most effective lyoprotectants, while other groups of lyoprotectants are best used in combination with other lyoprotectants.
Collapse
Affiliation(s)
- Vinoothini Karunnanithy
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
| | - Nur Hazirah Binti Abdul Rahman
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Angela Ng Min Hwei
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
2
|
Liu S, Zhang L, Li Z, Chen J, Zhang Y, Yang X, Chen Q, Cai H, Hong P, Zhu C, Zhong S. The Cryoprotective Effect of an Antifreeze Collagen Peptide Complex Obtained by Enzymatic Glycosylation on Tilapia. Foods 2024; 13:1319. [PMID: 38731690 PMCID: PMC11083813 DOI: 10.3390/foods13091319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Antifreeze peptides have become effective antifreeze agents for frozen products, but their low quantity of active ingredients and high cost limit large-scale application. This study used the glycosylation of fish collagen peptides with glucosamine hydrochloride catalyzed by transglutaminase to obtain a transglutaminase-catalyzed glycosylation product (TGP) and investigate its antifreeze effect on tilapia. Compared with the blank group, the freshness (pH value of 6.31, TVB-N value of 21.7 mg/100 g, whiteness of 46.28), textural properties (especially hardness and elasticity), and rheological properties of the TGP groups were significantly improved. In addition, the protein structures of the samples were investigated using UV absorption and fluorescence spectroscopy. The results showed that the tertiary structure of the TGP groups changed to form a dense polymer. Therefore, this approach can reduce the denaturation and decomposition of muscle fibers and proteins in fish meat more effectively and has a better protective effect on muscle structure and protein aggregation, improving the stability of fish meat. This study reveals an innovative method for generating antifreeze peptides by enzymatic glycosylation, and glycosylated fish collagen peptide products can be used as new and effective green antifreeze agents in frozen foods.
Collapse
Affiliation(s)
- Shouchun Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Luyao Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Zhuyi Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Yinyu Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Xuebo Yang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Qiuhan Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| | - Hongying Cai
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524004, China; (L.Z.); (H.C.); (C.Z.)
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; (S.L.); (Z.L.); (J.C.); (Y.Z.); (X.Y.); (Q.C.); (P.H.)
| |
Collapse
|
3
|
Inhibition mechanism of membrane-separated silver carp hydrolysates on ice crystal growth obtained through experiments and molecular dynamics simulation. Food Chem 2023; 414:135695. [PMID: 36809728 DOI: 10.1016/j.foodchem.2023.135695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The membrane-separated silver carp hydrolysates (>10 kD, 3-10 kD and < 3 kD) displayed abilities to mitigate oxidation and denaturation of myofibrillar protein and cryoprotective activities for frozen surimi. However, the mechanism of the membrane-separated fractions on ice crystal growth in the system is still unknown. Therefore, the cryoprotective activities (recrystallization inhibition, RI and thermal hysteresis activity, THA) of the fractions were investigated and the mechanism was explored by molecular dynamics (MD) simulation to predict the probable binding sites and model the possible interactions between the peptides and water/ice. The fractions < 3 kD displayed remarkable RI activity, with significantly higher THA (0.60 ± 0.13 °C) and lower amount of ice nuclei (4.74 ± 0.53%) than that of fractions > 10 kD and 3-10 kD. The results of MD simulation certified that the main peptides in the fractions < 3 kD interacted firmly with water molecules and inhibited growth of ice crystals with mechanism compatible with Kelvin effect. Hydrophilic and hydrophobic amino acid residues in the membrane-separated fractions offered synergistic effects on the inhibition of ice crystals.
