1
|
Zhang L, Zhao J, Li F, Jiao X, Zhang Y, Yang B, Li Q. Insight to starch retrogradation through fine structure models: A review. Int J Biol Macromol 2024; 273:132765. [PMID: 38823738 DOI: 10.1016/j.ijbiomac.2024.132765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The retrogradation of starch is crucial for the texture and nutritional value of starchy foods products. There is mounting evidence highlighting the significant impact of starch's fine structures on starch retrogradation. Because of the complexity of starch fine structure, it is a formidable challenge to study the structure-property relationship of starch retrogradation. Several models have been proposed over the years to facilitate understanding of starch structure. In this review, from the perspective of starch models, the intricate structure-property relationship is sorted into the correlation between different types of structural parameters and starch retrogradation performance. Amylopectin B chains with DP 24-36 and DP ≥36 exhibit a higher tendency to form ordered crystalline structures, which promotes starch retrogradation. The chains with DP 6-12 mainly inhibit starch retrogradation. Based on the building block backbone model, a longer inter-block chain length (IB-CL) enhances the realignment and reordering of starch. The mathematical parameterization model reveals a positive correlation between amylopectin medium chains, amylose short chains, and amylose long chains with starch retrogradation. The review is structured according to starch models; this contributes to a clear and comprehensive elucidation of the structure-property relationship, thereby providing valuable references for the selection and utilization of starch.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
2
|
Guo C, Geng S, Shi Y, Yuan C, Liu B. Effect of sulfuric acid hydrolysis on the structure and Pickering emulsifying capacity of acorn starch. Food Chem X 2024; 22:101277. [PMID: 38515830 PMCID: PMC10955292 DOI: 10.1016/j.fochx.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
The acid-hydrolyzed acorn starch samples (HAS-1, HAS-2, HAS-3, and HAS-4) were prepared from natural acorn starch (NAS) at sulfuric acid concentrations of 1, 2, 3, and 4 mol/L for 2 d. The particle characteristics and structures of HAS were investigated, and Pickering high internal phase emulsions (HIPEs) based on HAS were constructed and characterized. The results showed that with an increase in sulfuric acid concentration, the size, yield, amylose content, molecular weight, and amylopectin chain length of HAS gradually decreased. HAS retained an A-type crystal structure, and its relative crystallinity and short-range order degree gradually increased with increasing sulfuric acid concentration. Acid hydrolysis treatment improved the wettability of NAS, and its effect was positively correlated with the sulfuric acid concentration. HAS-3 and HAS-4 could stabilize the Pickering HIPEs with an oil phase volume fraction of 80% at c ≥ 1.5%. The mechanical properties of the HIPEs were positively correlated with c.
Collapse
Affiliation(s)
- Changsheng Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yuzhong Shi
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Benguo Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
3
|
Liu Y, Sun Y, Li D, Li P, Yang N, He L, Nishinari K. Influence of Temperatures on Physicochemical Properties and Structural Features of Tamarind Seed Polysaccharide. Molecules 2024; 29:2622. [PMID: 38893498 PMCID: PMC11174022 DOI: 10.3390/molecules29112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the high content of impurities such as proteins in tamarind seed polysaccharide (TSP), they must be separated and purified before it can be used. TSP can disperse in cold water, but a solution can only be obtained by heating the mixture. Therefore, it is important to understand the dispersion and dissolution process of TSP at different temperatures to expand the application of TSP. In this study, pasting behavior and rheological properties as a function of temperature were characterized in comparison with potato starch (PS), and their relationship with TSP molecular features and microstructure was revealed. Pasting behavior showed that TSP had higher peak viscosity and stronger thermal stability than PS. Rheological properties exhibited that G' and G'' of TSP gradually increased with the increase in temperature, without exhibiting typical starch gelatinization behavior. The crystalline or amorphous structure of TSP and starch was disrupted under different temperature treatment conditions. The SEM results show that TSP particles directly transformed into fragments with the temperature increase, while PS granules first expanded and then broken down into fragments. Therefore, TSP and PS underwent different dispersion mechanisms during the dissolution process: As the temperature gradually increased, TSP possibly underwent a straightforward dispersion and was then dissolved in aqueous solution, while PS granules initially expanded, followed by disintegration and dispersion.
Collapse
Affiliation(s)
- Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Yujia Sun
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Diming Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China;
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China;
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
5
|
Zou J, Li Y, Wang F, Su X, Li Q. Relationship between structure and functional properties of starch from different cassava (Manihot esculenta Crantz) and yam (Dioscorea opposita Thunb) cultivars used for food and industrial processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Gao L, Wan C, Wang J, Wang P, Gao X, Eeckhout M, Gao J. Relationship between nitrogen fertilizer and structural, pasting and rheological properties on common buckwheat starch. Food Chem 2022; 389:132664. [PMID: 35523074 DOI: 10.1016/j.foodchem.2022.132664] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Nitrogen is an essential element for the yield and quality of grain. In this study, the structural and physicochemical properties of two common buckwheat varieties under four nitrogen levels (0, 90, 180, 270 kg N ha-1) at one location in two years were investigated. With increasing nitrogen level, the contents of moisture and amylose decreased but the contents of ash and crude protein increased. Excessive nitrogen application significantly increased the granule size, but reduced the light transmittance, water solubility, swelling power, absorption of water and oil. All the samples showed a typical A - type pattern, while high relative crystallinity and low order degree were observed under high nitrogen level. The samples under high nitrogen level had lower textural properties, pasting properties and rheological properties but higher pasting temperature and gelatinization enthalpy. These results indicated that nitrogen fertilizer significantly affected the structural and physicochemical properties of common buckwheat starch.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China; Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jiale Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Mia Eeckhout
- Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
7
|
Mango Seed Kernel: A Bountiful Source of Nutritional and Bioactive Compounds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Velásquez-Barreto FF, Miñano HA, Alvarez-Ramirez J, Bello-Pérez L. Structural, functional, and chemical properties of small starch granules: Andean quinoa and kiwicha. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Yang Z, Chen X, Xu Z, Ji N, Xiong L, Sun Q. Anti-freezing starch hydrogels with superior mechanical properties and water retention ability for 3D printing. Int J Biol Macromol 2021; 190:382-389. [PMID: 34499952 DOI: 10.1016/j.ijbiomac.2021.08.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
As a novel material that can be used at subzero temperatures, anti-freezing hydrogels have been attracting extensive attention. Inspired by the freeze-tolerance phenomenon in seawater, which is achieved by mixing salts into water, an ionic compound (CaCl2) was used to gelatinize starch to form anti-freezing hydrogels. Native potato starch (NPS) anti-freezing hydrogels were formed at -10 °C, -18 °C, -30 °C, and - 50 °C with 6-9 kPa tensile strength and 100-230% elongation at break. The compressive stress of anti-freezing hydrogels at different environmental temperatures increased from 18.586 kPa to 36.551 kPa with the glass transform temperature of starch hydrogels dropped to -50 °C. The anti-freezing hydrogels showed excellent water retention ability, which could maintain a water content of 55% after 7 days at ambient temperature. The prototyping of anti-freezing starch hydrogels broadens the applications of starch in food, adhesives, medical materials, and intelligent materials.
Collapse
Affiliation(s)
- Zhen Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xiaoyu Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Zihan Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
10
|
Proso-millet starch: Properties, functionality, and applications. Int J Biol Macromol 2021; 190:960-968. [PMID: 34536472 DOI: 10.1016/j.ijbiomac.2021.09.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022]
Abstract
Previously proso-millet, considered an underutilized cereal, has drawn considerable attention due to health benefits like good nutritional profile, low glycemic index, and gluten-free. The present review discusses starch extractability, structural characteristics, morphology, and physicochemical properties. Starch properties mainly depend on the amylose and amylopectin composition and distribution of brained chains. A very diverse starch structure and morphology were observed among the waxy and non-waxy cultivars. The amylose content ranged from 0.75 to 28.3% in many varieties, but exceptionally Hongmeizi variety showed a 32.3% as per the reported evidence. There are a positive correlation between the amylose content and cooking quality, thermal and pasting properties. The size and shape of smallest to largest starch granules varied between 0.3 and 17 μm and round to polygonal, respectively. The non-waxy starch varieties of proso-millet are widely used in food processing due to high resistance to swelling during heat treatment. Few food applications of proso-millet are bakery products like gluten-free bread, porridge, pasta, ready-to-eat breakfast cereals, infant foods, and distilleries. We can conclude that proso millet is an alternative to existing starch for its quality characteristics and provides insight to many food processing industries.
Collapse
|
11
|
Applications of Plant Polymer-Based Solid Foams: Current Trends in the Food Industry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Foams are a type of material of great importance, having an extensive range of applications due to a combination of several characteristics, such as ultra-low density, tunable porous architecture, and outstanding mechanical properties. The production of polymer foams worldwide is dominated by those based on synthetic polymers, which might be biodegradable or non-biodegradable. The latter is a great environmental concern and has become a major waste management problem. Foams derived from renewable resources have aroused the interest of researchers, solid foams made from plant polymers in particular. This review focuses on the development of plant polymer-based solid foams and their applications in the food industry over the last fifteen years, highlighting the relationship between their material and structural properties. The applications of these foams fall mainly into two categories: edible foams and packaging materials. Most plant polymers utilized for edible applications are protein-based, while starch and cellulose are commonly used to produce food packaging materials because of their ready availability and low cost. However, plant polymer-based solid foams exhibit some drawbacks related to their high water absorbency and poor mechanical properties. Most research has concentrated on improving these two physical properties, though few studies give a solid understanding and comprehension of the micro- to macrostructural modifications that would allow for the proper handling and design of foaming processes. There are, therefore, several challenges to be faced, the control of solid foam structural properties being the main one.