Collapse
|
4
|
Chen X, Wu J, Yang F, Zhou M, Wang R, Huang J, Rong Y, Liu J, Wang S. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress. J Adv Res 2023; 45:127-140. [PMID: 35599106 PMCID: PMC10006524 DOI: 10.1016/j.jare.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/14/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Antifreeze peptides regulate the physiological functions of frozen cells and even their apoptosis; however, the mechanisms by which antifreeze peptides regulate these processes remain unclear, although the interactions between cell membranes and ice are well known to be important in this process. OBJECTIVES Our study aims to investigate how antifreeze peptides regulate cell physiological functions during the freezing process. METHODS We investigated the cryoprotective effect of rsfAFP on the physiological functions of S. thermophilus under freezing stress by measuring cellular metabolism activity, intracellular enzyme activity, cell membrane characterization, and cell apoptosis. The mechanism by which rsfAFP impacts S. thermophilus physiological functions under freezing stress was investigated using multispectral techniques and cryo-TEM. RESULTS We show that a recombinant antifreeze peptide (rsfAFP) interacts with the extracellular capsular polysaccharides and peptidoglycan of Streptococcus thermophilus and ice to cover the outer layer of the membrane, forming a dense protective layer that regulates the molecular structure of extracellular ice crystals, which results in reduced extracellular membrane damage, depressed apoptosis and increased intracellular metabolic activity. This interaction mechanism was indicated by the fact that S. thermophilus better maintained its permeability barrier, membrane fluidity, membrane structural integrity, and cytoplasmic membrane potential during freezing stress with rsfAFP treatment. CONCLUSION These results provide new insights into the mechanism by which rsfAFP regulates frozen cellphysiological functionsand apoptosis under freezing stress.
Collapse
Affiliation(s)
- Xu Chen
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mi Zhou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
The cryoprotective activity of tilapia skin collagen hydrolysate and the structure elucidation of its antifreeze peptide. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Investigation on the quality regulating mechanism of antifreeze peptides on frozen surimi: From macro to micro. Food Res Int 2023; 163:112299. [PMID: 36596202 DOI: 10.1016/j.foodres.2022.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Freeze denaturation of protein caused by ice crystals is the main motivation for the quality deterioration of surimi during circulation and storage. This investigation aimed to cryoprotect surimi by adding antifreeze peptides from Takifugu obscurus skin (TsAFP) which can inhibit ice recrystallization, and to elucidate regulating mechanism. The comprehensive results showed that 4% TsAFP, half dosage of commercial cryoprotectant, had good cryoprotection on surimi by reducing the moisture variation and maintaining protein solubility of surimi at macro level, as well as inhibiting the degeneration and structure changes of myofibrillar proteins at micro level. Meanwhile, TsAFP could directly bind to the structural cavity of myosin, inhibit protein freezing-induced oxidation, maintain the spatial structure of myosin and water retention ability to preserve the surimi quality. This study helped better comprehend the protective mechanisms of antifreeze peptides in frozen surimi and was expected to provide a promising cryoprotectant for low-sweetness and low-calorie surimi.
Collapse
|
7
|
Li W, Zhao Y, Zhao Y, Li S, Yun L, Zhi Z, Liu R, Wu T, Sui W, Zhang M. Improving the viability of Lactobacillus plantarum LP90 by carboxymethylated dextran-whey protein conjugates: The relationship with glass transition temperature. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Yang F, Jiang W, Chen X, Chen X, Wu J, Huang J, Cai X, Wang S. Identification of Novel Antifreeze Peptides from Takifugu obscurus Skin and Molecular Mechanism in Inhibiting Ice Crystal Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14148-14156. [PMID: 36314886 DOI: 10.1021/acs.jafc.2c04393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Foodborne hydrolyzed antifreeze peptides have been widely used in the food industry and the biomedical field. However, the components of hydrolyzed peptides are complex and the molecular mechanism remains unclear. This study focused on identification and mechanism analysis of novel antifreeze peptides from Takifugu obscurus skin by traditional methods and computer-assisted techniques. Results showed that three peptides (EGPRAGGAPG, GDAGPSGPAGPTG, and GEAGPAGPAG) possessed cryoprotection via reducing the freezing point and inhibiting ice crystal growth. Molecular docking confirmed that the cryoprotective property was related to peptide structure, especially α-helix, and hydrogen bond sites. Moreover, the antifreeze peptides were double-faces, which controlled ice crystals while affecting the arrangement of surrounding water molecules, thus exhibiting a strong antifreeze activity. This investigation deepens the comprehension of the mechanism of antifreeze peptides at molecular scale, and the novel efficient antifreeze peptides can be developed in antifreeze materials design and applied in food industry.
Collapse
Affiliation(s)
- Fujia Yang
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Wenting Jiang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Xuan Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, P.R. China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen361022, P.R. China
- Fujian Anjoy Foods Co. Ltd., Xiamen361022, P.R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou350108, P.R. China
| |
Collapse
|
9
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Wang XJ, Liu XL, Zheng XQ, Qu Y. Antagonistic effect of the glycopeptide from zein on acute alcohol-induced liver injury in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Preparation, Characterization, and Mechanism of Antifreeze Peptides from Defatted Antarctic Krill ( Euphausia superba) on Lactobacillus rhamnosus. Molecules 2022; 27:molecules27092771. [PMID: 35566118 PMCID: PMC9104330 DOI: 10.3390/molecules27092771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Defatted Antarctic krill powder is the main by-product in the manufacturing of krill oil. Exploring a high value-added approach for utilizing this protein-rich material has received much attention in research and industry. Given this, the preparation and primary characterization of antifreeze peptides from defatted Antarctic krill (AKAPs) were carried out in this study. The cryoprotective effect of AKAPs on Lactobacillus rhamnosus ATCC7469 was also investigated. The results showed that Protamex was the optimum protease for AKAP preparation from defatted Antarctic krill. AKAPs were found to be rich in short peptides, with the MW ranging from 600 to 2000 Da (69.2%). An amino acid composition analysis showed that AKAPs were rich in glutamic acid (18.71%), aspartic acid (12.19%), leucine (7.87%), and lysine (7.61%). After freezing, the relative survival rate of Lactobacillus rhamnosus in the 1.0 mg/mL AKAP-treated group (96.83%) was significantly higher than in the saline group (24.12%) (p < 0.05). AKAPs also retarded the loss of acidifying activity of L. rhamnosus after freezing. AKAPs showed even better cryoprotective activity than three commercial cryoprotectants (sucrose, skim milk, and glycerol). In addition, AKAPs significantly alleviated the decrease in β-galactosidase and lactic dehydrogenase activities of L. rhamnosus (p < 0.05). Furthermore, AKAPs effectively protected the integrity of L. rhamnosus cell membranes from freezing damage and alleviated the leakage of intracellular substances. These findings demonstrate that AKAPs can be a potential cryoprotectant for preserving L. rhamnosus, providing a new way to use defatted Antarctic krill.
Collapse
|
12
|
Antifreeze Peptides Preparation from Tilapia Skin and Evaluation of Its Cryoprotective Effect on Lacticaseibacillus rhamnosus. Foods 2022; 11:foods11060857. [PMID: 35327279 PMCID: PMC8953377 DOI: 10.3390/foods11060857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Antifreeze peptides can protect cell membranes and maintain the cell viability of probiotics under cold stress. Given this, antifreeze peptides were prepared from tilapia processing byproducts of tilapia skin by enzymolysis using the response surface methodology (RSM) method. The cryoprotective effects on Lacticaseibacillus rhamnosus ATCC7469 were investigated. Trypsin was selected as the protease for tilapia skin hydrolysis. The optimal hydrolysis conditions consisted of the amount of enzyme (2200 U/g), solid–liquid ratio (1:10, w/v), reaction temperature (49 °C), and reaction time (6.8 h), and the relative survival rate of L. rhamnosus reached 98.32%. Molecular weight (Mw) distribution and peptide sequences of the antifreeze peptides prepared from tilapia skin (APT) under the optimal conditions were analyzed. APT significantly reduced the leakage of extracellular proteins and protected β-galactosidase and lactate dehydrogenase activities of L. rhamnosus. Compared with the saline group, scanning electron microscopy (SEM) observation showed that cells had a more normal, smooth, and entire surface under the protection of APT. These findings indicate that APT can be a new cryoprotectant in preserving probiotics.