Collapse
|
12
|
Zhao Y, Li B, Li C, Xu Y, Luo Y, Liang D, Huang C. Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach. Foods 2021; 10:1845. [PMID: 34441621 PMCID: PMC8392450 DOI: 10.3390/foods10081845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Edible packaging is a sustainable product and technology that uses one kind of "food" (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the "product-packaging" system, and provides a "zero-emission" scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Cuicui Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yangfan Xu
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Yi Luo
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Dongwu Liang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; (Y.Z.); (B.L.); (C.L.); (Y.X.); (Y.L.); (C.H.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
VELASQUEZ Barreto FFLUKER, Bello-Pérez LA. Chemical, Structural, Technological Properties and Applications of Andean Tuber Starches: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1933022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Frank FLUKER VELASQUEZ Barreto
- Instituto de Investigación, Universidad Católica Los Angeles de Chimbote, Chimbote, Perú
- Escuela Profesional de Ingeniería Agroindustrial, Facultad de Ciencias Agrarias, Universidad Nacional Autónoma de Chota, Chota, Perú
| | | |
Collapse
|
14
|
Carvalho APMG, Barros DR, da Silva LS, Sanches EA, Pinto CDC, de Souza SM, Clerici MTPS, Rodrigues S, Fernandes FAN, Campelo PH. Dielectric barrier atmospheric cold plasma applied to the modification of Ariá (Goeppertia allouia) starch: Effect of plasma generation voltage. Int J Biol Macromol 2021; 182:1618-1627. [PMID: 34052266 DOI: 10.1016/j.ijbiomac.2021.05.165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
The goal of this paper was to evaluate the influence of a range of plasma generation voltages on the physicochemical, structural, and technological properties of Aria (Goeppertia allouia) starch. Untreated (0 kV) and high voltages of cold plasma generation (7, 10, 14, and 20 kV) treated samples were evaluated according to their amylose content, pH, groups carbonyl/carboxyl, molecular size distribution, structure and technological properties (empirical viscosity, hydration properties, thermal analysis and gel strength). The applied voltage of 14 kV resulted in the greatest depolymerization of the starch chains, while 20 kV allowed the formation of oxidized complexes, promoting crosslinking of the starches chain. The cold plasma technique did not affect the levels of resistant starches, but increased the starch digestibility. The increased carbonyl and carboxyl groups also influenced the paste viscosity, improved hydration properties. This study suggests that the cold plasma technique can be useful in the controlled modification of starches, producing starches with different technological properties.
Collapse
Affiliation(s)
- Ana Paula Miléo Guerra Carvalho
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Domingos Rodrigues Barros
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Manaus, Amazonas, Brazil
| | - Laiane Souza da Silva
- Laboratory of Nanostructured Polymers (NANOPOL; @nanopol_ufam), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL; @nanopol_ufam), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Camila da Costa Pinto
- Graduation Program in Material Science & Engineering (PPGCEM), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Sérgio Michielon de Souza
- Graduation Program in Material Science & Engineering (PPGCEM), Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil; Department of Physics, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | | | - Sueli Rodrigues
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Campus do Pici Bloco 858, 60440-900 Fortaleza, Ceará, Brazil
| | - Fabiano André Narciso Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici Bloco 709, 60440-900 Fortaleza, Ceará, Brazil
| | - Pedro Henrique Campelo
- Grupo de Inovação em Biotecnologia e Alimentos da Amazônia (gIBA), Universidade Federal do Amazonas, Manaus, Amazonas 69077-000, Brazil; Faculty of Agrarian Science, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil.