Collapse
|
13
|
Chen X, Wu J, Li X, Yang F, Yu L, Li X, Huang J, Wang S. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides. Food Chem 2022; 371:131054. [PMID: 34555708 DOI: 10.1016/j.foodchem.2021.131054] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Freezing technology is important for storage of animal products such as surimi. However, mechanical damage caused by ice crystals would lead to quality deterioration. This study aims to investigate the protective effect of antifreeze peptides (AFPs) on the quality of surimi during freezing storage and its possible mechanism. We found that AFPs exhibited a strong inhibition of ice crystal recrystallization, and the molecular weight ranged from 180 to 3000 Da. AFPs can prevent the degeneration of myofibrillar protein by reducing the loss of Ca2+-ATPase activity, slowing oxidation of sulfhydryl groups to disulfide bonds, and maintaining surface hydrophobicity and solubility of myofibrillar protein. Moreover, AFPs can reduce the influence of freezing stress on water mobility, thereby protecting the surimi from losing immobilized water and bound water during frozen storage. These findings indicate that AFPs could potentially serve as a food ingredient with antifreeze functional for the storage of surimi products.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaozhen Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Luhan Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaokun Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
14
|
Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int J Mol Sci 2022; 23:2639. [PMID: 35269780 PMCID: PMC8910022 DOI: 10.3390/ijms23052639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (M.D.E.); (J.X.); (Y.H.); (X.L.); (F.L.); (J.X.); (R.Z.); (B.W.)
| |
Collapse
|
15
|
Zhu S, Yu J, Chen X, Zhang Q, Cai X, Ding Y, Zhou X, Wang S. Dual cryoprotective strategies for ice-binding and stabilizing of frozen seafood: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Li F, Du X, Wang B, Pan N, Xia X, Bao Y. Inhibiting effect of ice structuring protein on the decreased gelling properties of protein from quick-frozen pork patty subjected to frozen storage. Food Chem 2021; 353:129104. [PMID: 33730666 DOI: 10.1016/j.foodchem.2021.129104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The effect of ice structuring protein (ISP) on the gelling properties of myofibrillar protein from quick-frozen pork patty during frozen storage was investigated by determining and comparing protein solubility, turbidity and gel properties. Protein solubility was increased by 10.23% and turbidity was decreased after ISP treated. The gel whiteness and strength of myofibrillar protein from patty with ISP were 8.38% and 13.70% higher than that of the control after frozen for 180 days. And the addition of ISP could weaken the influence of frozen storage on water mobility and reduce the water loss. Furthermore, ISP retrained the decrease in the maximum elastic (G') value and loss factor (tan δ) value of samples. Through observing by scanning electron microscope (SEM), ISP retarded the destruction of gel microstructure and maintained the relatively complete tissue of gel. These findings confirmed the importance of ISP in myofibrillar protein gel quality assurance of pork patty during frozen storage.
Collapse
Affiliation(s)
- Fangfei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
17
|
Chen X, Wu J, Cai X, Wang S. Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Compr Rev Food Sci Food Saf 2020; 20:542-562. [DOI: 10.1111/1541-4337.12655] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
- College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Jinhong Wu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Xixi Cai
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| | - Shaoyun Wang
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| |
Collapse
|
18
|
Chen X, Shi X, Cai X, Yang F, Li L, Wu J, Wang S. Ice-binding proteins: a remarkable ice crystal regulator for frozen foods. Crit Rev Food Sci Nutr 2020; 61:3436-3449. [PMID: 32715743 DOI: 10.1080/10408398.2020.1798354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ice crystal growth during cold storage presents a quality problem in frozen foods. The development of appropriate technical conditions and ingredient formulations is an effective method for frozen food manufacturers to inhibit ice crystals generated during storage and distribution. Ice-binding proteins (IBPs) have great application potential as ice crystal growth inhibitors. The ability of IBPs to retard the growth of ice crystals suggests that IBPs can be used as a natural ice conditioner for a variety of frozen products. In this review, we first discussed the damage caused by ice crystals in frozen foods during freezing and frozen storage. Next, the methods and technologies for production, purification and evaluation of IBPs were summarized. Importantly, the present review focused on the characteristics, structural diversity and mechanisms of IBPs, and the application advances of IBPs in food industry. Finally, the challenges and future perspectives of IBPs are also discussed. This review may provide a better understanding of IBPs and their applications in frozen products, providing some valuable information for further research and application of IBPs.
Collapse
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiaodan Shi
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fujia Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Ling Li
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Xiang H, Yang X, Ke L, Hu Y. The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 2020; 153:661-675. [PMID: 32156540 DOI: 10.1016/j.ijbiomac.2020.03.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023]
Abstract
By natural selection, organisms evolve different solutions to cope with extremely cold weather. The emergence of an antifreeze protein gene is one of the most momentous solutions. Antifreeze proteins possess an importantly functional ability for organisms to survive in cold environments and are widely found in various cold-tolerant species. In this review, we summarize the origin of antifreeze proteins, describe the diversity of their species-specific properties and functions, and highlight the related biotechnology on the basis of both laboratory tests and bioinformatics analysis. The most recent advances in the applications of antifreeze proteins are also discussed. We expect that this systematic review will contribute to the comprehensive knowledge of antifreeze proteins to readers.
Collapse
Affiliation(s)
- Hong Xiang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Xiaohu Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Lei Ke
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology
| | - Yong Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology.
| |
Collapse
|
20
|
Preparation of corn glycopeptides and evaluation of their antagonistic effects on alcohol-induced liver injury in rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Chen X, Li L, Yang F, Wu J, Wang S. Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage. Food Chem Toxicol 2020; 136:111056. [PMID: 31846719 DOI: 10.1016/j.fct.2019.111056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/11/2023]
Abstract
Cold stage adversely affects cell proliferation and cell viability of probiotics such as Streptococcus thermophilus in food industry, new type of cryoprotectants continues to be needed. Gelatin-based antifreeze peptide becomes a popular topic because of its cryoprotective effects on cold-stressed probiotics. In this study the effects of tilapia scales antifreeze peptides (TSAPP) on cell viability and oxidant stress of S. thermophilus during cold stage were investigated. The results showed that the percentage of viable cells was increased 10.85 folds compared with control groups. Addition of TSAPP activated the activities of ATPases, relieved the hyperpolarization of cell membrane potential and regulated the intracellular Ca2+ concentration. Furthermore, TSAPP significantly inhibited reactive oxygen species level and malonaldehyde content in cells. Under cryopreservation with TSAPP, cells of S. thermophilus maintained higher activities of antioxidant enzymes including catalase, peroxidase and total antioxidant capacity. These findings indicate that TSAPP likely offered its cellular protection by maintaining membrane integrity and alleviation of oxidative stress.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ling Li
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China; Yango University, Fuzhou, Fujian, 350015, China
| | - Fujia Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
22
|
Chen X, Fang F, Wang S. Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food Chem Toxicol 2020; 137:111115. [PMID: 31911128 DOI: 10.1016/j.fct.2020.111115] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
The physicochemical properties and hepatoprotective effects of fish scales peptides (FSP) and the glycated peptides conjugated with xylose via Maillard reaction (FSP-MRPs) were investigated. Results showed that the FSP was rich in oligopeptides within 2-10 amino acids, the degree of grafting of FSP-MRPs was 52.97 ± 1.58% and the antioxidant activities in vitro of FSP were improved through Maillard reaction. In order to investigate the antioxidant activities of FSP-MRPs after digestion, the simulated gastrointestinal digestion experiments of FSP and FSP-MRPs in vitro were conducted. Results indicated that the antioxidant activities of FSP and FSP-MRPs remained as stronger as before even under the digestive conditions. Furthermore, FSP-MRPs could significantly reduce the elevated activities of serum aspartate aminotransferase and alanine aminotransferase, decrease the elevated the levels of hepatic malondialdehyde and triglyceride, and inhibit the decrease of hepatic superoxide dismutase, catalase and glutathione peroxidase caused by alcohol-induced liver damage. These findings suggest that the glycated peptides formed by FSP and xylose via Maillard reaction may be potential to be exploited as a potential functional ingredient in food industry.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemical Engineering, Fuzhou, Fujian, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Fei Fang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
23
|
Wu T, Shen M, Liu S, Yu Q, Chen Y, Xie J. Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice. Food Chem Toxicol 2020; 135:111014. [DOI: 10.1016/j.fct.2019.111014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
|