| |
Collapse
|
15
|
Puelles‐Román J, Barroso NG, Cruz‐Tirado JP, Tapia‐Blácido DR, Angelats‐Silva L, Barraza‐Jáuregui G, Siche R. Annealing process improves the physical, functional, thermal, and rheological properties of Andean oca (
Oxalis tuberosa
) starch. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Noadia Genuario Barroso
- Department of Food Engineering, Faculty of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Jam Pier Cruz‐Tirado
- Department of Food Engineering, Faculty of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Delia Rita Tapia‐Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras Universidade de São Paulo Ribeirão Preto Sao Paulo Brazil
| | - Luis Angelats‐Silva
- Laboratorio de Investigación Multidisciplinaria Universidad Privada Antenor Orrego Trujillo Peru
| | | | - Raúl Siche
- Facultad de Ciencias Agropecuarias Universidad Nacional de Trujillo Trujillo Peru
| |
Collapse
|
16
|
Relationships among molecular, physicochemical and digestibility characteristics of Andean tuber starches. Int J Biol Macromol 2021; 182:472-481. [PMID: 33848547 DOI: 10.1016/j.ijbiomac.2021.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to determine and correlate the physicochemical, thermal, pasting, digestibility and molecular characteristics of native starches, such as mashua (Tropaeolum tuberosum R. and P.), oca (Oxalis tuberosa Mol.), and olluco (Ullucus tuberosus C.), which were extracted via successive washing and sedimentation. The morphology of native starches was determined by scanning electron microscopy, granule size distribution, thermal properties, pasting properties, X-ray diffraction (XRD), amylopectin chain-length distribution and amylose and amylopectin molecular weights. Mashua starch was smaller in size than oca and olluco starches. Moreover, the granules of mashua starch were round in shape, whereas those of oca and olluco starches were ellipsoidal in shape. The B XRD spectra showed similar profiles for the three Andean tuber starches. Mashua and olluco starches exhibited the lowest gelatinization temperatures and enthalpy values, and olluco amylopectin exhibited a longer chain length than mashua and oca starches. The resistant starch of gelatinized and ungelatinized samples exhibited a positive and strong correlation with the molecular properties of amylose and amylopectin, gelatinization enthalpy and molecular order.
Collapse
|
17
|
Fonseca-Santanilla EB, Betancourt-López LL. Physicochemical and structural characterization of starches from Andean roots and tubers grown in Colombia. FOOD SCI TECHNOL INT 2021; 28:144-156. [PMID: 33653148 DOI: 10.1177/1082013221997313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The preservation of Andean roots and tubers (ART) depends on the recognition of their health-promoting and nutritional metabolites and their transformation into other products such as starches. The objective of this study was to determine the physicochemical and structural properties of native starches obtained from Canna edulis K., Oxalis tuberosa M., and Ipomoea batatas L. from the Colombian Andean agroecosystem. The physicochemical properties of starches were determined by traditional methods of analysis. The thermal properties were determined by gravimetric thermal analysis (TGA) and differential scanning calorimetry (DSC), while the structural characteristics were studied with X-ray diffractometry and infrared spectrometry. The ART showed a starch yield of between 53.3% and 75.4% (dry basis) and amylose content between 28.4% and 35.6%. Starches from I. batatas showed the highest percentage of amylose, lowest gel clarity, lowest water absorption index, and highest gel temperature. X-ray diffractograms showed a type A crystallographic pattern for I. batatas starch, and a type B pattern for C. edulis and O. tuberosa starches, while infrared spectra (FTIR-ATR) corroborated the structural characteristics of each type of starch. The results suggest that starches from Andean resources can be used as a substitute for traditional starches from corn and potato. In addition, their amylose content makes them potential sources of resistant starch and dietary fiber.
Collapse
|
18
|
Gao L, Wang H, Wan C, Leng J, Wang P, Yang P, Gao X, Gao J. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench) starches affected by molecular structure. Int J Biol Macromol 2020; 156:120-126. [PMID: 32289422 DOI: 10.1016/j.ijbiomac.2020.04.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022]
Abstract
Common buckwheat starch (CBS) has extensive using value in the human diet. In this study, the molecular structure and physicochemical properties of CBS isolated from five cultivars collected from three regions of China were studied. Variations in molecular structure, crystalline structure, complexity, water solubility (WS), swelling power (SP), pasting properties, and thermal characteristics were recorded among the starches. The CBS had both similarities and differences in its properties by comparison with maize starch (MS) and potato starch (PS). The average molecular weight (MW) and amylopectin average chain length (ACL) of CBS ranged from 3.86 × 107 g/mol to 4.68 × 107 g/mol and from 21.29% to 22.68%, respectively. CBS and MS were divided into one subgroup and showed typical A diffraction patterns, while PS was divided into two subgroups and exhibited a typical B polymorphic pattern. The WS and SP of all the starches significantly increased with increasing temperature and had great variation at 70 °C and 90 °C. Pearson's correlation analysis showed that the molecular structure of starches greatly affected the physicochemical properties. This study revealed that the physicochemical properties of CBS could be affected by the molecular structures.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Honglu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiajun Leng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
19
|
Wang H, Yang Q, Gao L, Gong X, Qu Y, Feng B. Functional and physicochemical properties of flours and starches from different tuber crops. Int J Biol Macromol 2020; 148:324-332. [DOI: 10.1016/j.ijbiomac.2020.01.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
|
20
|
Zhu F, Cui R. Comparison of physicochemical properties of oca (Oxalis tuberosa), potato, and maize starches. Int J Biol Macromol 2020; 148:601-607. [DOI: 10.1016/j.ijbiomac.2020.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
|